SHARE
TWEET

Untitled

a guest Feb 16th, 2019 52 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. begin{equation}
  2.  
  3.     begin{matrix}
  4.      J
  5.      =
  6.      begin{bmatrix}
  7.      frac{delta e_{1,1}}{delta w_{1,1}}  & frac{delta e_{1,1}}{delta w_{1,2}} &
  8.      cdots & frac{delta e_{1,1}}{delta w_{j,1}}  & cdots \[0.5em]
  9.  
  10.      frac{delta e_{1,2}}{delta w_{1,1}}  & frac{delta e_{1,2}}{delta w_{1,2}} &
  11.      cdots & frac{delta e_{1,2}}{delta w_{j,1}}  & cdots \[0.5em]
  12.  
  13.      cdots & cdots & cdots &
  14.      cdots & cdots \[0.5em]
  15.  
  16.      frac{delta e_{1,M}}{delta w_{1,1}}  & frac{delta e_{1,M}}{delta w_{1,2}} &
  17.      cdots & frac{delta e_{1,M}}{delta w_{j,1}}  & cdots \[0.5em]
  18.  
  19.      cdots & cdots & cdots &
  20.      cdots & cdots \[0.5em]
  21.  
  22.      frac{delta e_{P,1}}{delta w_{1,1}}  & frac{delta e_{P,1}}{delta w_{1,2}} &
  23.      cdots & frac{delta e_{P,1}}{delta w_{j,1}}  & cdots \[0.5em]
  24.  
  25.      frac{delta e_{P,1}}{delta w_{1,1}}  & frac{delta e_{np,2}}{delta w_{1,2}} &
  26.      cdots & frac{delta e_{P,2}}{delta w_{j,1}}  & cdots \[0.5em]
  27.  
  28.      cdots & cdots & cdots &
  29.      cdots & cdots \[0.5em]
  30.  
  31.       frac{delta e_{P,M}}{delta w_{1,1}}  & frac{delta e_{P,M}}{delta w_{1,2}} &
  32.       cdots & frac{delta e_{P,M}}{delta w_{j,1}}  & cdots \[0.5em]
  33.       end{bmatrix} %!!
  34.       begin{aligned}
  35.       &left.begin{matrix}
  36.       m = 1  \[0.5em]
  37.       m = 2  \[0.5em]
  38.       cdots \[0.5em]
  39.       m = M  \[0.5em]
  40.       end{matrix} right} %
  41.       p = 1\
  42.       &begin{matrix}
  43.       phantom{cdots}cdots\[0.5em]
  44.       end{matrix}\ %
  45.       &left.begin{matrix}
  46.       m = 1  \[0.5em]
  47.       m = 2  \[0.5em]
  48.       cdots \[0.5em]
  49.       m = M\[0.5em]
  50.       end{matrix}right}%
  51.       p = P\
  52.      end{aligned}
  53.      end{matrix}
  54.      end{equation}
  55.    
  56. documentclass{article}
  57. usepackage{amsmath}
  58. usepackage{xcolor}
  59.  
  60. newcommandovermat[2]{%
  61.   makebox[0pt][l]{$smash{color{white}overbrace{phantom{%
  62.     begin{matrix}#2end{matrix}}}^{text{color{black}#1}}}$}#2}
  63. newcommandpartialphantom{vphantom{frac{partial e_{P,M}}{partial w_{1,1}}}}
  64.  
  65. begin{document}
  66.  
  67. begin{equation}
  68. begin{matrix}
  69.  J
  70.  =
  71.  begin{bmatrix}
  72.  overmat{neuron 1}{frac{partial e_{1,1}}{partial w_{1,1}}  & frac{partial e_{1,1}}{partial w_{1,2}}} &
  73.  overmat{$mkern-3.5mucdots$}{cdots} & overmat{neuron $j$}{frac{partial e_{1,1}}{partial w_{j,1}} & frac{partial e_{1,1}}{partial w_{j,1}}} & cdots \[0.5em]
  74. %
  75.  frac{partial e_{1,2}}{partial w_{1,1}}  & frac{partial e_{1,2}}{partial w_{1,2}} &
  76.  cdots & frac{partial e_{1,2}}{partial w_{j,1}}  & cdots \[0.5em]
  77. %
  78.  cdots & cdots & cdots &
  79.  cdots & cdots \[0.5em]
  80. %
  81.  frac{partial e_{1,M}}{partial w_{1,1}}  & frac{partial e_{1,M}}{partial w_{1,2}} &
  82.  cdots & frac{partial e_{1,M}}{partial w_{j,1}}  & cdots \[0.5em]
  83. %
  84.  cdots & cdots & cdots &
  85.  cdots & cdots \[0.5em]
  86. %
  87.  frac{partial e_{P,1}}{partial w_{1,1}}  & frac{partial e_{P,1}}{partial w_{1,2}} &
  88.  cdots & frac{partial e_{P,1}}{partial w_{j,1}}  & cdots \[0.5em]
  89. %
  90.  frac{partial e_{P,1}}{partial w_{1,1}}  & frac{partial e_{np,2}}{partial w_{1,2}} &
  91.  cdots & frac{partial e_{P,2}}{partial w_{j,1}}  & cdots \[0.5em]
  92. %
  93.  cdots & cdots & cdots &
  94.  cdots & cdots \[0.5em]
  95. %
  96.   frac{partial e_{P,M}}{partial w_{1,1}}  & frac{partial e_{P,M}}{partial w_{1,2}} &
  97.   cdots & frac{partial e_{P,M}}{partial w_{j,1}}  & cdots \[0.5em]
  98.   end{bmatrix}
  99.   begin{aligned}
  100.   &left.begin{matrix}
  101.   partialphantom m = 1  \[0.5em]
  102.   partialphantom m = 2  \[0.5em]
  103.   cdots \[0.5em]
  104.   partialphantom m = M  \[0.5em]
  105.   end{matrix} right} %
  106.   p = 1\
  107.   &begin{matrix}
  108.   \[-1.67em]phantom{cdots}cdots
  109.   end{matrix}\ %
  110.   &left.begin{matrix}
  111.   partialphantom m = 1  \[0.5em]
  112.   partialphantom m = 2  \[0.5em]
  113.   cdots \[0.5em]
  114.   partialphantom m = M\[0.5em]
  115.   end{matrix}right}%
  116.   p = P\
  117.  end{aligned}
  118.  end{matrix}
  119.  end{equation}
  120.  
