Advertisement
Guest User

Untitled

a guest
Mar 17th, 2012
228
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 94.43 KB | None | 0 0
  1. /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
  2. * auto carrier detecting ethernet driver. Also known as the
  3. * "Happy Meal Ethernet" found on SunSwift SBUS cards.
  4. *
  5. * Copyright (C) 1996, 1998, 1999, 2002, 2003,
  6. * 2006, 2008 David S. Miller (davem@davemloft.net)
  7. *
  8. * Changes :
  9. * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
  10. * - port to non-sparc architectures. Tested only on x86 and
  11. * only currently works with QFE PCI cards.
  12. * - ability to specify the MAC address at module load time by passing this
  13. * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
  14. */
  15.  
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/types.h>
  19. #include <linux/fcntl.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/ioport.h>
  22. #include <linux/in.h>
  23. #include <linux/slab.h>
  24. #include <linux/string.h>
  25. #include <linux/delay.h>
  26. #include <linux/init.h>
  27. #include <linux/ethtool.h>
  28. #include <linux/mii.h>
  29. #include <linux/crc32.h>
  30. #include <linux/random.h>
  31. #include <linux/errno.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/etherdevice.h>
  34. #include <linux/skbuff.h>
  35. #include <linux/mm.h>
  36. #include <linux/bitops.h>
  37. #include <linux/dma-mapping.h>
  38.  
  39. #include <asm/system.h>
  40. #include <asm/io.h>
  41. #include <asm/dma.h>
  42. #include <asm/byteorder.h>
  43.  
  44. #ifdef CONFIG_SPARC
  45. #include <linux/of.h>
  46. #include <linux/of_device.h>
  47. #include <asm/idprom.h>
  48. #include <asm/openprom.h>
  49. #include <asm/oplib.h>
  50. #include <asm/prom.h>
  51. #include <asm/auxio.h>
  52. #endif
  53. #include <asm/uaccess.h>
  54.  
  55. #include <asm/pgtable.h>
  56. #include <asm/irq.h>
  57.  
  58. #ifdef CONFIG_PCI
  59. #include <linux/pci.h>
  60. #endif
  61.  
  62. #include "sunhme.h"
  63.  
  64. #define DRV_NAME "sunhme"
  65. #define DRV_VERSION "3.10"
  66. #define DRV_RELDATE "August 26, 2008"
  67. #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
  68.  
  69. static char version[] =
  70. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  71.  
  72. MODULE_VERSION(DRV_VERSION);
  73. MODULE_AUTHOR(DRV_AUTHOR);
  74. MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
  75. MODULE_LICENSE("GPL");
  76.  
  77. static int macaddr[6];
  78.  
  79. /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  80. module_param_array(macaddr, int, NULL, 0);
  81. MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
  82.  
  83. #ifdef CONFIG_SBUS
  84. static struct quattro *qfe_sbus_list;
  85. #endif
  86.  
  87. #ifdef CONFIG_PCI
  88. static struct quattro *qfe_pci_list;
  89. #endif
  90.  
  91. #undef HMEDEBUG
  92. #undef SXDEBUG
  93. #undef RXDEBUG
  94. #undef TXDEBUG
  95. #undef TXLOGGING
  96.  
  97. #ifdef TXLOGGING
  98. struct hme_tx_logent {
  99. unsigned int tstamp;
  100. int tx_new, tx_old;
  101. unsigned int action;
  102. #define TXLOG_ACTION_IRQ 0x01
  103. #define TXLOG_ACTION_TXMIT 0x02
  104. #define TXLOG_ACTION_TBUSY 0x04
  105. #define TXLOG_ACTION_NBUFS 0x08
  106. unsigned int status;
  107. };
  108. #define TX_LOG_LEN 128
  109. static struct hme_tx_logent tx_log[TX_LOG_LEN];
  110. static int txlog_cur_entry;
  111. static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
  112. {
  113. struct hme_tx_logent *tlp;
  114. unsigned long flags;
  115.  
  116. local_irq_save(flags);
  117. tlp = &tx_log[txlog_cur_entry];
  118. tlp->tstamp = (unsigned int)jiffies;
  119. tlp->tx_new = hp->tx_new;
  120. tlp->tx_old = hp->tx_old;
  121. tlp->action = a;
  122. tlp->status = s;
  123. txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
  124. local_irq_restore(flags);
  125. }
  126. static __inline__ void tx_dump_log(void)
  127. {
  128. int i, this;
  129.  
  130. this = txlog_cur_entry;
  131. for (i = 0; i < TX_LOG_LEN; i++) {
  132. printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
  133. tx_log[this].tstamp,
  134. tx_log[this].tx_new, tx_log[this].tx_old,
  135. tx_log[this].action, tx_log[this].status);
  136. this = (this + 1) & (TX_LOG_LEN - 1);
  137. }
  138. }
  139. static __inline__ void tx_dump_ring(struct happy_meal *hp)
  140. {
  141. struct hmeal_init_block *hb = hp->happy_block;
  142. struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
  143. int i;
  144.  
  145. for (i = 0; i < TX_RING_SIZE; i+=4) {
  146. printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
  147. i, i + 4,
  148. le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
  149. le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
  150. le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
  151. le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
  152. }
  153. }
  154. #else
  155. #define tx_add_log(hp, a, s) do { } while(0)
  156. #define tx_dump_log() do { } while(0)
  157. #define tx_dump_ring(hp) do { } while(0)
  158. #endif
  159.  
  160. #ifdef HMEDEBUG
  161. #define HMD(x) printk x
  162. #else
  163. #define HMD(x)
  164. #endif
  165.  
  166. /* #define AUTO_SWITCH_DEBUG */
  167.  
  168. #ifdef AUTO_SWITCH_DEBUG
  169. #define ASD(x) printk x
  170. #else
  171. #define ASD(x)
  172. #endif
  173.  
  174. #define DEFAULT_IPG0 16 /* For lance-mode only */
  175. #define DEFAULT_IPG1 8 /* For all modes */
  176. #define DEFAULT_IPG2 4 /* For all modes */
  177. #define DEFAULT_JAMSIZE 4 /* Toe jam */
  178.  
  179. /* NOTE: In the descriptor writes one _must_ write the address
  180. * member _first_. The card must not be allowed to see
  181. * the updated descriptor flags until the address is
  182. * correct. I've added a write memory barrier between
  183. * the two stores so that I can sleep well at night... -DaveM
  184. */
  185.  
  186. #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
  187. static void sbus_hme_write32(void __iomem *reg, u32 val)
  188. {
  189. sbus_writel(val, reg);
  190. }
  191.  
  192. static u32 sbus_hme_read32(void __iomem *reg)
  193. {
  194. return sbus_readl(reg);
  195. }
  196.  
  197. static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
  198. {
  199. rxd->rx_addr = (__force hme32)addr;
  200. wmb();
  201. rxd->rx_flags = (__force hme32)flags;
  202. }
  203.  
  204. static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
  205. {
  206. txd->tx_addr = (__force hme32)addr;
  207. wmb();
  208. txd->tx_flags = (__force hme32)flags;
  209. }
  210.  
  211. static u32 sbus_hme_read_desc32(hme32 *p)
  212. {
  213. return (__force u32)*p;
  214. }
  215.  
  216. static void pci_hme_write32(void __iomem *reg, u32 val)
  217. {
  218. writel(val, reg);
  219. }
  220.  
  221. static u32 pci_hme_read32(void __iomem *reg)
  222. {
  223. return readl(reg);
  224. }
  225.  
  226. static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
  227. {
  228. rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
  229. wmb();
  230. rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
  231. }
  232.  
  233. static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
  234. {
  235. txd->tx_addr = (__force hme32)cpu_to_le32(addr);
  236. wmb();
  237. txd->tx_flags = (__force hme32)cpu_to_le32(flags);
  238. }
  239.  
  240. static u32 pci_hme_read_desc32(hme32 *p)
  241. {
  242. return le32_to_cpup((__le32 *)p);
  243. }
  244.  
  245. #define hme_write32(__hp, __reg, __val) \
  246. ((__hp)->write32((__reg), (__val)))
  247. #define hme_read32(__hp, __reg) \
  248. ((__hp)->read32(__reg))
  249. #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
  250. ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
  251. #define hme_write_txd(__hp, __txd, __flags, __addr) \
  252. ((__hp)->write_txd((__txd), (__flags), (__addr)))
  253. #define hme_read_desc32(__hp, __p) \
  254. ((__hp)->read_desc32(__p))
  255. #define hme_dma_map(__hp, __ptr, __size, __dir) \
  256. ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
  257. #define hme_dma_unmap(__hp, __addr, __size, __dir) \
  258. ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
  259. #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
  260. ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
  261. #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
  262. ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
  263. #else
  264. #ifdef CONFIG_SBUS
  265. /* SBUS only compilation */
  266. #define hme_write32(__hp, __reg, __val) \
  267. sbus_writel((__val), (__reg))
  268. #define hme_read32(__hp, __reg) \
  269. sbus_readl(__reg)
  270. #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
  271. do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
  272. wmb(); \
  273. (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
  274. } while(0)
  275. #define hme_write_txd(__hp, __txd, __flags, __addr) \
  276. do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
  277. wmb(); \
  278. (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
  279. } while(0)
  280. #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
  281. #define hme_dma_map(__hp, __ptr, __size, __dir) \
  282. dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
  283. #define hme_dma_unmap(__hp, __addr, __size, __dir) \
  284. dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
  285. #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
  286. dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
  287. #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
  288. dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
  289. #else
  290. /* PCI only compilation */
  291. #define hme_write32(__hp, __reg, __val) \
  292. writel((__val), (__reg))
  293. #define hme_read32(__hp, __reg) \
  294. readl(__reg)
  295. #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
  296. do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
  297. wmb(); \
  298. (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
  299. } while(0)
  300. #define hme_write_txd(__hp, __txd, __flags, __addr) \
  301. do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
  302. wmb(); \
  303. (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
  304. } while(0)
  305. static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
  306. {
  307. return le32_to_cpup((__le32 *)p);
  308. }
  309. #define hme_dma_map(__hp, __ptr, __size, __dir) \
  310. pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
  311. #define hme_dma_unmap(__hp, __addr, __size, __dir) \
  312. pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
  313. #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
  314. pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
  315. #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
  316. pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
  317. #endif
  318. #endif
  319.  
  320.  
  321. /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
  322. static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
  323. {
  324. hme_write32(hp, tregs + TCVR_BBDATA, bit);
  325. hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
  326. hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
  327. }
  328.  
  329. #if 0
  330. static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
  331. {
  332. u32 ret;
  333.  
  334. hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
  335. hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
  336. ret = hme_read32(hp, tregs + TCVR_CFG);
  337. if (internal)
  338. ret &= TCV_CFG_MDIO0;
  339. else
  340. ret &= TCV_CFG_MDIO1;
  341.  
  342. return ret;
  343. }
  344. #endif
  345.  
  346. static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
  347. {
  348. u32 retval;
  349.  
  350. hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
  351. udelay(1);
  352. retval = hme_read32(hp, tregs + TCVR_CFG);
  353. if (internal)
  354. retval &= TCV_CFG_MDIO0;
  355. else
  356. retval &= TCV_CFG_MDIO1;
  357. hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
  358.  
  359. return retval;
  360. }
  361.  
  362. #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
  363.  
  364. static int happy_meal_bb_read(struct happy_meal *hp,
  365. void __iomem *tregs, int reg)
  366. {
  367. u32 tmp;
  368. int retval = 0;
  369. int i;
  370.  
  371. ASD(("happy_meal_bb_read: reg=%d ", reg));
  372.  
  373. /* Enable the MIF BitBang outputs. */
  374. hme_write32(hp, tregs + TCVR_BBOENAB, 1);
  375.  
  376. /* Force BitBang into the idle state. */
  377. for (i = 0; i < 32; i++)
  378. BB_PUT_BIT(hp, tregs, 1);
  379.  
  380. /* Give it the read sequence. */
  381. BB_PUT_BIT(hp, tregs, 0);
  382. BB_PUT_BIT(hp, tregs, 1);
  383. BB_PUT_BIT(hp, tregs, 1);
  384. BB_PUT_BIT(hp, tregs, 0);
  385.  
  386. /* Give it the PHY address. */
  387. tmp = hp->paddr & 0xff;
  388. for (i = 4; i >= 0; i--)
  389. BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
  390.  
  391. /* Tell it what register we want to read. */
  392. tmp = (reg & 0xff);
  393. for (i = 4; i >= 0; i--)
  394. BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
  395.  
  396. /* Close down the MIF BitBang outputs. */
  397. hme_write32(hp, tregs + TCVR_BBOENAB, 0);
  398.  
  399. /* Now read in the value. */
  400. (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
  401. for (i = 15; i >= 0; i--)
  402. retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
  403. (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
  404. (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
  405. (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
  406. ASD(("value=%x\n", retval));
  407. return retval;
  408. }
  409.  
  410. static void happy_meal_bb_write(struct happy_meal *hp,
  411. void __iomem *tregs, int reg,
  412. unsigned short value)
  413. {
  414. u32 tmp;
  415. int i;
  416.  
  417. ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
  418.  
  419. /* Enable the MIF BitBang outputs. */
  420. hme_write32(hp, tregs + TCVR_BBOENAB, 1);
  421.  
  422. /* Force BitBang into the idle state. */
  423. for (i = 0; i < 32; i++)
  424. BB_PUT_BIT(hp, tregs, 1);
  425.  
  426. /* Give it write sequence. */
  427. BB_PUT_BIT(hp, tregs, 0);
  428. BB_PUT_BIT(hp, tregs, 1);
  429. BB_PUT_BIT(hp, tregs, 0);
  430. BB_PUT_BIT(hp, tregs, 1);
  431.  
