> sinks <- raster("rasterized.tif")
> tpi <- raster("TPI.tif")
> model <- glm(sinks[]~tpi[], family= binomial)
> summary(model)
Call:
glm(formula = sinks[] ~ tpi[], family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.5368 -0.3780 -0.3774 -0.3766 2.3877
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.606015 0.001022 -2551.117 <2e-16 ***
tpi[] -0.321924 0.038967 -8.261 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 7496150 on 14968071 degrees of freedom
Residual deviance: 7496082 on 14968070 degrees of freedom
(15480 observations deleted due to missingness)
AIC: 7496086
Number of Fisher Scoring iterations: 5}
>test <- raster("tpi_test.tif")
> predict(test, model, type="response")
Error in p[-naind, ] <- predv :
number of items to replace is not a multiple of replacement length
In addition: Warning message:
'newdata' had 690549 rows but variables found have 14983552 rows