import pandas as pd df = pd.DateFrame(people) print(df.sort_values(by=['last', 'first'], ascending = [False, True]).reset_index(drop = True)) # OR (they are equal) print(df.sort_values(by=['last', 'first'], ascending = [False, True], ignore_index = True)) ############################################ mpg.sort_values(ascending = False, inplace = True) mpg.sort_index(inplace = True) ############################################ titanic.nlargest(n = 5, columns = 'fare') titanic.nsmallest(n = 5, columns = 'fare') cars.nlargest(n = 10, columns = "weight") ############################################ top_20_percent = df.nlargest(int(len(df) * 0.2), columns='column_name') ############################################ titanic.loc[titanic.age.idxmin()]