  432. /* Give it the PHY address. */
  433. tmp = (hp->paddr & 0xff);
  434. for (i = 4; i >= 0; i--)
  435. BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
  436.  
  437. /* Tell it what register we will be writing. */
  438. tmp = (reg & 0xff);
  439. for (i = 4; i >= 0; i--)
  440. BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
  441.  
  442. /* Tell it to become ready for the bits. */
  443. BB_PUT_BIT(hp, tregs, 1);
  444. BB_PUT_BIT(hp, tregs, 0);
  445.  
  446. for (i = 15; i >= 0; i--)
  447. BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
  448.  
  449. /* Close down the MIF BitBang outputs. */
  450. hme_write32(hp, tregs + TCVR_BBOENAB, 0);
  451. }
  452.  
  453. #define TCVR_READ_TRIES 16
  454.  
  455. static int happy_meal_tcvr_read(struct happy_meal *hp,
  456. void __iomem *tregs, int reg)
  457. {
  458. int tries = TCVR_READ_TRIES;
  459. int retval;
  460.  
  461. ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
  462. if (hp->tcvr_type == none) {
  463. ASD(("no transceiver, value=TCVR_FAILURE\n"));
  464. return TCVR_FAILURE;
  465. }
  466.  
  467. if (!(hp->happy_flags & HFLAG_FENABLE)) {
  468. ASD(("doing bit bang\n"));
  469. return happy_meal_bb_read(hp, tregs, reg);
  470. }
  471.  
  472. hme_write32(hp, tregs + TCVR_FRAME,
  473. (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
  474. while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
  475. udelay(20);
  476. if (!tries) {
  477. printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
  478. return TCVR_FAILURE;
  479. }
  480. retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
  481. ASD(("value=%04x\n", retval));
  482. return retval;
  483. }
  484.  
  485. #define TCVR_WRITE_TRIES 16
  486.  
  487. static void happy_meal_tcvr_write(struct happy_meal *hp,
  488. void __iomem *tregs, int reg,
  489. unsigned short value)
  490. {
  491. int tries = TCVR_WRITE_TRIES;
  492.  
  493. ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
  494.  
  495. /* Welcome to Sun Microsystems, can I take your order please? */
  496. if (!(hp->happy_flags & HFLAG_FENABLE)) {
  497. happy_meal_bb_write(hp, tregs, reg, value);
  498. return;
  499. }
  500.  
  501. /* Would you like fries with that? */
  502. hme_write32(hp, tregs + TCVR_FRAME,
  503. (FRAME_WRITE | (hp->paddr << 23) |
  504. ((reg & 0xff) << 18) | (value & 0xffff)));
  505. while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
  506. udelay(20);
  507.  
  508. /* Anything else? */
  509. if (!tries)
  510. printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
  511.  
  512. /* Fifty-two cents is your change, have a nice day. */
  513. }
  514.  
  515. /* Auto negotiation. The scheme is very simple. We have a timer routine
  516. * that keeps watching the auto negotiation process as it progresses.
  517. * The DP83840 is first told to start doing it's thing, we set up the time
  518. * and place the timer state machine in it's initial state.
  519. *
  520. * Here the timer peeks at the DP83840 status registers at each click to see
  521. * if the auto negotiation has completed, we assume here that the DP83840 PHY
  522. * will time out at some point and just tell us what (didn't) happen. For
  523. * complete coverage we only allow so many of the ticks at this level to run,
  524. * when this has expired we print a warning message and try another strategy.
  525. * This "other" strategy is to force the interface into various speed/duplex
  526. * configurations and we stop when we see a link-up condition before the
  527. * maximum number of "peek" ticks have occurred.
  528. *
  529. * Once a valid link status has been detected we configure the BigMAC and
  530. * the rest of the Happy Meal to speak the most efficient protocol we could
  531. * get a clean link for. The priority for link configurations, highest first
  532. * is:
  533. * 100 Base-T Full Duplex
  534. * 100 Base-T Half Duplex
  535. * 10 Base-T Full Duplex
  536. * 10 Base-T Half Duplex
  537. *
  538. * We start a new timer now, after a successful auto negotiation status has
  539. * been detected. This timer just waits for the link-up bit to get set in
  540. * the BMCR of the DP83840. When this occurs we print a kernel log message
  541. * describing the link type in use and the fact that it is up.
  542. *
  543. * If a fatal error of some sort is signalled and detected in the interrupt
  544. * service routine, and the chip is reset, or the link is ifconfig'd down
  545. * and then back up, this entire process repeats itself all over again.
  546. */
  547. static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
  548. {
  549. hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  550.  
  551. /* Downgrade from full to half duplex. Only possible
  552. * via ethtool.
  553. */
  554. if (hp->sw_bmcr & BMCR_FULLDPLX) {
  555. hp->sw_bmcr &= ~(BMCR_FULLDPLX);
  556. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  557. return 0;
  558. }
  559.  
  560. /* Downgrade from 100 to 10. */
  561. if (hp->sw_bmcr & BMCR_SPEED100) {
  562. hp->sw_bmcr &= ~(BMCR_SPEED100);
  563. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  564. return 0;
  565. }
  566.  
  567. /* We've tried everything. */
  568. return -1;
  569. }
  570.  
  571. static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
  572. {
  573. printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
  574. if (hp->tcvr_type == external)
  575. printk("external ");
  576. else
  577. printk("internal ");
  578. printk("transceiver at ");
  579. hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
  580. if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
  581. if (hp->sw_lpa & LPA_100FULL)
  582. printk("100Mb/s, Full Duplex.\n");
  583. else
  584. printk("100Mb/s, Half Duplex.\n");
  585. } else {
  586. if (hp->sw_lpa & LPA_10FULL)
  587. printk("10Mb/s, Full Duplex.\n");
  588. else
  589. printk("10Mb/s, Half Duplex.\n");
  590. }
  591. }
  592.  
  593. static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
  594. {
  595. printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
  596. if (hp->tcvr_type == external)
  597. printk("external ");
  598. else
  599. printk("internal ");
  600. printk("transceiver at ");
  601. hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  602. if (hp->sw_bmcr & BMCR_SPEED100)
  603. printk("100Mb/s, ");
  604. else
  605. printk("10Mb/s, ");
  606. if (hp->sw_bmcr & BMCR_FULLDPLX)
  607. printk("Full Duplex.\n");
  608. else
  609. printk("Half Duplex.\n");
  610. }
  611.  
  612. static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
  613. {
  614. int full;
  615.  
  616. /* All we care about is making sure the bigmac tx_cfg has a
  617. * proper duplex setting.
  618. */
  619. if (hp->timer_state == arbwait) {
  620. hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
  621. if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
  622. goto no_response;
  623. if (hp->sw_lpa & LPA_100FULL)
  624. full = 1;
  625. else if (hp->sw_lpa & LPA_100HALF)
  626. full = 0;
  627. else if (hp->sw_lpa & LPA_10FULL)
  628. full = 1;
  629. else
  630. full = 0;
  631. } else {
  632. /* Forcing a link mode. */
  633. hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  634. if (hp->sw_bmcr & BMCR_FULLDPLX)
  635. full = 1;
  636. else
  637. full = 0;
  638. }
  639.  
  640. /* Before changing other bits in the tx_cfg register, and in
  641. * general any of other the TX config registers too, you
  642. * must:
  643. * 1) Clear Enable
  644. * 2) Poll with reads until that bit reads back as zero
  645. * 3) Make TX configuration changes
  646. * 4) Set Enable once more
  647. */
  648. hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
  649. hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
  650. ~(BIGMAC_TXCFG_ENABLE));
  651. while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
  652. barrier();
  653. if (full) {
  654. hp->happy_flags |= HFLAG_FULL;
  655. hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
  656. hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
  657. BIGMAC_TXCFG_FULLDPLX);
  658. } else {
  659. hp->happy_flags &= ~(HFLAG_FULL);
  660. hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
  661. hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
  662. ~(BIGMAC_TXCFG_FULLDPLX));
  663. }
  664. hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
  665. hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
  666. BIGMAC_TXCFG_ENABLE);
  667. return 0;
  668. no_response:
  669. return 1;
  670. }
  671.  
  672. static int happy_meal_init(struct happy_meal *hp);
  673.  
  674. static int is_lucent_phy(struct happy_meal *hp)
  675. {
  676. void __iomem *tregs = hp->tcvregs;
  677. unsigned short mr2, mr3;
  678. int ret = 0;
  679.  
  680. mr2 = happy_meal_tcvr_read(hp, tregs, 2);
  681. mr3 = happy_meal_tcvr_read(hp, tregs, 3);
  682. if ((mr2 & 0xffff) == 0x0180 &&
  683. ((mr3 & 0xffff) >> 10) == 0x1d)
  684. ret = 1;
  685.  
  686. return ret;
  687. }
  688.  
  689. static void happy_meal_timer(unsigned long data)
  690. {
  691. struct happy_meal *hp = (struct happy_meal *) data;
  692. void __iomem *tregs = hp->tcvregs;
  693. int restart_timer = 0;
  694.  
  695. spin_lock_irq(&hp->happy_lock);
  696.  
  697. hp->timer_ticks++;
  698. switch(hp->timer_state) {
  699. case arbwait:
  700. /* Only allow for 5 ticks, thats 10 seconds and much too
  701. * long to wait for arbitration to complete.
  702. */
  703. if (hp->timer_ticks >= 10) {
  704. /* Enter force mode. */
  705. do_force_mode:
  706. hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  707. printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
  708. hp->dev->name);
  709. hp->sw_bmcr = BMCR_SPEED100;
  710. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  711.  
  712. if (!is_lucent_phy(hp)) {
  713. /* OK, seems we need do disable the transceiver for the first
  714. * tick to make sure we get an accurate link state at the
  715. * second tick.
  716. */
  717. hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
  718. hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
  719. happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
  720. }
  721. hp->timer_state = ltrywait;
  722. hp->timer_ticks = 0;
  723. restart_timer = 1;
  724. } else {
  725. /* Anything interesting happen? */
  726. hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
  727. if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
  728. int ret;
  729.  
  730. /* Just what we've been waiting for... */
  731. ret = set_happy_link_modes(hp, tregs);
  732. if (ret) {
  733. /* Ooops, something bad happened, go to force
  734. * mode.
  735. *
  736. * XXX Broken hubs which don't support 802.3u
  737. * XXX auto-negotiation make this happen as well.
  738. */
  739. goto do_force_mode;
  740. }
  741.  
  742. /* Success, at least so far, advance our state engine. */
  743. hp->timer_state = lupwait;
  744. restart_timer = 1;
  745. } else {
  746. restart_timer = 1;
  747. }
  748. }
  749. break;
  750.  
  751. case lupwait:
  752. /* Auto negotiation was successful and we are awaiting a
  753. * link up status. I have decided to let this timer run
  754. * forever until some sort of error is signalled, reporting
  755. * a message to the user at 10 second intervals.
  756. */
  757. hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
  758. if (hp->sw_bmsr & BMSR_LSTATUS) {
  759. /* Wheee, it's up, display the link mode in use and put
  760. * the timer to sleep.
  761. */
  762. display_link_mode(hp, tregs);
  763. hp->timer_state = asleep;
  764. restart_timer = 0;
  765. } else {
  766. if (hp->timer_ticks >= 10) {
  767. printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
  768. "not completely up.\n", hp->dev->name);
  769. hp->timer_ticks = 0;
  770. restart_timer = 1;
  771. } else {
  772. restart_timer = 1;
  773. }
  774. }
  775. break;
  776.  
  777. case ltrywait:
  778. /* Making the timeout here too long can make it take
  779. * annoyingly long to attempt all of the link mode
  780. * permutations, but then again this is essentially
  781. * error recovery code for the most part.
  782. */
  783. hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
  784. hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
  785. if (hp->timer_ticks == 1) {
  786. if (!is_lucent_phy(hp)) {
  787. /* Re-enable transceiver, we'll re-enable the transceiver next
  788. * tick, then check link state on the following tick.
  789. */
  790. hp->sw_csconfig |= CSCONFIG_TCVDISAB;
  791. happy_meal_tcvr_write(hp, tregs,
  792. DP83840_CSCONFIG, hp->sw_csconfig);
  793. }
  794. restart_timer = 1;
  795. break;
  796. }
  797. if (hp->timer_ticks == 2) {
  798. if (!is_lucent_phy(hp)) {
  799. hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
  800. happy_meal_tcvr_write(hp, tregs,
  801. DP83840_CSCONFIG, hp->sw_csconfig);
  802. }
  803. restart_timer = 1;
  804. break;
  805. }
  806. if (hp->sw_bmsr & BMSR_LSTATUS) {
  807. /* Force mode selection success. */
  808. display_forced_link_mode(hp, tregs);
  809. set_happy_link_modes(hp, tregs); /* XXX error? then what? */
  810. hp->timer_state = asleep;
  811. restart_timer = 0;
  812. } else {
  813. if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
  814. int ret;
  815.  
  816. ret = try_next_permutation(hp, tregs);
  817. if (ret == -1) {
  818. /* Aieee, tried them all, reset the
  819. * chip and try all over again.
  820. */
  821.  
  822. /* Let the user know... */
  823. printk(KERN_NOTICE "%s: Link down, cable problem?\n",
  824. hp->dev->name);
  825.  
