cmhughes

polynomialfunctions.tex

Nov 12th, 2011
425
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. \chapter{Polynomial functions}
  2. \minitoc
  3.  
  4. \section{Polynomial functions}
  5. \listspecialproblems
  6. %===================================
  7. %   Author: Hughes
  8. %   Date:   May 2011
  9. %===================================
  10. \begin{pccdefinition}[Polynomial functions]
  11. Polynomial functions have the form
  12. \[
  13.    p(x)=a_nx^n+a_{n+1}x^{n+1}+\ldots+a_1x+a_0
  14. \]
  15. where $a_n$, $a_{n+1}$, $a_{n+2}$, \ldots, $a_0$ are real numbers.
  16. \begin{itemize}
  17.    \item We call $n$ the degree of the polynomial;
  18.    \item $a_n$, $a_{n+1}$, $a_{n+2}$, \ldots, $a_0$ are called the coefficients;
  19.    \item We typically write polynomial functions in descending powers of $x$.
  20. \end{itemize}
  21. In particular, we call $a_n$ the {\em leading} coefficient.
  22. \end{pccdefinition}
  23.  
  24. %===================================
  25. %   Author: Hughes
  26. %   Date:   May 2011
  27. %===================================
  28. \begin{figure}[!h]
  29. \centering
  30. \setlength{\figurewidth}{\textwidth/6}
  31. \setwindow{-10}{-10}{10}{10}{\figurewidth}
  32. \begin{subfigure}{\figurewidth}
  33. \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  34.      \pccpsframe(\xmin,\ymin)(\xmax,\ymax)
  35.      \psaxes[dx=10,Dx=10,dy=100,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  36.      \pccpsplot{-10}{8}{(x+2)}
  37.    \end{pspicture}
  38. \caption{$a_1>0$}
  39. \end{subfigure}
  40. \hfill
  41. \begin{subfigure}{\figurewidth}
  42. \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  43.      \pccpsframe(\xmin,\ymin)(\xmax,\ymax)
  44.      \psaxes[dx=10,Dx=10,dy=100,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  45.      \pccpsplot{-4}{4}{(x^2-6)}
  46.    \end{pspicture}
  47. \caption{$a_2>0$}
  48. \end{subfigure}
  49. \hfill
  50. \begin{subfigure}{\figurewidth}
  51. \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  52.      \pccpsframe(\xmin,\ymin)(\xmax,\ymax)
  53.      \psaxes[dx=10,Dx=10,dy=100,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  54.      \pccpsplot{-7.5}{7.5}{0.05*(x+6)*x*(x-6)}
  55.    \end{pspicture}
  56. \caption{$a_3>0$}
  57. \end{subfigure}
  58. \hfill
  59. \begin{subfigure}{\figurewidth}
  60. \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  61.      \pccpsframe(\xmin,\ymin)(\xmax,\ymax)
  62.      \psaxes[dx=10,Dx=10,dy=100,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  63.      \pccpsplot[plotpoints=1000]{-2.35}{5.35}{0.2*(x-5)*x*(x-3)*(x+2)}
  64.    \end{pspicture}
  65. \caption{$a_4>0$}
  66. \end{subfigure}
  67. \hfill
  68. \begin{subfigure}{\figurewidth}
  69. \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  70.      \pccpsframe(\xmin,\ymin)(\xmax,\ymax)
  71.      \psaxes[dx=10,Dx=10,dy=100,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  72.      \pccpsplot[plotpoints=1000]{-5.5}{6.3}{0.01*(x+2)*x*(x-3)*(x+5)*(x-6)}
  73.    \end{pspicture}
  74. \caption{$a_5>0$}
  75. \end{subfigure}
  76. \caption{Graphs to illustrate typical shapes of polynomials.}
  77. \end{figure}
  78.  
  79. %===================================
  80. %   Author: Hughes
  81. %   Date:   May 2011
  82. %===================================
  83. \begin{problem}[Polynomial or not?][special]
  84. Identify whether each of the following functions is a polynomial or not.
  85. If the function is a polynomial, state its degree.
  86. \begin{multicols}{3}
  87. \begin{subproblem}[special]
  88. $p(x)=2x+1$
  89.    \begin{shortsolution}
  90.        $p$ is a polynomial (you might also describe $p$ as linear). The degree of $p$ is 1.
