• API
• FAQ
• Tools
• Archive
SHARE
TWEET # Untitled a guest Oct 21st, 2019 93 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
1. import numpy as np
2. from pylab import *
4. from scipy import *
5. import matplotlib.pyplot as plt
6. import scipy.constants as const
7. import scipy.stats as stats
8. from scipy import optimize
9.
10. #Let's plot TTau in microns and
11. #First column is wavelength, second is flux density, third is something we ignore.
13. TTw, TTf = (TTmic[:,0],TTmic[:,1])
14. M2V = loadtxt('/home/kmiskove/Documents/M2V_Gl806.txt', skiprows=45, usecols=(0,1))
15. M2Vw, M2Vf = (M2V[:,0],M2V[:,1])
16.
17. #Let's normalize the fluxes:
18. TTfn = TTf/median(TTf)
19. M2fn = M2Vf/median(M2Vf)
20.
21. #This is where we specify our Av, T, and r values.
22. Av = 0.3 #veiling
23. T = 1500 #temp
24. r = 0.7 #scaling
25. #And let's define some constants:
26. h = 6.26e-34
27. c = 3.0e8
28. k = 1.38e-23
29. omega = 5.67e-8
30.
31. #The following defines the planck function
32. def planck(wave, T):
33.     """
34.     Input: Wavelength values
35.     Returns: B_nu(wave,temp), the Planck distribution function in SI units
36.     """
37.     numer = 2.*h*(c)**2/(wave*1.e-6)**5
38.     denom = exp(h*c/(k*T*(wave*1.e-6)))-1.
39.     return numer/denom
40.
41. pl = planck(M2Vw,T)
42. pln = r*planck(M2Vw,T)/median(planck(M2Vw,T))
43. ext = 0.302*Av/M2Vw**2
44.
45. #our star with the added planck function, normalized
46. star = M2fn + pln
47. redd = star/10**(ext/2.5)
48. reddn = redd/median(redd)
49.
50. #Now we plot:import numpy as np
51. from pylab import *
53. from scipy import *
54. import matplotlib.pyplot as plt
55. import scipy.constants as const
56. import scipy.stats as stats
57. from scipy import optimize
58.
59. #Let's plot TTau in microns and
60. #First column is wavelength, second is flux density, third is something we ignore.
62. TTw, TTf = (TTmic[:,0],TTmic[:,1])
63. M2V = loadtxt('/home/kmiskove/Documents/M2V_Gl806.txt', skiprows=45, usecols=(0,1))
64. M2Vw, M2Vf = (M2V[:,0],M2V[:,1])
65.
66. #Let's normalize the fluxes:
67. TTfn = TTf/median(TTf)
68. M2fn = M2Vf/median(M2Vf)
69.
70. #This is where we specify our Av, T, and r values.
71. Av = 0.3 #veiling
72. T = 1500 #temp
73. r = 0.7 #scaling
74. #And let's define some constants:
75. h = 6.26e-34
76. c = 3.0e8
77. k = 1.38e-23
78. omega = 5.67e-8
79.
80. #The following defines the planck function
81. def planck(wave, T):
82.     """
83.     Input: Wavelength values
84.     Returns: B_nu(wave,temp), the Planck distribution function in SI units
85.     """
86.     numer = 2.*h*(c)**2/(wave*1.e-6)**5
87.     denom = exp(h*c/(k*T*(wave*1.e-6)))-1.
88.     return numer/denom
89.
90. pl = planck(M2Vw,T)
91. pln = r*planck(M2Vw,T)/median(planck(M2Vw,T))
92. ext = 0.302*Av/M2Vw**2
93.
94. #our star with the added planck function, normalized
95. star = M2fn + pln
96. redd = star/10**(ext/2.5)
97. reddn = redd/median(redd)
98.
99. #Now we plot:
100. plt.plot(TTw,TTfn)
101. plt.plot(M2Vw, reddn)
102. plt.plot(M2Vw, pln)
103. plt.xlabel('Wavelength (microns)')
104. plt.ylabel('Flux density')
105. plt.show(_)
106.
107. #Calculating velocity or smth...c = 3.0e8
108. yeet = 0.302*.3/2.1660**2
109. print(yeet)
110. #^ This is for lambda sub b
111.
112. #Now we do our extinction of 0.0193 = -2.5log(F) and solve for F. I'll just do that in my calculator.
113. flux = 0.982381
114. #So we're losing 0.0176 of our light. So we take our flux from IRAF, which was 3.821E-13, and multiply it by 1.0176
115. #Our new, corrected flux is 3.888E-13! erg/s/cm^2
116. #When we use figure 3, our  mass accretion rate ends up being E-7, so we'd need E7 years to form the sun. That's 10,000,000 years. Ten million years. That sounds fine.
117.
118. #Now for part 3, we measure our lamba sub b to be 10820 and our lambda not to be 10834.
119. lb = 10820
120. ln = 10834
121. c = 3.0e8
122.
123. v = c*((ln - lb)/ln)
124. print(v)
125.
126. #So that's 387km/s. The escape velocity of the sun from Earth's distance is about 42km/s, so we can assume this material would escape and be ejected.
127. plt.plot(TTw,TTfn)
128. plt.plot(M2Vw, reddn)
129. plt.plot(M2Vw, pln)
130. plt.xlabel('Wavelength (microns)')
131. plt.ylabel('Flux density')
132. plt.show(_)
133.
134. #Calculating velocity or smth...c = 3.0e8
135. yeet = 0.302*.3/2.1660**2
136. print(yeet)
137. #^ This is for lambda sub b
138.
139. #Now we do our extinction of 0.0193 = -2.5log(F) and solve for F. I'll just do that in my calculator.
140. flux = 0.982381
141. #So we're losing 0.0176 of our light. So we take our flux from IRAF, which was 3.821E-13, and multiply it by 1.0176
142. #Our new, corrected flux is 3.888E-13! erg/s/cm^2
143. #When we use figure 3, our  mass accretion rate ends up being E-7, so we'd need E7 years to form the sun. That's 10,000,000 years. Ten million years. That sounds fine.
144.
145. #Now for part 3, we measure our lamba sub b to be 10820 and our lambda not to be 10834.
146. lb = 10820
147. ln = 10834
148. c = 3.0e8
149.
150. v = c*((ln - lb)/ln)
151. print(v)
152.
153. #So that's 387km/s. The escape velocity of the sun from Earth's distance is about 42km/s, so we can assume this material would escape and be ejected.
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy.

Top