  826. ret = happy_meal_init(hp);
  827. if (ret) {
  828. /* ho hum... */
  829. printk(KERN_ERR "%s: Error, cannot re-init the "
  830. "Happy Meal.\n", hp->dev->name);
  831. }
  832. goto out;
  833. }
  834. if (!is_lucent_phy(hp)) {
  835. hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
  836. DP83840_CSCONFIG);
  837. hp->sw_csconfig |= CSCONFIG_TCVDISAB;
  838. happy_meal_tcvr_write(hp, tregs,
  839. DP83840_CSCONFIG, hp->sw_csconfig);
  840. }
  841. hp->timer_ticks = 0;
  842. restart_timer = 1;
  843. } else {
  844. restart_timer = 1;
  845. }
  846. }
  847. break;
  848.  
  849. case asleep:
  850. default:
  851. /* Can't happens.... */
  852. printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
  853. hp->dev->name);
  854. restart_timer = 0;
  855. hp->timer_ticks = 0;
  856. hp->timer_state = asleep; /* foo on you */
  857. break;
  858. };
  859.  
  860. if (restart_timer) {
  861. hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
  862. add_timer(&hp->happy_timer);
  863. }
  864.  
  865. out:
  866. spin_unlock_irq(&hp->happy_lock);
  867. }
  868.  
  869. #define TX_RESET_TRIES 32
  870. #define RX_RESET_TRIES 32
  871.  
  872. /* hp->happy_lock must be held */
  873. static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
  874. {
  875. int tries = TX_RESET_TRIES;
  876.  
  877. HMD(("happy_meal_tx_reset: reset, "));
  878.  
  879. /* Would you like to try our SMCC Delux? */
  880. hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
  881. while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
  882. udelay(20);
  883.  
  884. /* Lettuce, tomato, buggy hardware (no extra charge)? */
  885. if (!tries)
  886. printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
  887.  
  888. /* Take care. */
  889. HMD(("done\n"));
  890. }
  891.  
  892. /* hp->happy_lock must be held */
  893. static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
  894. {
  895. int tries = RX_RESET_TRIES;
  896.  
  897. HMD(("happy_meal_rx_reset: reset, "));
  898.  
  899. /* We have a special on GNU/Viking hardware bugs today. */
  900. hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
  901. while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
  902. udelay(20);
  903.  
  904. /* Will that be all? */
  905. if (!tries)
  906. printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
  907.  
  908. /* Don't forget your vik_1137125_wa. Have a nice day. */
  909. HMD(("done\n"));
  910. }
  911.  
  912. #define STOP_TRIES 16
  913.  
  914. /* hp->happy_lock must be held */
  915. static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
  916. {
  917. int tries = STOP_TRIES;
  918.  
  919. HMD(("happy_meal_stop: reset, "));
  920.  
  921. /* We're consolidating our STB products, it's your lucky day. */
  922. hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
  923. while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
  924. udelay(20);
  925.  
  926. /* Come back next week when we are "Sun Microelectronics". */
  927. if (!tries)
  928. printk(KERN_ERR "happy meal: Fry guys.");
  929.  
  930. /* Remember: "Different name, same old buggy as shit hardware." */
  931. HMD(("done\n"));
  932. }
  933.  
  934. /* hp->happy_lock must be held */
  935. static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
  936. {
  937. struct net_device_stats *stats = &hp->net_stats;
  938.  
  939. stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
  940. hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
  941.  
  942. stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
  943. hme_write32(hp, bregs + BMAC_UNALECTR, 0);
  944.  
  945. stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
  946. hme_write32(hp, bregs + BMAC_GLECTR, 0);
  947.  
  948. stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
  949.  
  950. stats->collisions +=
  951. (hme_read32(hp, bregs + BMAC_EXCTR) +
  952. hme_read32(hp, bregs + BMAC_LTCTR));
  953. hme_write32(hp, bregs + BMAC_EXCTR, 0);
  954. hme_write32(hp, bregs + BMAC_LTCTR, 0);
  955. }
  956.  
  957. /* hp->happy_lock must be held */
  958. static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
  959. {
  960. ASD(("happy_meal_poll_stop: "));
  961.  
  962. /* If polling disabled or not polling already, nothing to do. */
  963. if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
  964. (HFLAG_POLLENABLE | HFLAG_POLL)) {
  965. HMD(("not polling, return\n"));
  966. return;
  967. }
  968.  
  969. /* Shut up the MIF. */
  970. ASD(("were polling, mif ints off, "));
  971. hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
  972.  
  973. /* Turn off polling. */
  974. ASD(("polling off, "));
  975. hme_write32(hp, tregs + TCVR_CFG,
  976. hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
  977.  
  978. /* We are no longer polling. */
  979. hp->happy_flags &= ~(HFLAG_POLL);
  980.  
  981. /* Let the bits set. */
  982. udelay(200);
  983. ASD(("done\n"));
  984. }
  985.  
  986. /* Only Sun can take such nice parts and fuck up the programming interface
  987. * like this. Good job guys...
  988. */
  989. #define TCVR_RESET_TRIES 16 /* It should reset quickly */
  990. #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
  991.  
  992. /* hp->happy_lock must be held */
  993. static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
  994. {
  995. u32 tconfig;
  996. int result, tries = TCVR_RESET_TRIES;
  997.  
  998. tconfig = hme_read32(hp, tregs + TCVR_CFG);
  999. ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
  1000. if (hp->tcvr_type == external) {
  1001. ASD(("external<"));
  1002. hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
  1003. hp->tcvr_type = internal;
  1004. hp->paddr = TCV_PADDR_ITX;
  1005. ASD(("ISOLATE,"));
  1006. happy_meal_tcvr_write(hp, tregs, MII_BMCR,
  1007. (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
  1008. result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  1009. if (result == TCVR_FAILURE) {
  1010. ASD(("phyread_fail>\n"));
  1011. return -1;
  1012. }
  1013. ASD(("phyread_ok,PSELECT>"));
  1014. hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
  1015. hp->tcvr_type = external;
  1016. hp->paddr = TCV_PADDR_ETX;
  1017. } else {
  1018. if (tconfig & TCV_CFG_MDIO1) {
  1019. ASD(("internal<PSELECT,"));
  1020. hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
  1021. ASD(("ISOLATE,"));
  1022. happy_meal_tcvr_write(hp, tregs, MII_BMCR,
  1023. (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
  1024. result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  1025. if (result == TCVR_FAILURE) {
  1026. ASD(("phyread_fail>\n"));
  1027. return -1;
  1028. }
  1029. ASD(("phyread_ok,~PSELECT>"));
  1030. hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
  1031. hp->tcvr_type = internal;
  1032. hp->paddr = TCV_PADDR_ITX;
  1033. }
  1034. }
  1035.  
  1036. ASD(("BMCR_RESET "));
  1037. happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
  1038.  
  1039. while (--tries) {
  1040. result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  1041. if (result == TCVR_FAILURE)
  1042. return -1;
  1043. hp->sw_bmcr = result;
  1044. if (!(result & BMCR_RESET))
  1045. break;
  1046. udelay(20);
  1047. }
  1048. if (!tries) {
  1049. ASD(("BMCR RESET FAILED!\n"));
  1050. return -1;
  1051. }
  1052. ASD(("RESET_OK\n"));
  1053.  
  1054. /* Get fresh copies of the PHY registers. */
  1055. hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
  1056. hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
  1057. hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
  1058. hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
  1059.  
  1060. ASD(("UNISOLATE"));
  1061. hp->sw_bmcr &= ~(BMCR_ISOLATE);
  1062. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  1063.  
  1064. tries = TCVR_UNISOLATE_TRIES;
  1065. while (--tries) {
  1066. result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  1067. if (result == TCVR_FAILURE)
  1068. return -1;
  1069. if (!(result & BMCR_ISOLATE))
  1070. break;
  1071. udelay(20);
  1072. }
  1073. if (!tries) {
  1074. ASD((" FAILED!\n"));
  1075. return -1;
  1076. }
  1077. ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
  1078. if (!is_lucent_phy(hp)) {
  1079. result = happy_meal_tcvr_read(hp, tregs,
  1080. DP83840_CSCONFIG);
  1081. happy_meal_tcvr_write(hp, tregs,
  1082. DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
  1083. }
  1084. return 0;
  1085. }
  1086.  
  1087. /* Figure out whether we have an internal or external transceiver.
  1088. *
  1089. * hp->happy_lock must be held
  1090. */
  1091. static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
  1092. {
  1093. unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
  1094.  
  1095. ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
  1096. if (hp->happy_flags & HFLAG_POLL) {
  1097. /* If we are polling, we must stop to get the transceiver type. */
  1098. ASD(("<polling> "));
  1099. if (hp->tcvr_type == internal) {
  1100. if (tconfig & TCV_CFG_MDIO1) {
  1101. ASD(("<internal> <poll stop> "));
  1102. happy_meal_poll_stop(hp, tregs);
  1103. hp->paddr = TCV_PADDR_ETX;
  1104. hp->tcvr_type = external;
  1105. ASD(("<external>\n"));
  1106. tconfig &= ~(TCV_CFG_PENABLE);
  1107. tconfig |= TCV_CFG_PSELECT;
  1108. hme_write32(hp, tregs + TCVR_CFG, tconfig);
  1109. }
  1110. } else {
  1111. if (hp->tcvr_type == external) {
  1112. ASD(("<external> "));
  1113. if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
  1114. ASD(("<poll stop> "));
  1115. happy_meal_poll_stop(hp, tregs);
  1116. hp->paddr = TCV_PADDR_ITX;
  1117. hp->tcvr_type = internal;
  1118. ASD(("<internal>\n"));
  1119. hme_write32(hp, tregs + TCVR_CFG,
  1120. hme_read32(hp, tregs + TCVR_CFG) &
  1121. ~(TCV_CFG_PSELECT));
  1122. }
  1123. ASD(("\n"));
  1124. } else {
  1125. ASD(("<none>\n"));
  1126. }
  1127. }
  1128. } else {
  1129. u32 reread = hme_read32(hp, tregs + TCVR_CFG);
  1130.  
  1131. /* Else we can just work off of the MDIO bits. */
  1132. ASD(("<not polling> "));
  1133. if (reread & TCV_CFG_MDIO1) {
  1134. hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
  1135. hp->paddr = TCV_PADDR_ETX;
  1136. hp->tcvr_type = external;
  1137. ASD(("<external>\n"));
  1138. } else {
  1139. if (reread & TCV_CFG_MDIO0) {
  1140. hme_write32(hp, tregs + TCVR_CFG,
  1141. tconfig & ~(TCV_CFG_PSELECT));
  1142. hp->paddr = TCV_PADDR_ITX;
  1143. hp->tcvr_type = internal;
  1144. ASD(("<internal>\n"));
  1145. } else {
  1146. printk(KERN_ERR "happy meal: Transceiver and a coke please.");
  1147. hp->tcvr_type = none; /* Grrr... */
  1148. ASD(("<none>\n"));
  1149. }
  1150. }
  1151. }
  1152. }
  1153.  
  1154. /* The receive ring buffers are a bit tricky to get right. Here goes...
  1155. *
  1156. * The buffers we dma into must be 64 byte aligned. So we use a special
  1157. * alloc_skb() routine for the happy meal to allocate 64 bytes more than
  1158. * we really need.
  1159. *
  1160. * We use skb_reserve() to align the data block we get in the skb. We
  1161. * also program the etxregs->cfg register to use an offset of 2. This
  1162. * imperical constant plus the ethernet header size will always leave
  1163. * us with a nicely aligned ip header once we pass things up to the
  1164. * protocol layers.
  1165. *
  1166. * The numbers work out to:
  1167. *
  1168. * Max ethernet frame size 1518
  1169. * Ethernet header size 14
  1170. * Happy Meal base offset 2
  1171. *
  1172. * Say a skb data area is at 0xf001b010, and its size alloced is
  1173. * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
  1174. *
  1175. * First our alloc_skb() routine aligns the data base to a 64 byte
  1176. * boundary. We now have 0xf001b040 as our skb data address. We
  1177. * plug this into the receive descriptor address.
  1178. *
  1179. * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
  1180. * So now the data we will end up looking at starts at 0xf001b042. When
  1181. * the packet arrives, we will check out the size received and subtract
  1182. * this from the skb->length. Then we just pass the packet up to the
  1183. * protocols as is, and allocate a new skb to replace this slot we have
  1184. * just received from.
  1185. *
  1186. * The ethernet layer will strip the ether header from the front of the
  1187. * skb we just sent to it, this leaves us with the ip header sitting
  1188. * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
  1189. * Happy Meal has even checksummed the tcp/udp data for us. The 16
  1190. * bit checksum is obtained from the low bits of the receive descriptor
  1191. * flags, thus:
  1192. *
  1193. * skb->csum = rxd->rx_flags & 0xffff;
  1194. * skb->ip_summed = CHECKSUM_COMPLETE;
  1195. *
  1196. * before sending off the skb to the protocols, and we are good as gold.
  1197. */
  1198. static void happy_meal_clean_rings(struct happy_meal *hp)
  1199. {
  1200. int i;
  1201.  
  1202. for (i = 0; i < RX_RING_SIZE; i++) {
  1203. if (hp->rx_skbs[i] != NULL) {
  1204. struct sk_buff *skb = hp->rx_skbs[i];
  1205. struct happy_meal_rxd *rxd;
  1206. u32 dma_addr;
  1207.  
  1208. rxd = &hp->happy_block->happy_meal_rxd[i];
  1209. dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
  1210. dma_unmap_single(hp->dma_dev, dma_addr,
  1211. RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
  1212. dev_kfree_skb_any(skb);
  1213. hp->rx_skbs[i] = NULL;
  1214. }
  1215. }
  1216.  
  1217. for (i = 0; i < TX_RING_SIZE; i++) {
  1218. if (hp->tx_skbs[i] != NULL) {
  1219. struct sk_buff *skb = hp->tx_skbs[i];
  1220. struct happy_meal_txd *txd;
  1221. u32 dma_addr;
  1222. int frag;
  1223.  
