• API
• FAQ
• Tools
• Archive
SHARE
TWEET

# Untitled

a guest Jul 18th, 2019 81 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
1. \documentclass{article}
2. \usepackage[utf8]{inputenc}
3.
4. \title{Generalised Schnorr}
5. \author{kennonero}
6. \date{July 2019}
7.
8. \usepackage{natbib}
9. \usepackage{graphicx}
10.
11. \begin{document}
12.
13. \maketitle
14.
15. \section{Introduction}
16. In this draft, we show that the Schnorr identification scheme can be generalised using polynomial interpolation.
17.
18. \section{Draft proof}
19.
20. The following proof will follow in a similar format to Schnorr.
21. \newline
22. \newline
23. - Prover owns $n$ public keys: $P_1, P_2, ..., P_n$
24. \newline
25. \newline
26. - He wants to prove that he owns the private keys to all of these public keys with respect to some generator $G$
27. \newline
28. \newline
29. 1) Prover generates a random scalar r
30. \newline
31. \newline
32. 2) Prover sends $R = rG$ to verifer
33. \newline
34. \newline
35. 3) Verifier sends a challenge scalar c
36. \newline
37. \newline
38. 4) Prover sends scalar $d = c * p_1 + c^2 * p_2 + ... + c^n * p_n + r$
39. \newline
40. \newline
41. 5) Verifier accepts iff $d * G = c * P_1 + c^2 * P_2 + ... + c^n * P_n + R$
42.
43.
44. \section{Conclusion}
45. When n =1, this is a special case of the Schnorr identification protocol
46.
47. \end{document}
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy.

Top