  91.    \end{shortsolution}
  92. \end{subproblem}
  93. \begin{subproblem}
  94. $p(x)=7x^2+4x$
  95.    \begin{shortsolution}
  96.        $p$ is a polynomial (you might also describe $p$ as quadratic). The degree of $p$ is 2.
  97.    \end{shortsolution}
  98. \end{subproblem}
  99. \begin{subproblem}
  100. $p(x)=\sqrt{x}+2x+1$
  101.    \begin{shortsolution}
  102.        $p$ is not a polynomial; we require the powers of $x$ to be integer values.
  103.    \end{shortsolution}
  104. \end{subproblem}
  105. \begin{subproblem}
  106. $p(x)=2^x-45$
  107.    \begin{shortsolution}
  108.        $p$ is not a polynomial; the $2^x$ term is exponential.
  109.    \end{shortsolution}
  110. \end{subproblem}
  111. \begin{subproblem}
  112. $p(x)=6x^4-5x^3+9$
  113.    \begin{shortsolution}
  114.        $p$ is a polynomial- the degree of $p$ is $6$.
  115.    \end{shortsolution}
  116. \end{subproblem}
  117. \begin{subproblem}[special]
  118. $p(x)=-5x^{17}+9x+2$
  119.    \begin{shortsolution}
  120.        $p$ is a polynomial- the degree of $p$ is 17.
  121.    \end{shortsolution}
  122. \end{subproblem}
  123. \end{multicols}
  124. \end{problem}
  125.  
  126. %===================================
  127. %   Author: Hughes
  128. %   Date:   May 2011
  129. %===================================
  130. \begin{problem}[Polynomial graphs]
  131. Three polynomial functions are shown in  \crefrange{poly:fig:functionp}{poly:fig:functionn}.
  132. The functions $p$, $m$, $n$ have the following formulas
  133. \begin{align*}
  134.    p(x)&= (x-1)(x+2)(x-3)\\
  135.    m(x)&= -(x-1)(x+2)(x-3)\\
  136.    n(x)&= (x-1)(x+2)(x-3)(x+1)(x+4)
  137. \end{align*}
  138. Note that for our present purposes we are not concerned with the vertical scale of the graphs.
  139. \end{problem}
  140. \begin{subproblem}
  141. Identify both on the graph {\em and} algebraically, the zeros of the polynomial.
  142.    \begin{shortsolution}
  143. \setlength{\figurewidth}{\solutionfigurewidth}
  144. \begin{figure}[!h]
  145. \begin{subfigure}{\figurewidth}
  146.        \setwindow{-5}{-10}{5}{10}{\figurewidth}
  147.        \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  148.            \psaxes[dx=1,Dx=1,dy=0,Dy=10]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  149.            \pccpsplot{-2.5}{3.5}{(x-1)*(x+2)*(x-3)}
  150.            \pccpsSolDot(-2,0)(1,0)(3,0)
  151.        \end{pspicture}
  152. \caption{$y=p(x)$}
  153.   \end{subfigure}
  154. \begin{subfigure}{\figurewidth}
  155.        \setwindow{-5}{-10}{5}{10}{\figurewidth}
  156.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  157.                \psaxes[dx=1,Dx=1,dy=0,Dy=10]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  158.                \pccpsplot{-2.5}{3.5}{-1*(x-1)*(x+2)*(x-3)}
  159.                \pccpsSolDot(-2,0)(1,0)(3,0)
  160.            \end{pspicture}
  161. \caption{$y=m(x)$}
  162.   \end{subfigure}
  163.    \begin{subfigure}{\figurewidth}
  164.        \setwindow{-5}{-90}{5}{70}{\figurewidth}
  165.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  166.                \psaxes[dx=1,Dx=1,dy=0,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  167.                \pccpsplot{-4.15}{3.15}{(x-1)*(x+2)*(x-3)*(x+1)*(x+4)}
  168.                \pccpsSolDot(-4,0)(-2,0)(-1,0)(1,0)(3,0)
  169.            \end{pspicture}
  170. \caption{$y=n(x)$}
  171.   \end{subfigure}
  172. \end{figure}
  173.  
  174. The zeros of $p$ are $x=-2,1,3$; the zeros of $m$ are $x=-2,1,3$; the zeros of $n$ are $x=-4,-2,-1$, and $3$.
  175.    \end{shortsolution}
  176. \end{subproblem}
  177. \begin{subproblem}[special]
  178. Write down the degree, how many times the graph `turns around', and how many zeros it has
  179.    \begin{shortsolution}
  180.    The degree of $p$ is 3, and it turns around twice. The degree of $q$ is also 3, and it turns around twice. The degree
  181.    of $n$ is $5$, and it turns around 4 times.