  1224. hp->tx_skbs[i] = NULL;
  1225.  
  1226. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1227. txd = &hp->happy_block->happy_meal_txd[i];
  1228. dma_addr = hme_read_desc32(hp, &txd->tx_addr);
  1229. dma_unmap_single(hp->dma_dev, dma_addr,
  1230. (hme_read_desc32(hp, &txd->tx_flags)
  1231. & TXFLAG_SIZE),
  1232. DMA_TO_DEVICE);
  1233.  
  1234. if (frag != skb_shinfo(skb)->nr_frags)
  1235. i++;
  1236. }
  1237.  
  1238. dev_kfree_skb_any(skb);
  1239. }
  1240. }
  1241. }
  1242.  
  1243. /* hp->happy_lock must be held */
  1244. static void happy_meal_init_rings(struct happy_meal *hp)
  1245. {
  1246. struct hmeal_init_block *hb = hp->happy_block;
  1247. struct net_device *dev = hp->dev;
  1248. int i;
  1249.  
  1250. HMD(("happy_meal_init_rings: counters to zero, "));
  1251. hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
  1252.  
  1253. /* Free any skippy bufs left around in the rings. */
  1254. HMD(("clean, "));
  1255. happy_meal_clean_rings(hp);
  1256.  
  1257. /* Now get new skippy bufs for the receive ring. */
  1258. HMD(("init rxring, "));
  1259. for (i = 0; i < RX_RING_SIZE; i++) {
  1260. struct sk_buff *skb;
  1261.  
  1262. skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
  1263. if (!skb) {
  1264. hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
  1265. continue;
  1266. }
  1267. hp->rx_skbs[i] = skb;
  1268. skb->dev = dev;
  1269.  
  1270. /* Because we reserve afterwards. */
  1271. skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
  1272. hme_write_rxd(hp, &hb->happy_meal_rxd[i],
  1273. (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
  1274. dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
  1275. DMA_FROM_DEVICE));
  1276. skb_reserve(skb, RX_OFFSET);
  1277. }
  1278.  
  1279. HMD(("init txring, "));
  1280. for (i = 0; i < TX_RING_SIZE; i++)
  1281. hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
  1282.  
  1283. HMD(("done\n"));
  1284. }
  1285.  
  1286. /* hp->happy_lock must be held */
  1287. static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
  1288. void __iomem *tregs,
  1289. struct ethtool_cmd *ep)
  1290. {
  1291. int timeout;
  1292.  
  1293. /* Read all of the registers we are interested in now. */
  1294. hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
  1295. hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  1296. hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
  1297. hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
  1298.  
  1299. /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
  1300.  
  1301. hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
  1302. if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
  1303. /* Advertise everything we can support. */
  1304. if (hp->sw_bmsr & BMSR_10HALF)
  1305. hp->sw_advertise |= (ADVERTISE_10HALF);
  1306. else
  1307. hp->sw_advertise &= ~(ADVERTISE_10HALF);
  1308.  
  1309. if (hp->sw_bmsr & BMSR_10FULL)
  1310. hp->sw_advertise |= (ADVERTISE_10FULL);
  1311. else
  1312. hp->sw_advertise &= ~(ADVERTISE_10FULL);
  1313. if (hp->sw_bmsr & BMSR_100HALF)
  1314. hp->sw_advertise |= (ADVERTISE_100HALF);
  1315. else
  1316. hp->sw_advertise &= ~(ADVERTISE_100HALF);
  1317. if (hp->sw_bmsr & BMSR_100FULL)
  1318. hp->sw_advertise |= (ADVERTISE_100FULL);
  1319. else
  1320. hp->sw_advertise &= ~(ADVERTISE_100FULL);
  1321. happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
  1322.  
  1323. /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
  1324. * XXX and this is because the DP83840 does not support it, changes
  1325. * XXX would need to be made to the tx/rx logic in the driver as well
  1326. * XXX so I completely skip checking for it in the BMSR for now.
  1327. */
  1328.  
  1329. #ifdef AUTO_SWITCH_DEBUG
  1330. ASD(("%s: Advertising [ ", hp->dev->name));
  1331. if (hp->sw_advertise & ADVERTISE_10HALF)
  1332. ASD(("10H "));
  1333. if (hp->sw_advertise & ADVERTISE_10FULL)
  1334. ASD(("10F "));
  1335. if (hp->sw_advertise & ADVERTISE_100HALF)
  1336. ASD(("100H "));
  1337. if (hp->sw_advertise & ADVERTISE_100FULL)
  1338. ASD(("100F "));
  1339. #endif
  1340.  
  1341. /* Enable Auto-Negotiation, this is usually on already... */
  1342. hp->sw_bmcr |= BMCR_ANENABLE;
  1343. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  1344.  
  1345. /* Restart it to make sure it is going. */
  1346. hp->sw_bmcr |= BMCR_ANRESTART;
  1347. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  1348.  
  1349. /* BMCR_ANRESTART self clears when the process has begun. */
  1350.  
  1351. timeout = 64; /* More than enough. */
  1352. while (--timeout) {
  1353. hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  1354. if (!(hp->sw_bmcr & BMCR_ANRESTART))
  1355. break; /* got it. */
  1356. udelay(10);
  1357. }
  1358. if (!timeout) {
  1359. printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
  1360. "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
  1361. printk(KERN_NOTICE "%s: Performing force link detection.\n",
  1362. hp->dev->name);
  1363. goto force_link;
  1364. } else {
  1365. hp->timer_state = arbwait;
  1366. }
  1367. } else {
  1368. force_link:
  1369. /* Force the link up, trying first a particular mode.
  1370. * Either we are here at the request of ethtool or
  1371. * because the Happy Meal would not start to autoneg.
  1372. */
  1373.  
  1374. /* Disable auto-negotiation in BMCR, enable the duplex and
  1375. * speed setting, init the timer state machine, and fire it off.
  1376. */
  1377. if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
  1378. hp->sw_bmcr = BMCR_SPEED100;
  1379. } else {
  1380. if (ep->speed == SPEED_100)
  1381. hp->sw_bmcr = BMCR_SPEED100;
  1382. else
  1383. hp->sw_bmcr = 0;
  1384. if (ep->duplex == DUPLEX_FULL)
  1385. hp->sw_bmcr |= BMCR_FULLDPLX;
  1386. }
  1387. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  1388.  
  1389. if (!is_lucent_phy(hp)) {
  1390. /* OK, seems we need do disable the transceiver for the first
  1391. * tick to make sure we get an accurate link state at the
  1392. * second tick.
  1393. */
  1394. hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
  1395. DP83840_CSCONFIG);
  1396. hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
  1397. happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
  1398. hp->sw_csconfig);
  1399. }
  1400. hp->timer_state = ltrywait;
  1401. }
  1402.  
  1403. hp->timer_ticks = 0;
  1404. hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
  1405. hp->happy_timer.data = (unsigned long) hp;
  1406. hp->happy_timer.function = &happy_meal_timer;
  1407. add_timer(&hp->happy_timer);
  1408. }
  1409.  
  1410. /* hp->happy_lock must be held */
  1411. static int happy_meal_init(struct happy_meal *hp)
  1412. {
  1413. void __iomem *gregs = hp->gregs;
  1414. void __iomem *etxregs = hp->etxregs;
  1415. void __iomem *erxregs = hp->erxregs;
  1416. void __iomem *bregs = hp->bigmacregs;
  1417. void __iomem *tregs = hp->tcvregs;
  1418. u32 regtmp, rxcfg;
  1419. unsigned char *e = &hp->dev->dev_addr[0];
  1420.  
  1421. /* If auto-negotiation timer is running, kill it. */
  1422. del_timer(&hp->happy_timer);
  1423.  
  1424. HMD(("happy_meal_init: happy_flags[%08x] ",
  1425. hp->happy_flags));
  1426. if (!(hp->happy_flags & HFLAG_INIT)) {
  1427. HMD(("set HFLAG_INIT, "));
  1428. hp->happy_flags |= HFLAG_INIT;
  1429. happy_meal_get_counters(hp, bregs);
  1430. }
  1431.  
  1432. /* Stop polling. */
  1433. HMD(("to happy_meal_poll_stop\n"));
  1434. happy_meal_poll_stop(hp, tregs);
  1435.  
  1436. /* Stop transmitter and receiver. */
  1437. HMD(("happy_meal_init: to happy_meal_stop\n"));
  1438. happy_meal_stop(hp, gregs);
  1439.  
  1440. /* Alloc and reset the tx/rx descriptor chains. */
  1441. HMD(("happy_meal_init: to happy_meal_init_rings\n"));
  1442. happy_meal_init_rings(hp);
  1443.  
  1444. /* Shut up the MIF. */
  1445. HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
  1446. hme_read32(hp, tregs + TCVR_IMASK)));
  1447. hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
  1448.  
  1449. /* See if we can enable the MIF frame on this card to speak to the DP83840. */
  1450. if (hp->happy_flags & HFLAG_FENABLE) {
  1451. HMD(("use frame old[%08x], ",
  1452. hme_read32(hp, tregs + TCVR_CFG)));
  1453. hme_write32(hp, tregs + TCVR_CFG,
  1454. hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
  1455. } else {
  1456. HMD(("use bitbang old[%08x], ",
  1457. hme_read32(hp, tregs + TCVR_CFG)));
  1458. hme_write32(hp, tregs + TCVR_CFG,
  1459. hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
  1460. }
  1461.  
  1462. /* Check the state of the transceiver. */
  1463. HMD(("to happy_meal_transceiver_check\n"));
  1464. happy_meal_transceiver_check(hp, tregs);
  1465.  
  1466. /* Put the Big Mac into a sane state. */
  1467. HMD(("happy_meal_init: "));
  1468. switch(hp->tcvr_type) {
  1469. case none:
  1470. /* Cannot operate if we don't know the transceiver type! */
  1471. HMD(("AAIEEE no transceiver type, EAGAIN"));
  1472. return -EAGAIN;
  1473.  
  1474. case internal:
  1475. /* Using the MII buffers. */
  1476. HMD(("internal, using MII, "));
  1477. hme_write32(hp, bregs + BMAC_XIFCFG, 0);
  1478. break;
  1479.  
  1480. case external:
  1481. /* Not using the MII, disable it. */
  1482. HMD(("external, disable MII, "));
  1483. hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
  1484. break;
  1485. };
  1486.  
  1487. if (happy_meal_tcvr_reset(hp, tregs))
  1488. return -EAGAIN;
  1489.  
  1490. /* Reset the Happy Meal Big Mac transceiver and the receiver. */
  1491. HMD(("tx/rx reset, "));
  1492. happy_meal_tx_reset(hp, bregs);
  1493. happy_meal_rx_reset(hp, bregs);
  1494.  
  1495. /* Set jam size and inter-packet gaps to reasonable defaults. */
  1496. HMD(("jsize/ipg1/ipg2, "));
  1497. hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
  1498. hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
  1499. hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
  1500.  
  1501. /* Load up the MAC address and random seed. */
  1502. HMD(("rseed/macaddr, "));
  1503.  
  1504. /* The docs recommend to use the 10LSB of our MAC here. */
  1505. hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
  1506.  
  1507. hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
  1508. hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
  1509. hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
  1510.  
  1511. HMD(("htable, "));
  1512. if ((hp->dev->flags & IFF_ALLMULTI) ||
  1513. (hp->dev->mc_count > 64)) {
  1514. hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
  1515. hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
  1516. hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
  1517. hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
  1518. } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
  1519. u16 hash_table[4];
  1520. struct dev_mc_list *dmi = hp->dev->mc_list;
  1521. char *addrs;
  1522. int i;
  1523. u32 crc;
  1524.  
  1525. for (i = 0; i < 4; i++)
  1526. hash_table[i] = 0;
  1527.  
  1528. for (i = 0; i < hp->dev->mc_count; i++) {
  1529. addrs = dmi->dmi_addr;
  1530. dmi = dmi->next;
  1531.  
  1532. if (!(*addrs & 1))
  1533. continue;
  1534.  
  1535. crc = ether_crc_le(6, addrs);
  1536. crc >>= 26;
  1537. hash_table[crc >> 4] |= 1 << (crc & 0xf);
  1538. }
  1539. hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
  1540. hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
  1541. hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
  1542. hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
  1543. } else {
  1544. hme_write32(hp, bregs + BMAC_HTABLE3, 0);
  1545. hme_write32(hp, bregs + BMAC_HTABLE2, 0);
  1546. hme_write32(hp, bregs + BMAC_HTABLE1, 0);
  1547. hme_write32(hp, bregs + BMAC_HTABLE0, 0);
  1548. }
  1549.  
  1550. /* Set the RX and TX ring ptrs. */
  1551. HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
  1552. ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
  1553. ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
  1554. hme_write32(hp, erxregs + ERX_RING,
  1555. ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
  1556. hme_write32(hp, etxregs + ETX_RING,
  1557. ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
  1558.  
  1559. /* Parity issues in the ERX unit of some HME revisions can cause some
  1560. * registers to not be written unless their parity is even. Detect such
  1561. * lost writes and simply rewrite with a low bit set (which will be ignored
  1562. * since the rxring needs to be 2K aligned).
  1563. */
  1564. if (hme_read32(hp, erxregs + ERX_RING) !=
  1565. ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
  1566. hme_write32(hp, erxregs + ERX_RING,
  1567. ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
  1568. | 0x4);
  1569.  
  1570. /* Set the supported burst sizes. */
  1571. HMD(("happy_meal_init: old[%08x] bursts<",
  1572. hme_read32(hp, gregs + GREG_CFG)));
  1573.  