  121. end{document}
  122.    
  123. documentclass{article}
  124. usepackage{amsmath}
  125. usepackage{xcolor}
  126.  
  127. newcommandovermat[2]{%
  128.   makebox[0pt][l]{$smash{color{white}overbrace{phantom{%
  129.     begin{matrix}#2end{matrix}}}^{text{color{black}#1}}}$}#2}
  130. newcommandbovermat[2]{%
  131.   makebox[0pt][l]{$smash{overbrace{phantom{%
  132.     begin{matrix}#2end{matrix}}}^{text{#1}}}$}#2}
  133. newcommandpartialphantom{vphantom{frac{partial e_{P,M}}{partial w_{1,1}}}}
  134.  
  135. begin{document}
  136.  
  137. begin{equation}
  138. begin{matrix}
  139.  J
  140.  =
  141.  begin{bmatrix}
  142.  bovermat{neuron 1}{frac{partial e_{1,1}}{partial w_{1,1}}  & frac{partial e_{1,1}}{partial w_{1,2}}} &
  143.  overmat{$mkern-3.5mucdots$}{cdots} & bovermat{neuron $j$}{frac{partial e_{1,1}}{partial w_{j,1}} & frac{partial e_{1,1}}{partial w_{j,1}}} & cdots \[0.5em]
  144. %
  145.  frac{partial e_{1,2}}{partial w_{1,1}}  & frac{partial e_{1,2}}{partial w_{1,2}} &
  146.  cdots & frac{partial e_{1,2}}{partial w_{j,1}}  & cdots \[0.5em]
  147. %
  148.  cdots & cdots & cdots &
  149.  cdots & cdots \[0.5em]
  150. %
  151.  frac{partial e_{1,M}}{partial w_{1,1}}  & frac{partial e_{1,M}}{partial w_{1,2}} &
  152.  cdots & frac{partial e_{1,M}}{partial w_{j,1}}  & cdots \[0.5em]
  153. %
  154.  cdots & cdots & cdots &
  155.  cdots & cdots \[0.5em]
  156. %
  157.  frac{partial e_{P,1}}{partial w_{1,1}}  & frac{partial e_{P,1}}{partial w_{1,2}} &
  158.  cdots & frac{partial e_{P,1}}{partial w_{j,1}}  & cdots \[0.5em]
  159. %
  160.  frac{partial e_{P,1}}{partial w_{1,1}}  & frac{partial e_{np,2}}{partial w_{1,2}} &
  161.  cdots & frac{partial e_{P,2}}{partial w_{j,1}}  & cdots \[0.5em]
  162. %
  163.  cdots & cdots & cdots &
  164.  cdots & cdots \[0.5em]
  165. %
  166.   frac{partial e_{P,M}}{partial w_{1,1}}  & frac{partial e_{P,M}}{partial w_{1,2}} &
  167.   cdots & frac{partial e_{P,M}}{partial w_{j,1}}  & cdots \[0.5em]
  168.   end{bmatrix}
  169.   begin{aligned}
  170.   &left.begin{matrix}
  171.   partialphantom m = 1  \[0.5em]
  172.   partialphantom m = 2  \[0.5em]
  173.   cdots \[0.5em]
  174.   partialphantom m = M  \[0.5em]
  175.   end{matrix} right} %
  176.   p = 1\
  177.   &begin{matrix}
  178.   \[-1.67em]phantom{cdots}cdots
  179.   end{matrix}\ %
  180.   &left.begin{matrix}
  181.   partialphantom m = 1  \[0.5em]
  182.   partialphantom m = 2  \[0.5em]
  183.   cdots \[0.5em]
  184.   partialphantom m = M\[0.5em]
  185.   end{matrix}right}%
  186.   p = P\
  187.  end{aligned}
  188.  end{matrix}
  189.  end{equation}
  190.  
  191. end{document}
  192.    
  193. documentclass{article}
  194. usepackage{amsmath}
  195.  
  196. [
  197. begin{array}{| c | c | c | c | c | c | c | c | c | c |}
  198. multicolumn{3}{c}{rho_1 } &
  199. multicolumn{3}{c}{rho_2} &
  200. multicolumn{1}{c}{  }   &
  201. multicolumn{3}{c}{rho_k} \
  202. %
  203. multicolumn{3}{c}{overbrace{rule{4cm}{0pt}}} &
  204. multicolumn{3}{c}{overbrace{rule{4cm}{0pt}}} &
  205. multicolumn{1}{c}{  }   &
  206. multicolumn{3}{c}{overbrace{rule{4cm}{0pt}}} \[-3pt]
  207. hline
  208. p(t_1) & cdots & p^{(rho_1-1)}(t_1) & p(t_2) & cdots &
  209. p^{(rho_2-1)}(t_2) & cdots  & p(t_k) & cdots &
  210. p^{(rho_k-1)}(t_k) \
  211. hline
  212. end{array}
  213. ]
  214.  
  215. end{document}
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top