  182.    \end{shortsolution}
  183. \end{subproblem}
  184.  
  185. \setlength{\figurewidth}{0.25\textwidth}
  186. \begin{figure}[!h]
  187. \begin{subfigure}{\figurewidth}
  188.        \setwindow{-5}{-10}{5}{10}{\figurewidth}
  189.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  190.                \psaxes[dx=1,Dx=1,dy=0,Dy=10]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  191.                \pccpsplot{-2.5}{3.5}{(x-1)*(x+2)*(x-3)}
  192.            \end{pspicture}
  193. \caption{$y=p(x)$}
  194.        \label{poly:fig:functionp}
  195.       \end{subfigure}
  196.       \hfill
  197. \begin{subfigure}{\figurewidth}
  198.        \setwindow{-5}{-10}{5}{10}{\figurewidth}
  199.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  200.                \psaxes[dx=1,Dx=1,dy=0,Dy=10]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  201.                \pccpsplot{-2.5}{3.5}{-1*(x-1)*(x+2)*(x-3)}
  202.            \end{pspicture}
  203. \caption{$y=m(x)$}
  204.        \label{poly:fig:functionm}
  205.       \end{subfigure}
  206.       \hfill
  207. \begin{subfigure}{\figurewidth}
  208.        \setwindow{-5}{-90}{5}{70}{\figurewidth}
  209.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  210.                \psaxes[dx=1,Dx=1,dy=0,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  211.                \pccpsplot{-4.15}{3.15}{(x-1)*(x+2)*(x-3)*(x+1)*(x+4)}
  212.            \end{pspicture}
  213. \caption{$y=n(x)$}
  214.        \label{poly:fig:functionn}
  215.       \end{subfigure}
  216.    \caption{}
  217. \end{figure}
  218.  
  219.  
  220. %===================================
  221. %   Author: Hughes
  222. %   Date:   May 2011
  223. %===================================
  224. \begin{problem}[Horizontal intercepts][special]\label{poly:prob:matchpolys}%
  225. State the horizontal intercepts (as ordered pairs) of the following polynomials.
  226. \end{problem}
  227.    \begin{subproblem}\label{poly:prob:degree5}
  228.        $p(x)=(x-1)(x+2)(x-3)(x+1)(x+4)$
  229.        \begin{shortsolution}
  230.            $(-4,0)$, $(-2,0)$, $(-1,0)$, $(1,0)$, $(3,0)$
  231.        \end{shortsolution}
  232.    \end{subproblem}
  233.    \begin{subproblem}
  234.        $q(x)=-(x-1)(x+2)(x-3)$
  235.        \begin{shortsolution}
  236.            $(-2,0)$, $(1,0)$, $(3,0)$
  237.        \end{shortsolution}
  238.    \end{subproblem}
  239.    \begin{subproblem}
  240.        $r(x)=(x-1)(x+2)(x-3)$
  241.        \begin{shortsolution}
  242.            $(-2,0)$, $(1,0)$, $(3,0)$
  243.        \end{shortsolution}
  244.    \end{subproblem}
  245.    \begin{subproblem}\label{poly:prob:degree2}
  246.        $s(x)=(x-2)(x+2)$
  247.        \begin{shortsolution}
  248.            $(-2,0)$, $(2,0)$
  249.        \end{shortsolution}
  250.    \end{subproblem}
  251.  
  252.  
  253.  
  254. \begin{pccdefinition}[Linear factors of a polynomial]
  255. If a polynomial $p$ can be written in factored form
  256. \[
  257.    p(x)=(x-x_1)(x-x_2)\ldots(x-x_n)
  258. \]
  259. then we call each of the factors $(x-x_i)$ the linear factors of $p$.
  260. \end{pccdefinition}
  261.  
  262. %===================================
  263. %   Author: Hughes
  264. %   Date:   May 2011
  265. %===================================
  266. \begin{problem}[Multiple zeros]
  267. Consider the polynomial
  268. \[
  269. p(x) = (x+3)^2(x-1).