  1574. #ifndef CONFIG_SPARC
  1575. /* It is always PCI and can handle 64byte bursts. */
  1576. hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
  1577. #else
  1578. if ((hp->happy_bursts & DMA_BURST64) &&
  1579. ((hp->happy_flags & HFLAG_PCI) != 0
  1580. #ifdef CONFIG_SBUS
  1581. || sbus_can_burst64()
  1582. #endif
  1583. || 0)) {
  1584. u32 gcfg = GREG_CFG_BURST64;
  1585.  
  1586. /* I have no idea if I should set the extended
  1587. * transfer mode bit for Cheerio, so for now I
  1588. * do not. -DaveM
  1589. */
  1590. #ifdef CONFIG_SBUS
  1591. if ((hp->happy_flags & HFLAG_PCI) == 0) {
  1592. struct of_device *op = hp->happy_dev;
  1593. if (sbus_can_dma_64bit()) {
  1594. sbus_set_sbus64(&op->dev,
  1595. hp->happy_bursts);
  1596. gcfg |= GREG_CFG_64BIT;
  1597. }
  1598. }
  1599. #endif
  1600.  
  1601. HMD(("64>"));
  1602. hme_write32(hp, gregs + GREG_CFG, gcfg);
  1603. } else if (hp->happy_bursts & DMA_BURST32) {
  1604. HMD(("32>"));
  1605. hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
  1606. } else if (hp->happy_bursts & DMA_BURST16) {
  1607. HMD(("16>"));
  1608. hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
  1609. } else {
  1610. HMD(("XXX>"));
  1611. hme_write32(hp, gregs + GREG_CFG, 0);
  1612. }
  1613. #endif /* CONFIG_SPARC */
  1614.  
  1615. /* Turn off interrupts we do not want to hear. */
  1616. HMD((", enable global interrupts, "));
  1617. hme_write32(hp, gregs + GREG_IMASK,
  1618. (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
  1619. GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
  1620.  
  1621. /* Set the transmit ring buffer size. */
  1622. HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
  1623. hme_read32(hp, etxregs + ETX_RSIZE)));
  1624. hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
  1625.  
  1626. /* Enable transmitter DVMA. */
  1627. HMD(("tx dma enable old[%08x], ",
  1628. hme_read32(hp, etxregs + ETX_CFG)));
  1629. hme_write32(hp, etxregs + ETX_CFG,
  1630. hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
  1631.  
  1632. /* This chip really rots, for the receiver sometimes when you
  1633. * write to its control registers not all the bits get there
  1634. * properly. I cannot think of a sane way to provide complete
  1635. * coverage for this hardware bug yet.
  1636. */
  1637. HMD(("erx regs bug old[%08x]\n",
  1638. hme_read32(hp, erxregs + ERX_CFG)));
  1639. hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
  1640. regtmp = hme_read32(hp, erxregs + ERX_CFG);
  1641. hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
  1642. if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
  1643. printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
  1644. printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
  1645. ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
  1646. /* XXX Should return failure here... */
  1647. }
  1648.  
  1649. /* Enable Big Mac hash table filter. */
  1650. HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
  1651. hme_read32(hp, bregs + BMAC_RXCFG)));
  1652. rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
  1653. if (hp->dev->flags & IFF_PROMISC)
  1654. rxcfg |= BIGMAC_RXCFG_PMISC;
  1655. hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
  1656.  
  1657. /* Let the bits settle in the chip. */
  1658. udelay(10);
  1659.  
  1660. /* Ok, configure the Big Mac transmitter. */
  1661. HMD(("BIGMAC init, "));
  1662. regtmp = 0;
  1663. if (hp->happy_flags & HFLAG_FULL)
  1664. regtmp |= BIGMAC_TXCFG_FULLDPLX;
  1665.  
  1666. /* Don't turn on the "don't give up" bit for now. It could cause hme
  1667. * to deadlock with the PHY if a Jabber occurs.
  1668. */
  1669. hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
  1670.  
  1671. /* Give up after 16 TX attempts. */
  1672. hme_write32(hp, bregs + BMAC_ALIMIT, 16);
  1673.  
  1674. /* Enable the output drivers no matter what. */
  1675. regtmp = BIGMAC_XCFG_ODENABLE;
  1676.  
  1677. /* If card can do lance mode, enable it. */
  1678. if (hp->happy_flags & HFLAG_LANCE)
  1679. regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
  1680.  
  1681. /* Disable the MII buffers if using external transceiver. */
  1682. if (hp->tcvr_type == external)
  1683. regtmp |= BIGMAC_XCFG_MIIDISAB;
  1684.  
  1685. HMD(("XIF config old[%08x], ",
  1686. hme_read32(hp, bregs + BMAC_XIFCFG)));
  1687. hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
  1688.  
  1689. /* Start things up. */
  1690. HMD(("tx old[%08x] and rx [%08x] ON!\n",
  1691. hme_read32(hp, bregs + BMAC_TXCFG),
  1692. hme_read32(hp, bregs + BMAC_RXCFG)));
  1693.  
  1694. /* Set larger TX/RX size to allow for 802.1q */
  1695. hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
  1696. hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
  1697.  
  1698. hme_write32(hp, bregs + BMAC_TXCFG,
  1699. hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
  1700. hme_write32(hp, bregs + BMAC_RXCFG,
  1701. hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
  1702.  
  1703. /* Get the autonegotiation started, and the watch timer ticking. */
  1704. happy_meal_begin_auto_negotiation(hp, tregs, NULL);
  1705.  
  1706. /* Success. */
  1707. return 0;
  1708. }
  1709.  
  1710. /* hp->happy_lock must be held */
  1711. static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
  1712. {
  1713. void __iomem *tregs = hp->tcvregs;
  1714. void __iomem *bregs = hp->bigmacregs;
  1715. void __iomem *gregs = hp->gregs;
  1716.  
  1717. happy_meal_stop(hp, gregs);
  1718. hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
  1719. if (hp->happy_flags & HFLAG_FENABLE)
  1720. hme_write32(hp, tregs + TCVR_CFG,
  1721. hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
  1722. else
  1723. hme_write32(hp, tregs + TCVR_CFG,
  1724. hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
  1725. happy_meal_transceiver_check(hp, tregs);
  1726. switch(hp->tcvr_type) {
  1727. case none:
  1728. return;
  1729. case internal:
  1730. hme_write32(hp, bregs + BMAC_XIFCFG, 0);
  1731. break;
  1732. case external:
  1733. hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
  1734. break;
  1735. };
  1736. if (happy_meal_tcvr_reset(hp, tregs))
  1737. return;
  1738.  
  1739. /* Latch PHY registers as of now. */
  1740. hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
  1741. hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
  1742.  
  1743. /* Advertise everything we can support. */
  1744. if (hp->sw_bmsr & BMSR_10HALF)
  1745. hp->sw_advertise |= (ADVERTISE_10HALF);
  1746. else
  1747. hp->sw_advertise &= ~(ADVERTISE_10HALF);
  1748.  
  1749. if (hp->sw_bmsr & BMSR_10FULL)
  1750. hp->sw_advertise |= (ADVERTISE_10FULL);
  1751. else
  1752. hp->sw_advertise &= ~(ADVERTISE_10FULL);
  1753. if (hp->sw_bmsr & BMSR_100HALF)
  1754. hp->sw_advertise |= (ADVERTISE_100HALF);
  1755. else
  1756. hp->sw_advertise &= ~(ADVERTISE_100HALF);
  1757. if (hp->sw_bmsr & BMSR_100FULL)
  1758. hp->sw_advertise |= (ADVERTISE_100FULL);
  1759. else
  1760. hp->sw_advertise &= ~(ADVERTISE_100FULL);
  1761.  
  1762. /* Update the PHY advertisement register. */
  1763. happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
  1764. }
  1765.  
  1766. /* Once status is latched (by happy_meal_interrupt) it is cleared by
  1767. * the hardware, so we cannot re-read it and get a correct value.
  1768. *
  1769. * hp->happy_lock must be held
  1770. */
  1771. static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
  1772. {
  1773. int reset = 0;
  1774.  
  1775. /* Only print messages for non-counter related interrupts. */
  1776. if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
  1777. GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
  1778. GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
  1779. GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
  1780. GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
  1781. GREG_STAT_SLVPERR))
  1782. printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
  1783. hp->dev->name, status);
  1784.  
  1785. if (status & GREG_STAT_RFIFOVF) {
  1786. /* Receive FIFO overflow is harmless and the hardware will take
  1787. care of it, just some packets are lost. Who cares. */
  1788. printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
  1789. }
  1790.  
  1791. if (status & GREG_STAT_STSTERR) {
  1792. /* BigMAC SQE link test failed. */
  1793. printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
  1794. reset = 1;
  1795. }
  1796.  
  1797. if (status & GREG_STAT_TFIFO_UND) {
  1798. /* Transmit FIFO underrun, again DMA error likely. */
  1799. printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
  1800. hp->dev->name);
  1801. reset = 1;
  1802. }
  1803.  
  1804. if (status & GREG_STAT_MAXPKTERR) {
  1805. /* Driver error, tried to transmit something larger
  1806. * than ethernet max mtu.
  1807. */
  1808. printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
  1809. reset = 1;
  1810. }
  1811.  
  1812. if (status & GREG_STAT_NORXD) {
  1813. /* This is harmless, it just means the system is
  1814. * quite loaded and the incoming packet rate was
  1815. * faster than the interrupt handler could keep up
  1816. * with.
  1817. */
  1818. printk(KERN_INFO "%s: Happy Meal out of receive "
  1819. "descriptors, packet dropped.\n",
  1820. hp->dev->name);
  1821. }
  1822.  
  1823. if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
  1824. /* All sorts of DMA receive errors. */
  1825. printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
  1826. if (status & GREG_STAT_RXERR)
  1827. printk("GenericError ");
  1828. if (status & GREG_STAT_RXPERR)
  1829. printk("ParityError ");
  1830. if (status & GREG_STAT_RXTERR)
  1831. printk("RxTagBotch ");
  1832. printk("]\n");
  1833. reset = 1;
  1834. }
  1835.  
  1836. if (status & GREG_STAT_EOPERR) {
  1837. /* Driver bug, didn't set EOP bit in tx descriptor given
  1838. * to the happy meal.
  1839. */
  1840. printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
  1841. hp->dev->name);
  1842. reset = 1;
  1843. }
  1844.  
  1845. if (status & GREG_STAT_MIFIRQ) {
  1846. /* MIF signalled an interrupt, were we polling it? */
  1847. printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
  1848. }
  1849.  
  1850. if (status &
  1851. (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
  1852. /* All sorts of transmit DMA errors. */
  1853. printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
  1854. if (status & GREG_STAT_TXEACK)
  1855. printk("GenericError ");
  1856. if (status & GREG_STAT_TXLERR)
  1857. printk("LateError ");
  1858. if (status & GREG_STAT_TXPERR)
  1859. printk("ParityErro ");
  1860. if (status & GREG_STAT_TXTERR)
  1861. printk("TagBotch ");
  1862. printk("]\n");
  1863. reset = 1;
  1864. }
  1865.  
  1866. if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
  1867. /* Bus or parity error when cpu accessed happy meal registers
  1868. * or it's internal FIFO's. Should never see this.
  1869. */
  1870. printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
  1871. hp->dev->name,
  1872. (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
  1873. reset = 1;
  1874. }
  1875.  
  1876. if (reset) {
  1877. printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
  1878. happy_meal_init(hp);
  1879. return 1;
  1880. }
  1881. return 0;
  1882. }
  1883.  
  1884. /* hp->happy_lock must be held */
  1885. static void happy_meal_mif_interrupt(struct happy_meal *hp)
  1886. {
  1887. void __iomem *tregs = hp->tcvregs;
  1888.  
  1889. printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
  1890. hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
  1891. hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
  1892.  
  1893. /* Use the fastest transmission protocol possible. */
  1894. if (hp->sw_lpa & LPA_100FULL) {
  1895. printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
  1896. hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
  1897. } else if (hp->sw_lpa & LPA_100HALF) {
  1898. printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
  1899. hp->sw_bmcr |= BMCR_SPEED100;
  1900. } else if (hp->sw_lpa & LPA_10FULL) {
  1901. printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
  1902. hp->sw_bmcr |= BMCR_FULLDPLX;
  1903. } else {
  1904. printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
  1905. }
  1906. happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
  1907.  
  1908. /* Finally stop polling and shut up the MIF. */
  1909. happy_meal_poll_stop(hp, tregs);
  1910. }
  1911.  
  1912. #ifdef TXDEBUG
  1913. #define TXD(x) printk x
  1914. #else
  1915. #define TXD(x)
  1916. #endif
  1917.  
  1918. /* hp->happy_lock must be held */
  1919. static void happy_meal_tx(struct happy_meal *hp)
  1920. {
  1921. struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
  1922. struct happy_meal_txd *this;
  1923. struct net_device *dev = hp->dev;
  1924. int elem;
  1925.  
  1926. elem = hp->tx_old;
  1927. TXD(("TX<"));
  1928. while (elem != hp->tx_new) {
  1929. struct sk_buff *skb;
  1930. u32 flags, dma_addr, dma_len;
  1931. int frag;
  1932.  
  1933. TXD(("[%d]", elem));
  1934. this = &txbase[elem];
  1935. flags = hme_read_desc32(hp, &this->tx_flags);
  1936. if (flags & TXFLAG_OWN)
  1937. break;
  1938. skb = hp->tx_skbs[elem];
  1939. if (skb_shinfo(skb)->nr_frags) {
  1940. int last;
  1941.  
  1942. last = elem + skb_shinfo(skb)->nr_frags;
  1943. last &= (TX_RING_SIZE - 1);
  1944. flags = hme_read_desc32(hp, &txbase[last].tx_flags);
  1945. if (flags & TXFLAG_OWN)
  1946. break;
  1947. }
  1948. hp->tx_skbs[elem] = NULL;
  1949. hp->net_stats.tx_bytes += skb->len;
  1950.  
  1951. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1952. dma_addr = hme_read_desc32(hp, &this->tx_addr);
  1953. dma_len = hme_read_desc32(hp, &this->tx_flags);
  1954.  
  1955. dma_len &= TXFLAG_SIZE;
  1956. dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
  1957.  
  1958. elem = NEXT_TX(elem);
  1959. this = &txbase[elem];
  1960. }
  1961.  
  1962. dev_kfree_skb_irq(skb);
  1963. hp->net_stats.tx_packets++;
  1964. }
  1965. hp->tx_old = elem;
  1966. TXD((">"));
  1967.  
  1968. if (netif_queue_stopped(dev) &&
  1969. TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
  1970. netif_wake_queue(dev);
  1971. }
  1972.  
  1973. #ifdef RXDEBUG
  1974. #define RXD(x) printk x
  1975. #else
  1976. #define RXD(x)
  1977. #endif
  1978.  
  1979. /* Originally I used to handle the allocation failure by just giving back just
  1980. * that one ring buffer to the happy meal. Problem is that usually when that
  1981. * condition is triggered, the happy meal expects you to do something reasonable
  1982. * with all of the packets it has DMA'd in. So now I just drop the entire
  1983. * ring when we cannot get a new skb and give them all back to the happy meal,
  1984. * maybe things will be "happier" now.
  1985. *
  1986. * hp->happy_lock must be held
  1987. */
  1988. static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
  1989. {
  1990. struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
  1991. struct happy_meal_rxd *this;
  1992. int elem = hp->rx_new, drops = 0;
  1993. u32 flags;
  1994.  
  1995. RXD(("RX<"));
  1996. this = &rxbase[elem];
  1997. while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
  1998. struct sk_buff *skb;
  1999. int len = flags >> 16;
  2000. u16 csum = flags & RXFLAG_CSUM;
  2001. u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
  2002.  
  2003. RXD(("[%d ", elem));
  2004.  
  2005. /* Check for errors. */
  2006. if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
  2007. RXD(("ERR(%08x)]", flags));
  2008. hp->net_stats.rx_errors++;
  2009. if (len < ETH_ZLEN)
  2010. hp->net_stats.rx_length_errors++;
  2011. if (len & (RXFLAG_OVERFLOW >> 16)) {
  2012. hp->net_stats.rx_over_errors++;
  2013. hp->net_stats.rx_fifo_errors++;
  2014. }
  2015.  
  2016. /* Return it to the Happy meal. */
  2017. drop_it:
  2018. hp->net_stats.rx_dropped++;
  2019. hme_write_rxd(hp, this,
  2020. (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
  2021. dma_addr);
  2022. goto next;
  2023. }
  2024. skb = hp->rx_skbs[elem];
  2025. if (len > RX_COPY_THRESHOLD) {
  2026. struct sk_buff *new_skb;
  2027.  
  2028. /* Now refill the entry, if we can. */
  2029. new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
  2030. if (new_skb == NULL) {
  2031. drops++;
  2032. goto drop_it;
  2033. }
  2034. dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
  2035. hp->rx_skbs[elem] = new_skb;
  2036. new_skb->dev = dev;
  2037. skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
  2038. hme_write_rxd(hp, this,
  2039. (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
  2040. dma_map_single(hp->dma_dev, new_skb->data, RX_BUF_ALLOC_SIZE,
  2041. DMA_FROM_DEVICE));
  2042. skb_reserve(new_skb, RX_OFFSET);
  2043.  
  2044. /* Trim the original skb for the netif. */
  2045. skb_trim(skb, len);
  2046. } else {
  2047. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  2048.  
  2049. if (copy_skb == NULL) {
  2050. drops++;
  2051. goto drop_it;
  2052. }
  2053.  
  2054. skb_reserve(copy_skb, 2);
  2055. skb_put(copy_skb, len);
  2056. dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
  2057. skb_copy_from_linear_data(skb, copy_skb->data, len);
  2058. dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
  2059. /* Reuse original ring buffer. */
  2060. hme_write_rxd(hp, this,
  2061. (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
  2062. dma_addr);
  2063.  
  2064. skb = copy_skb;
  2065. }
  2066.  
  2067. /* This card is _fucking_ hot... */
  2068. skb->csum = csum_unfold(~(__force __sum16)htons(csum));
  2069. skb->ip_summed = CHECKSUM_COMPLETE;
  2070.  
  2071. RXD(("len=%d csum=%4x]", len, csum));
  2072. skb->protocol = eth_type_trans(skb, dev);
  2073. netif_rx(skb);
  2074.  
  2075. hp->net_stats.rx_packets++;
  2076. hp->net_stats.rx_bytes += len;
  2077. next:
  2078. elem = NEXT_RX(elem);
  2079. this = &rxbase[elem];
  2080. }
  2081. hp->rx_new = elem;
  2082. if (drops)
  2083. printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
  2084. RXD((">"));
  2085. }
  2086.  
  2087. static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
  2088. {
  2089. struct net_device *dev = dev_id;
  2090. struct happy_meal *hp = netdev_priv(dev);
  2091. u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
  2092.  
  2093. HMD(("happy_meal_interrupt: status=%08x ", happy_status));
  2094.  
  2095. spin_lock(&hp->happy_lock);
  2096.  
  2097. if (happy_status & GREG_STAT_ERRORS) {
  2098. HMD(("ERRORS "));
  2099. if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
  2100. goto out;
  2101. }
  2102.  
  2103. if (happy_status & GREG_STAT_MIFIRQ) {
  2104. HMD(("MIFIRQ "));
  2105. happy_meal_mif_interrupt(hp);
  2106. }
  2107.  
  2108. if (happy_status & GREG_STAT_TXALL) {
  2109. HMD(("TXALL "));
  2110. happy_meal_tx(hp);
  2111. }
  2112.  
  2113. if (happy_status & GREG_STAT_RXTOHOST) {
  2114. HMD(("RXTOHOST "));
  2115. happy_meal_rx(hp, dev);
  2116. }
  2117.  
  2118. HMD(("done\n"));
  2119. out:
  2120. spin_unlock(&hp->happy_lock);
  2121.  
  2122. return IRQ_HANDLED;
  2123. }
  2124.  
  2125. #ifdef CONFIG_SBUS
  2126. static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
  2127. {
  2128. struct quattro *qp = (struct quattro *) cookie;
  2129. int i;
  2130.  
  2131. for (i = 0; i < 4; i++) {
  2132. struct net_device *dev = qp->happy_meals[i];
  2133. struct happy_meal *hp = netdev_priv(dev);
  2134. u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
  2135.  
  2136. HMD(("quattro_interrupt: status=%08x ", happy_status));
  2137.  
  2138. if (!(happy_status & (GREG_STAT_ERRORS |
  2139. GREG_STAT_MIFIRQ |
  2140. GREG_STAT_TXALL |
  2141. GREG_STAT_RXTOHOST)))
  2142. continue;
  2143.  
  2144. spin_lock(&hp->happy_lock);
  2145.  
  2146. if (happy_status & GREG_STAT_ERRORS) {
  2147. HMD(("ERRORS "));
  2148. if (happy_meal_is_not_so_happy(hp, happy_status))
  2149. goto next;
  2150. }
  2151.  
  2152. if (happy_status & GREG_STAT_MIFIRQ) {
  2153. HMD(("MIFIRQ "));
  2154. happy_meal_mif_interrupt(hp);
  2155. }
  2156.  
  2157. if (happy_status & GREG_STAT_TXALL) {
  2158. HMD(("TXALL "));
  2159. happy_meal_tx(hp);
  2160. }
  2161.  
  2162. if (happy_status & GREG_STAT_RXTOHOST) {
  2163. HMD(("RXTOHOST "));
  2164. happy_meal_rx(hp, dev);
  2165. }
  2166.  
  2167. next:
  2168. spin_unlock(&hp->happy_lock);
  2169. }
  2170. HMD(("done\n"));
  2171.  
  2172. return IRQ_HANDLED;
  2173. }
  2174. #endif
  2175.  
  2176. static int happy_meal_open(struct net_device *dev)
  2177. {
  2178. struct happy_meal *hp = netdev_priv(dev);
  2179. int res;
  2180.  
  2181. HMD(("happy_meal_open: "));
  2182.  
  2183. /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
  2184. * into a single source which we register handling at probe time.
  2185. */
  2186. if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
  2187. if (request_irq(dev->irq, &happy_meal_interrupt,
  2188. IRQF_SHARED, dev->name, (void *)dev)) {
  2189. HMD(("EAGAIN\n"));
  2190. printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
  2191. dev->irq);
  2192.  
  2193. return -EAGAIN;
  2194. }
  2195. }
  2196.  
  2197. HMD(("to happy_meal_init\n"));
  2198.  
  2199. spin_lock_irq(&hp->happy_lock);
  2200. res = happy_meal_init(hp);
  2201. spin_unlock_irq(&hp->happy_lock);
  2202.  
  2203. if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
  2204. free_irq(dev->irq, dev);
  2205. return res;
  2206. }
  2207.  
  2208. static int happy_meal_close(struct net_device *dev)
  2209. {
  2210. struct happy_meal *hp = netdev_priv(dev);
  2211.  
  2212. spin_lock_irq(&hp->happy_lock);
  2213. happy_meal_stop(hp, hp->gregs);
  2214. happy_meal_clean_rings(hp);
  2215.  
  2216. /* If auto-negotiation timer is running, kill it. */
  2217. del_timer(&hp->happy_timer);
  2218.  
  2219. spin_unlock_irq(&hp->happy_lock);
  2220.  
  2221. /* On Quattro QFE cards, all hme interrupts are concentrated
  2222. * into a single source which we register handling at probe
  2223. * time and never unregister.
  2224. */
  2225. if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
  2226. free_irq(dev->irq, dev);
  2227.  
  2228. return 0;
  2229. }
  2230.  
  2231. #ifdef SXDEBUG
  2232. #define SXD(x) printk x
  2233. #else
  2234. #define SXD(x)
  2235. #endif
  2236.  
  2237. static void happy_meal_tx_timeout(struct net_device *dev)
  2238. {
  2239. struct happy_meal *hp = netdev_priv(dev);
  2240.  
  2241. printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  2242. tx_dump_log();
  2243. printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
  2244. hme_read32(hp, hp->gregs + GREG_STAT),
  2245. hme_read32(hp, hp->etxregs + ETX_CFG),
  2246. hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
  2247.  
  2248. spin_lock_irq(&hp->happy_lock);
  2249. happy_meal_init(hp);
  2250. spin_unlock_irq(&hp->happy_lock);
  2251.  
  2252. netif_wake_queue(dev);
  2253. }
  2254.  
  2255. static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
  2256. struct net_device *dev)
  2257. {
  2258. struct happy_meal *hp = netdev_priv(dev);
  2259. int entry;
  2260. u32 tx_flags;
  2261.  
  2262. tx_flags = TXFLAG_OWN;
  2263. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2264. const u32 csum_start_off = skb_transport_offset(skb);
  2265. const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
  2266.  
  2267. tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
  2268. ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
  2269. ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
  2270. }
  2271.  
  2272. spin_lock_irq(&hp->happy_lock);
  2273.  
  2274. if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  2275. netif_stop_queue(dev);
  2276. spin_unlock_irq(&hp->happy_lock);
  2277. printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
  2278. dev->name);
  2279. return NETDEV_TX_BUSY;
  2280. }
  2281.  
  2282. entry = hp->tx_new;
  2283. SXD(("SX<l[%d]e[%d]>", len, entry));
  2284. hp->tx_skbs[entry] = skb;
  2285.  
  2286. if (skb_shinfo(skb)->nr_frags == 0) {
  2287. u32 mapping, len;
  2288.  
  2289. len = skb->len;
  2290. mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
  2291. tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
  2292. hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
  2293. (tx_flags | (len & TXFLAG_SIZE)),
  2294. mapping);
  2295. entry = NEXT_TX(entry);
  2296. } else {
  2297. u32 first_len, first_mapping;
  2298. int frag, first_entry = entry;
  2299.  
  2300. /* We must give this initial chunk to the device last.
  2301. * Otherwise we could race with the device.
  2302. */
  2303. first_len = skb_headlen(skb);
  2304. first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
  2305. DMA_TO_DEVICE);
  2306. entry = NEXT_TX(entry);
  2307.  
  2308. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  2309. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  2310. u32 len, mapping, this_txflags;
  2311.  
  2312. len = this_frag->size;
  2313. mapping = dma_map_page(hp->dma_dev, this_frag->page,
  2314. this_frag->page_offset, len,
  2315. DMA_TO_DEVICE);
  2316. this_txflags = tx_flags;
  2317. if (frag == skb_shinfo(skb)->nr_frags - 1)
  2318. this_txflags |= TXFLAG_EOP;
  2319. hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
  2320. (this_txflags | (len & TXFLAG_SIZE)),
  2321. mapping);
  2322. entry = NEXT_TX(entry);
  2323. }
  2324. hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
  2325. (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
  2326. first_mapping);
  2327. }
  2328.  
  2329. hp->tx_new = entry;
  2330.  
  2331. if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
  2332. netif_stop_queue(dev);
  2333.  
  2334. /* Get it going. */
  2335. hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
  2336.  