  270. \]
  271. \end{problem}
  272. \begin{marginfigure}
  273. \setlength{\figurewidth}{\marginparwidth}
  274. \setwindow{-5}{-20}{2}{10}{\figurewidth}
  275.    \centering
  276.        \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  277.            \psaxes[dx=1,Dx=1,dy=0,Dy=100]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  278.            \pccpsplot{-4.75}{1.5}{(x-1)*(x+3)^2}
  279.        \end{pspicture}
  280.    \caption{$p(x)=(x+3)^2(x-1)$}
  281.    \label{poly:fig:multiplezeros}
  282. \end{marginfigure}
  283. \begin{subproblem}
  284. How is this different to the polynomials we have seen so far?
  285.    \begin{shortsolution}
  286.    $p$ has a repeated linear factor.
  287.    \end{shortsolution}
  288. \end{subproblem}
  289. \begin{subproblem}
  290. How many linear factors does $p$ have?
  291.    \begin{shortsolution}
  292.    $p$ has 3 linear factors.
  293.    \end{shortsolution}
  294. \end{subproblem}
  295. \begin{subproblem}
  296. What is the degree of this polynomial?
  297.    \begin{shortsolution}
  298.    The degree of $p$ is $3$.
  299.    \end{shortsolution}
  300. \end{subproblem}
  301. Note that this polynomial can be written as
  302. \begin{align*}
  303. p(x) &=(x+3)^2(x-1)\\
  304.      &=(x+3)(x+3)(x-1).
  305. \end{align*}
  306. Does this change your answers?
  307. \begin{subproblem}
  308. The graph of this polynomial is shown in \cref{poly:fig:multiplezeros}. Notice in
  309. particular the behavior of $p$ at $(-3,0)$. Does $p$ cut the horizontal axis, or bounce off it?
  310.    \begin{shortsolution}
  311.    $p$ bounces off the horizontal axis at $(-3,0)$.
  312.    \end{shortsolution}
  313. \end{subproblem}
  314. \begin{subproblem}
  315. Now consider the polynomial functions in \cref{poly:fig:moremultiple}.
  316. The formulas for $p$, $q$, and $r$ are as follows
  317. \begin{align*}
  318.  p(x)&=(x-3)^2(x+4)^2\\
  319.  q(x)&=x(x+2)^2(x-1)^2(x-3)\\
  320.  r(x)&=x(x-3)^3(x+1)^2
  321. \end{align*}
  322. Find the degree of $p$, $q$, and $r$, and decide if the functions bounce or cut at
  323. each of their zeros.
  324.    \begin{shortsolution}
  325.    \begin{itemize}
  326.        \item The degree of $p$ is 4. It bounces at both zeros, $x=3$ and $x=4$.
  327.        \item The degree of $q$ is 6. It bounces at $x=-2$ and $x=1$, and cuts at $x=0,3$.
  328.        \item The degree of $r$ is 6. It bounces at $x=-1$, and cuts at $x=0$. It also
  329.        cuts at $x=3$, although is flattened immediately to the left and right of $x=3$.
  330.    \end{itemize}
  331.    \end{shortsolution}
  332. \end{subproblem}
  333.  
  334. \setlength{\figurewidth}{0.25\textwidth}
  335. \begin{figure}[!h]
  336. \centering
  337. \begin{subfigure}{\figurewidth}
  338.        \setwindow{-5}{-30}{5}{200}{\figurewidth}
  339.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  340.                \psaxes[dx=2,Dx=2,dy=0,Dy=200]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  341.                \pccpsplot{-5}{4.25}{(x-3)^2*(x+4)^2}
  342.            \end{pspicture}
  343. \caption{$y=p(x)$}
  344.   \end{subfigure}
  345.   \hfill
  346. \begin{subfigure}{\figurewidth}
  347.        \setwindow{-3}{-60}{4}{40}{\figurewidth}
  348.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  349.                \psaxes[dx=1,Dx=1,dy=0,Dy=200]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  350.                \pccpsplot{-2.45}{3.05}{x*(x+2)^2*(x-1)^2*(x-3)}
  351.            \end{pspicture}
  352. \caption{$y=q(x)$}
  353.   \end{subfigure}
  354.   \hfill
  355. \begin{subfigure}{\figurewidth}
  356.        \setwindow{-2}{-40}{4}{40}{\figurewidth}
  357.            \begin{pspicture}(\xmin,\ymin)(\xmax,\ymax)
  358.                \psaxes[dx=1,Dx=1,dy=0,Dy=200]{<->}(0,0)(\xmin,\ymin)(\xmax,\ymax)[$x$,-90][$y$,180]
  359.                \pccpsplot{-1.45}{3.75}{x*(x-3)^3*(x+1)^2}
  360.            \end{pspicture}
  361. \caption{$y=r(x)$}
  362.   \end{subfigure}
  363.    \caption{}
  364.    \label{poly:fig:moremultiple}
  365. \end{figure}
  366.  