  2337. spin_unlock_irq(&hp->happy_lock);
  2338.  
  2339. dev->trans_start = jiffies;
  2340.  
  2341. tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
  2342. return NETDEV_TX_OK;
  2343. }
  2344.  
  2345. static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
  2346. {
  2347. struct happy_meal *hp = netdev_priv(dev);
  2348.  
  2349. spin_lock_irq(&hp->happy_lock);
  2350. happy_meal_get_counters(hp, hp->bigmacregs);
  2351. spin_unlock_irq(&hp->happy_lock);
  2352.  
  2353. return &hp->net_stats;
  2354. }
  2355.  
  2356. static void happy_meal_set_multicast(struct net_device *dev)
  2357. {
  2358. struct happy_meal *hp = netdev_priv(dev);
  2359. void __iomem *bregs = hp->bigmacregs;
  2360. struct dev_mc_list *dmi = dev->mc_list;
  2361. char *addrs;
  2362. int i;
  2363. u32 crc;
  2364.  
  2365. spin_lock_irq(&hp->happy_lock);
  2366.  
  2367. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
  2368. hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
  2369. hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
  2370. hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
  2371. hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
  2372. } else if (dev->flags & IFF_PROMISC) {
  2373. hme_write32(hp, bregs + BMAC_RXCFG,
  2374. hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
  2375. } else {
  2376. u16 hash_table[4];
  2377.  
  2378. for (i = 0; i < 4; i++)
  2379. hash_table[i] = 0;
  2380.  
  2381. for (i = 0; i < dev->mc_count; i++) {
  2382. addrs = dmi->dmi_addr;
  2383. dmi = dmi->next;
  2384.  
  2385. if (!(*addrs & 1))
  2386. continue;
  2387.  
  2388. crc = ether_crc_le(6, addrs);
  2389. crc >>= 26;
  2390. hash_table[crc >> 4] |= 1 << (crc & 0xf);
  2391. }
  2392. hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
  2393. hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
  2394. hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
  2395. hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
  2396. }
  2397.  
  2398. spin_unlock_irq(&hp->happy_lock);
  2399. }
  2400.  
  2401. /* Ethtool support... */
  2402. static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2403. {
  2404. struct happy_meal *hp = netdev_priv(dev);
  2405.  
  2406. cmd->supported =
  2407. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2408. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2409. SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
  2410.  
  2411. /* XXX hardcoded stuff for now */
  2412. cmd->port = PORT_TP; /* XXX no MII support */
  2413. cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
  2414. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2415.  
  2416. /* Record PHY settings. */
  2417. spin_lock_irq(&hp->happy_lock);
  2418. hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
  2419. hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
  2420. spin_unlock_irq(&hp->happy_lock);
  2421.  
  2422. if (hp->sw_bmcr & BMCR_ANENABLE) {
  2423. cmd->autoneg = AUTONEG_ENABLE;
  2424. cmd->speed =
  2425. (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
  2426. SPEED_100 : SPEED_10;
  2427. if (cmd->speed == SPEED_100)
  2428. cmd->duplex =
  2429. (hp->sw_lpa & (LPA_100FULL)) ?
  2430. DUPLEX_FULL : DUPLEX_HALF;
  2431. else
  2432. cmd->duplex =
  2433. (hp->sw_lpa & (LPA_10FULL)) ?
  2434. DUPLEX_FULL : DUPLEX_HALF;
  2435. } else {
  2436. cmd->autoneg = AUTONEG_DISABLE;
  2437. cmd->speed =
  2438. (hp->sw_bmcr & BMCR_SPEED100) ?
  2439. SPEED_100 : SPEED_10;
  2440. cmd->duplex =
  2441. (hp->sw_bmcr & BMCR_FULLDPLX) ?
  2442. DUPLEX_FULL : DUPLEX_HALF;
  2443. }
  2444. return 0;
  2445. }
  2446.  
  2447. static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2448. {
  2449. struct happy_meal *hp = netdev_priv(dev);
  2450.  
  2451. /* Verify the settings we care about. */
  2452. if (cmd->autoneg != AUTONEG_ENABLE &&
  2453. cmd->autoneg != AUTONEG_DISABLE)
  2454. return -EINVAL;
  2455. if (cmd->autoneg == AUTONEG_DISABLE &&
  2456. ((cmd->speed != SPEED_100 &&
  2457. cmd->speed != SPEED_10) ||
  2458. (cmd->duplex != DUPLEX_HALF &&
  2459. cmd->duplex != DUPLEX_FULL)))
  2460. return -EINVAL;
  2461.  
  2462. /* Ok, do it to it. */
  2463. spin_lock_irq(&hp->happy_lock);
  2464. del_timer(&hp->happy_timer);
  2465. happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
  2466. spin_unlock_irq(&hp->happy_lock);
  2467.  
  2468. return 0;
  2469. }
  2470.  
  2471. static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2472. {
  2473. struct happy_meal *hp = netdev_priv(dev);
  2474.  
  2475. strcpy(info->driver, "sunhme");
  2476. strcpy(info->version, "2.02");
  2477. if (hp->happy_flags & HFLAG_PCI) {
  2478. struct pci_dev *pdev = hp->happy_dev;
  2479. strcpy(info->bus_info, pci_name(pdev));
  2480. }
  2481. #ifdef CONFIG_SBUS
  2482. else {
  2483. const struct linux_prom_registers *regs;
  2484. struct of_device *op = hp->happy_dev;
  2485. regs = of_get_property(op->node, "regs", NULL);
  2486. if (regs)
  2487. sprintf(info->bus_info, "SBUS:%d",
  2488. regs->which_io);
  2489. }
  2490. #endif
  2491. }
  2492.  
  2493. static u32 hme_get_link(struct net_device *dev)
  2494. {
  2495. struct happy_meal *hp = netdev_priv(dev);
  2496.  
  2497. spin_lock_irq(&hp->happy_lock);
  2498. hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
  2499. spin_unlock_irq(&hp->happy_lock);
  2500.  
  2501. return (hp->sw_bmsr & BMSR_LSTATUS);
  2502. }
  2503.  
  2504. static const struct ethtool_ops hme_ethtool_ops = {
  2505. .get_settings = hme_get_settings,
  2506. .set_settings = hme_set_settings,
  2507. .get_drvinfo = hme_get_drvinfo,
  2508. .get_link = hme_get_link,
  2509. };
  2510.  
  2511. static int hme_version_printed;
  2512.  
  2513. #ifdef CONFIG_SBUS
  2514. /* Given a happy meal sbus device, find it's quattro parent.
  2515. * If none exist, allocate and return a new one.
  2516. *
  2517. * Return NULL on failure.
  2518. */
  2519. static struct quattro * __devinit quattro_sbus_find(struct of_device *child)
  2520. {
  2521. struct device *parent = child->dev.parent;
  2522. struct of_device *op;
  2523. struct quattro *qp;
  2524.  
  2525. op = to_of_device(parent);
  2526. qp = dev_get_drvdata(&op->dev);
  2527. if (qp)
  2528. return qp;
  2529.  
  2530. qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
  2531. if (qp != NULL) {
  2532. int i;
  2533.  
  2534. for (i = 0; i < 4; i++)
  2535. qp->happy_meals[i] = NULL;
  2536.  
  2537. qp->quattro_dev = child;
  2538. qp->next = qfe_sbus_list;
  2539. qfe_sbus_list = qp;
  2540.  
  2541. dev_set_drvdata(&op->dev, qp);
  2542. }
  2543. return qp;
  2544. }
  2545.  
  2546. /* After all quattro cards have been probed, we call these functions
  2547. * to register the IRQ handlers for the cards that have been
  2548. * successfully probed and skip the cards that failed to initialize
  2549. */
  2550. static int __init quattro_sbus_register_irqs(void)
  2551. {
  2552. struct quattro *qp;
  2553.  
  2554. for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
  2555. struct of_device *op = qp->quattro_dev;
  2556. int err, qfe_slot, skip = 0;
  2557.  
  2558. for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
  2559. if (!qp->happy_meals[qfe_slot])
  2560. skip = 1;
  2561. }
  2562. if (skip)
  2563. continue;
  2564.  
  2565. err = request_irq(op->irqs[0],
  2566. quattro_sbus_interrupt,
  2567. IRQF_SHARED, "Quattro",
  2568. qp);
  2569. if (err != 0) {
  2570. printk(KERN_ERR "Quattro HME: IRQ registration "
  2571. "error %d.\n", err);
  2572. return err;
  2573. }
  2574. }
  2575.  
  2576. return 0;
  2577. }
  2578.  
  2579. static void quattro_sbus_free_irqs(void)
  2580. {
  2581. struct quattro *qp;
  2582.  
  2583. for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
  2584. struct of_device *op = qp->quattro_dev;
  2585. int qfe_slot, skip = 0;
  2586.  
  2587. for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
  2588. if (!qp->happy_meals[qfe_slot])
  2589. skip = 1;
  2590. }
  2591. if (skip)
  2592. continue;
  2593.  
  2594. free_irq(op->irqs[0], qp);
  2595. }
  2596. }
  2597. #endif /* CONFIG_SBUS */
  2598.  
  2599. #ifdef CONFIG_PCI
  2600. static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
  2601. {
  2602. struct pci_dev *bdev = pdev->bus->self;
  2603. struct quattro *qp;
  2604.  
  2605. if (!bdev) return NULL;
  2606. for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
  2607. struct pci_dev *qpdev = qp->quattro_dev;
  2608.  
  2609. if (qpdev == bdev)
  2610. return qp;
  2611. }
  2612. qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
  2613. if (qp != NULL) {
  2614. int i;
  2615.  
  2616. for (i = 0; i < 4; i++)
  2617. qp->happy_meals[i] = NULL;
  2618.  
  2619. qp->quattro_dev = bdev;
  2620. qp->next = qfe_pci_list;
  2621. qfe_pci_list = qp;
  2622.  
  2623. /* No range tricks necessary on PCI. */
  2624. qp->nranges = 0;
  2625. }
  2626. return qp;
  2627. }
  2628. #endif /* CONFIG_PCI */
  2629.  
  2630. static const struct net_device_ops hme_netdev_ops = {
  2631. .ndo_open = happy_meal_open,
  2632. .ndo_stop = happy_meal_close,
  2633. .ndo_start_xmit = happy_meal_start_xmit,
  2634. .ndo_tx_timeout = happy_meal_tx_timeout,
  2635. .ndo_get_stats = happy_meal_get_stats,
  2636. .ndo_set_multicast_list = happy_meal_set_multicast,
  2637. .ndo_change_mtu = eth_change_mtu,
  2638. .ndo_set_mac_address = eth_mac_addr,
  2639. .ndo_validate_addr = eth_validate_addr,
  2640. };
  2641.  
  2642. #ifdef CONFIG_SBUS
  2643. static int __devinit happy_meal_sbus_probe_one(struct of_device *op, int is_qfe)
  2644. {
  2645. struct device_node *dp = op->node, *sbus_dp;
  2646. struct quattro *qp = NULL;
  2647. struct happy_meal *hp;
  2648. struct net_device *dev;
  2649. int i, qfe_slot = -1;
  2650. int err = -ENODEV;
  2651.  
  2652. sbus_dp = to_of_device(op->dev.parent)->node;
  2653.  
  2654. /* We can match PCI devices too, do not accept those here. */
  2655. if (strcmp(sbus_dp->name, "sbus"))
  2656. return err;
  2657.  
  2658. if (is_qfe) {
  2659. qp = quattro_sbus_find(op);
  2660. if (qp == NULL)
  2661. goto err_out;
  2662. for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
  2663. if (qp->happy_meals[qfe_slot] == NULL)
  2664. break;
  2665. if (qfe_slot == 4)
  2666. goto err_out;
  2667. }
  2668.  
  2669. err = -ENOMEM;
  2670. dev = alloc_etherdev(sizeof(struct happy_meal));
  2671. if (!dev)
  2672. goto err_out;
  2673. SET_NETDEV_DEV(dev, &op->dev);
  2674.  
  2675. if (hme_version_printed++ == 0)
  2676. printk(KERN_INFO "%s", version);
  2677.  
  2678. /* If user did not specify a MAC address specifically, use
  2679. * the Quattro local-mac-address property...
  2680. */
  2681. for (i = 0; i < 6; i++) {
  2682. if (macaddr[i] != 0)
  2683. break;
  2684. }
  2685. if (i < 6) { /* a mac address was given */
  2686. for (i = 0; i < 6; i++)
  2687. dev->dev_addr[i] = macaddr[i];
  2688. macaddr[5]++;
  2689. } else {
  2690. const unsigned char *addr;
  2691. int len;
  2692.  
  2693. addr = of_get_property(dp, "local-mac-address", &len);
  2694.  
  2695. if (qfe_slot != -1 && addr && len == 6)
  2696. memcpy(dev->dev_addr, addr, 6);
  2697. else
  2698. memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
  2699. }
  2700.  
  2701. hp = netdev_priv(dev);
  2702.  
  2703. hp->happy_dev = op;
  2704. hp->dma_dev = &op->dev;
  2705.  
  2706. spin_lock_init(&hp->happy_lock);
  2707.  
  2708. err = -ENODEV;
  2709. if (qp != NULL) {
  2710. hp->qfe_parent = qp;
  2711. hp->qfe_ent = qfe_slot;
  2712. qp->happy_meals[qfe_slot] = dev;
  2713. }
  2714.  
  2715. hp->gregs = of_ioremap(&op->resource[0], 0,
  2716. GREG_REG_SIZE, "HME Global Regs");
  2717. if (!hp->gregs) {
  2718. printk(KERN_ERR "happymeal: Cannot map global registers.\n");
  2719. goto err_out_free_netdev;
  2720. }
  2721.  