  367. \begin{pccdefinition}[Multiple zeros]
  368. Let $p$ be a polynomial that has a repeated linear factor $(x-k)^n$. Then we say
  369. that $p$ has a multiple zero at $x=k$ and
  370. \begin{itemize}
  371. \item if the factor $(x-k)$ is repeated an even number of times, the graph of $y=p(x)$ does not
  372.  cross the $x$ axis at $x=k$, but `bounces' off the $x$ axis at $x=k$.
  373. \item if the factor $(x-k)$ is repeated an odd number of times, the graph of $y=p(x)$ crosses the
  374.  $x$ axis at $x=k$, but it looks `flattened' there
  375. \end{itemize}
  376. \end{pccdefinition}
  377.  
  378. %===================================
  379. %   Author: Hughes
  380. %   Date:   May 2011
  381. %===================================
  382. \begin{margintable}
  383. \centering
  384.        \caption{$p$ and $q$}
  385.        \begin{tabular}{rrr}
  386.            \beforeheading
  387.            \heading{$x$}     &   \heading{$p(x)$}  & \heading{$q(x)$} \\ \afterheading
  388.            $-4$    &   $-56$   &  $-16$      \\\normalline
  389.            $-3$    &   $-18$   &  $-3$      \\ \normalline
  390.            $-2$    &   $0$     &  $0$      \\  \normalline
  391.            $-1$    &   $4$     &  $-1$      \\ \normalline
  392.            $0$     &   $0$     &  $0$      \\  \normalline
  393.            $1$     &   $-6$    &  $9$      \\  \normalline
  394.            $2$     &   $-8$    &  $32$      \\ \normalline
  395.            $3$     &   $0$     &  $75$      \\ \normalline
  396.            $4$     &   $24$    &  $144$     \\\lastline
  397.        \end{tabular}
  398.        \label{poly:tab:findformula}
  399. \end{margintable}
  400. \begin{problem}[Find a formula from a table]
  401. \Cref{poly:tab:findformula} shows two polynomial functions, $p$ and $q$.
  402. \end{problem}
  403. \begin{subproblem}
  404. Assuming that all of the zeros of $p$ are shown, how many zeros does $p$ have?
  405.    \begin{shortsolution}
  406.    $p$ has 3 zeros.
  407.    \end{shortsolution}
  408. \end{subproblem}
  409. \begin{subproblem}
  410. What is the degree of $p$?
  411.    \begin{shortsolution}
  412.    $p$ is degree 3.
  413.    \end{shortsolution}
  414. \end{subproblem}
  415. \begin{subproblem}
  416. Write a formula for $p(x)$.
  417.    \begin{shortsolution}
  418.    $p(x)=x(x+2)(x-3)$
  419.    \end{shortsolution}
  420. \end{subproblem}
  421. \begin{subproblem}
  422. Assuming that all of the zeros of $q$ are shown, how many zeros does $q$ have?
  423.    \begin{shortsolution}
  424.    $q$ has 2 zeros.
  425.    \end{shortsolution}
  426. \end{subproblem}
  427. \begin{subproblem}
  428. Describe the difference in behavior of $p$ and $q$ at $x=-2$.
  429.    \begin{shortsolution}
  430.    $p$ changes sign at $x=-2$, and $q$ does not change sign at $x=-2$.
  431.    \end{shortsolution}
  432. \end{subproblem}
  433. \begin{subproblem}[special]
  434. Given that $q$ is a degree 3 polynomial, write a formula for $q(x)$.
  435.    \begin{shortsolution}
  436.    $q(x)=x(x+2)^2$
  437.    \end{shortsolution}
  438. \end{subproblem}
RAW Paste Data

Adblocker detected! Please consider disabling it...

We've detected AdBlock Plus or some other adblocking software preventing Pastebin.com from fully loading.

We don't have any obnoxious sound, or popup ads, we actively block these annoying types of ads!

Please add Pastebin.com to your ad blocker whitelist or disable your adblocking software.

×