  2722. hp->etxregs = of_ioremap(&op->resource[1], 0,
  2723. ETX_REG_SIZE, "HME TX Regs");
  2724. if (!hp->etxregs) {
  2725. printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
  2726. goto err_out_iounmap;
  2727. }
  2728.  
  2729. hp->erxregs = of_ioremap(&op->resource[2], 0,
  2730. ERX_REG_SIZE, "HME RX Regs");
  2731. if (!hp->erxregs) {
  2732. printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
  2733. goto err_out_iounmap;
  2734. }
  2735.  
  2736. hp->bigmacregs = of_ioremap(&op->resource[3], 0,
  2737. BMAC_REG_SIZE, "HME BIGMAC Regs");
  2738. if (!hp->bigmacregs) {
  2739. printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
  2740. goto err_out_iounmap;
  2741. }
  2742.  
  2743. hp->tcvregs = of_ioremap(&op->resource[4], 0,
  2744. TCVR_REG_SIZE, "HME Tranceiver Regs");
  2745. if (!hp->tcvregs) {
  2746. printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
  2747. goto err_out_iounmap;
  2748. }
  2749.  
  2750. hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
  2751. if (hp->hm_revision == 0xff)
  2752. hp->hm_revision = 0xa0;
  2753.  
  2754. /* Now enable the feature flags we can. */
  2755. if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
  2756. hp->happy_flags = HFLAG_20_21;
  2757. else if (hp->hm_revision != 0xa0)
  2758. hp->happy_flags = HFLAG_NOT_A0;
  2759.  
  2760. if (qp != NULL)
  2761. hp->happy_flags |= HFLAG_QUATTRO;
  2762.  
  2763. /* Get the supported DVMA burst sizes from our Happy SBUS. */
  2764. hp->happy_bursts = of_getintprop_default(sbus_dp,
  2765. "burst-sizes", 0x00);
  2766.  
  2767. hp->happy_block = dma_alloc_coherent(hp->dma_dev,
  2768. PAGE_SIZE,
  2769. &hp->hblock_dvma,
  2770. GFP_ATOMIC);
  2771. err = -ENOMEM;
  2772. if (!hp->happy_block) {
  2773. printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
  2774. goto err_out_iounmap;
  2775. }
  2776.  
  2777. /* Force check of the link first time we are brought up. */
  2778. hp->linkcheck = 0;
  2779.  
  2780. /* Force timer state to 'asleep' with count of zero. */
  2781. hp->timer_state = asleep;
  2782. hp->timer_ticks = 0;
  2783.  
  2784. init_timer(&hp->happy_timer);
  2785.  
  2786. hp->dev = dev;
  2787. dev->netdev_ops = &hme_netdev_ops;
  2788. dev->watchdog_timeo = 5*HZ;
  2789. dev->ethtool_ops = &hme_ethtool_ops;
  2790.  
  2791. /* Happy Meal can do it all... */
  2792. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
  2793.  
  2794. dev->irq = op->irqs[0];
  2795.  
  2796. #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
  2797. /* Hook up SBUS register/descriptor accessors. */
  2798. hp->read_desc32 = sbus_hme_read_desc32;
  2799. hp->write_txd = sbus_hme_write_txd;
  2800. hp->write_rxd = sbus_hme_write_rxd;
  2801. hp->read32 = sbus_hme_read32;
  2802. hp->write32 = sbus_hme_write32;
  2803. #endif
  2804.  
  2805. /* Grrr, Happy Meal comes up by default not advertising
  2806. * full duplex 100baseT capabilities, fix this.
  2807. */
  2808. spin_lock_irq(&hp->happy_lock);
  2809. happy_meal_set_initial_advertisement(hp);
  2810. spin_unlock_irq(&hp->happy_lock);
  2811.  
  2812. if (register_netdev(hp->dev)) {
  2813. printk(KERN_ERR "happymeal: Cannot register net device, "
  2814. "aborting.\n");
  2815. goto err_out_free_coherent;
  2816. }
  2817.  
  2818. dev_set_drvdata(&op->dev, hp);
  2819.  
  2820. if (qfe_slot != -1)
  2821. printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
  2822. dev->name, qfe_slot);
  2823. else
  2824. printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
  2825. dev->name);
  2826.  
  2827. printk("%pM\n", dev->dev_addr);
  2828.  
  2829. return 0;
  2830.  
  2831. err_out_free_coherent:
  2832. dma_free_coherent(hp->dma_dev,
  2833. PAGE_SIZE,
  2834. hp->happy_block,
  2835. hp->hblock_dvma);
  2836.  
  2837. err_out_iounmap:
  2838. if (hp->gregs)
  2839. of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
  2840. if (hp->etxregs)
  2841. of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
  2842. if (hp->erxregs)
  2843. of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
  2844. if (hp->bigmacregs)
  2845. of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
  2846. if (hp->tcvregs)
  2847. of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
  2848.  
  2849. if (qp)
  2850. qp->happy_meals[qfe_slot] = NULL;
  2851.  
  2852. err_out_free_netdev:
  2853. free_netdev(dev);
  2854.  
  2855. err_out:
  2856. return err;
  2857. }
  2858. #endif
  2859.  
  2860. #ifdef CONFIG_PCI
  2861. #ifndef CONFIG_SPARC
  2862. static int is_quattro_p(struct pci_dev *pdev)
  2863. {
  2864. struct pci_dev *busdev = pdev->bus->self;
  2865. struct list_head *tmp;
  2866. int n_hmes;
  2867.  
  2868. if (busdev == NULL ||
  2869. busdev->vendor != PCI_VENDOR_ID_DEC ||
  2870. busdev->device != PCI_DEVICE_ID_DEC_21153)
  2871. return 0;
  2872.  
  2873. n_hmes = 0;
  2874. tmp = pdev->bus->devices.next;
  2875. while (tmp != &pdev->bus->devices) {
  2876. struct pci_dev *this_pdev = pci_dev_b(tmp);
  2877.  
  2878. if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
  2879. this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
  2880. n_hmes++;
  2881.  
  2882. tmp = tmp->next;
  2883. }
  2884.  
  2885. if (n_hmes != 4)
  2886. return 0;
  2887.  
  2888. return 1;
  2889. }
  2890.  
  2891. /* Fetch MAC address from vital product data of PCI ROM. */
  2892. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
  2893. {
  2894. int this_offset;
  2895.  
  2896. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2897. void __iomem *p = rom_base + this_offset;
  2898.  
  2899. if (readb(p + 0) != 0x90 ||
  2900. readb(p + 1) != 0x00 ||
  2901. readb(p + 2) != 0x09 ||
  2902. readb(p + 3) != 0x4e ||
  2903. readb(p + 4) != 0x41 ||
  2904. readb(p + 5) != 0x06)
  2905. continue;
  2906.  
  2907. this_offset += 6;
  2908. p += 6;
  2909.  
  2910. if (index == 0) {
  2911. int i;
  2912.  
  2913. for (i = 0; i < 6; i++)
  2914. dev_addr[i] = readb(p + i);
  2915. return 1;
  2916. }
  2917. index--;
  2918. }
  2919. return 0;
  2920. }
  2921.  
  2922. static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
  2923. {
  2924. size_t size;
  2925. void __iomem *p = pci_map_rom(pdev, &size);
  2926.  
  2927. if (p) {
  2928. int index = 0;
  2929. int found;
  2930.  
  2931. if (is_quattro_p(pdev))
  2932. index = PCI_SLOT(pdev->devfn);
  2933.  
  2934. found = readb(p) == 0x55 &&
  2935. readb(p + 1) == 0xaa &&
  2936. find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
  2937. pci_unmap_rom(pdev, p);
  2938. if (found)
  2939. return;
  2940. }
  2941.  
  2942. /* Sun MAC prefix then 3 random bytes. */
  2943. dev_addr[0] = 0x08;
  2944. dev_addr[1] = 0x00;
  2945. dev_addr[2] = 0x20;
  2946. get_random_bytes(&dev_addr[3], 3);
  2947. return;
  2948. }
  2949. #endif /* !(CONFIG_SPARC) */
  2950.  
  2951. static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
  2952. const struct pci_device_id *ent)
  2953. {
  2954. struct quattro *qp = NULL;
  2955. #ifdef CONFIG_SPARC
  2956. struct device_node *dp;
  2957. #endif
  2958. struct happy_meal *hp;
  2959. struct net_device *dev;
  2960. void __iomem *hpreg_base;
  2961. unsigned long hpreg_res;
  2962. int i, qfe_slot = -1;
  2963. char prom_name[64];
  2964. int err;
  2965.  
  2966. /* Now make sure pci_dev cookie is there. */
  2967. #ifdef CONFIG_SPARC
  2968. dp = pci_device_to_OF_node(pdev);
  2969. strcpy(prom_name, dp->name);
  2970. #else
  2971. if (is_quattro_p(pdev))
  2972. strcpy(prom_name, "SUNW,qfe");
  2973. else
  2974. strcpy(prom_name, "SUNW,hme");
  2975. #endif
  2976.  
  2977. err = -ENODEV;
  2978.  
  2979. if (pci_enable_device(pdev))
  2980. goto err_out;
  2981.  
  2982. #ifndef CONFIG_SPARC
  2983. /* this should always be supported */
  2984. i = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2985. if (i) {
  2986. printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
  2987. "the card!?\n");
  2988. err = i;
  2989. goto err_out;
  2990. }
  2991. #endif
  2992.  
  2993. pci_set_master(pdev);
  2994.  
  2995. if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
  2996. qp = quattro_pci_find(pdev);
  2997. if (qp == NULL)
  2998. goto err_out;
  2999. for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
  3000. if (qp->happy_meals[qfe_slot] == NULL)
  3001. break;
  3002. if (qfe_slot == 4)
  3003. goto err_out;
  3004. }
  3005.  
  3006. dev = alloc_etherdev(sizeof(struct happy_meal));
  3007. err = -ENOMEM;
  3008. if (!dev)
  3009. goto err_out;
  3010. SET_NETDEV_DEV(dev, &pdev->dev);
  3011.  
  3012. if (hme_version_printed++ == 0)
  3013. printk(KERN_INFO "%s", version);
  3014.  
  3015. dev->base_addr = (long) pdev;
  3016.  
  3017. hp = netdev_priv(dev);
  3018. memset(hp, 0, sizeof(*hp));
  3019.  
  3020. hp->happy_dev = pdev;
  3021. hp->dma_dev = &pdev->dev;
  3022.  
  3023. spin_lock_init(&hp->happy_lock);
  3024.  
  3025. if (qp != NULL) {
  3026. hp->qfe_parent = qp;
  3027. hp->qfe_ent = qfe_slot;
  3028. qp->happy_meals[qfe_slot] = dev;
  3029. }
  3030.  
  3031. hpreg_res = pci_resource_start(pdev, 0);
  3032. err = -ENODEV;
  3033. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  3034. printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
  3035. goto err_out_clear_quattro;
  3036. }
  3037. if (pci_request_regions(pdev, DRV_NAME)) {
  3038. printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
  3039. "aborting.\n");
  3040. goto err_out_clear_quattro;
  3041. }
  3042.  
  3043. if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
  3044. printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
  3045. goto err_out_free_res;
  3046. }
  3047.  
  3048. for (i = 0; i < 6; i++) {
  3049. if (macaddr[i] != 0)
  3050. break;
  3051. }
  3052. if (i < 6) { /* a mac address was given */
  3053. for (i = 0; i < 6; i++)
  3054. dev->dev_addr[i] = macaddr[i];
  3055. macaddr[5]++;
  3056. } else {
  3057. #ifdef CONFIG_SPARC
  3058. const unsigned char *addr;
  3059. int len;
  3060.  
  3061. if (qfe_slot != -1 &&
  3062. (addr = of_get_property(dp,
  3063. "local-mac-address", &len)) != NULL
  3064. && len == 6) {
  3065. memcpy(dev->dev_addr, addr, 6);
  3066. } else {
  3067. memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
  3068. }
  3069. #else
  3070. get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
  3071. #endif
  3072. }
  3073.  
  3074. /* Layout registers. */
  3075. hp->gregs = (hpreg_base + 0x0000UL);
  3076. hp->etxregs = (hpreg_base + 0x2000UL);
  3077. hp->erxregs = (hpreg_base + 0x4000UL);
  3078. hp->bigmacregs = (hpreg_base + 0x6000UL);
  3079. hp->tcvregs = (hpreg_base + 0x7000UL);
  3080.  
  3081. #ifdef CONFIG_SPARC
  3082. hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
  3083. if (hp->hm_revision == 0xff)
  3084. hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
  3085. #else
  3086. /* works with this on non-sparc hosts */
  3087. hp->hm_revision = 0x20;
  3088. #endif
  3089.  
  3090. /* Now enable the feature flags we can. */
  3091. if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
  3092. hp->happy_flags = HFLAG_20_21;
  3093. else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
  3094. hp->happy_flags = HFLAG_NOT_A0;
  3095.  
  3096. if (qp != NULL)
  3097. hp->happy_flags |= HFLAG_QUATTRO;
  3098.  
  3099. /* And of course, indicate this is PCI. */
  3100. hp->happy_flags |= HFLAG_PCI;
  3101.  
  3102. #ifdef CONFIG_SPARC
  3103. /* Assume PCI happy meals can handle all burst sizes. */
  3104. hp->happy_bursts = DMA_BURSTBITS;
  3105. #endif
  3106.  
  3107. hp->happy_block = (struct hmeal_init_block *)
  3108. dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &hp->hblock_dvma, GFP_KERNEL);
  3109.  
  3110. err = -ENODEV;
  3111. if (!hp->happy_block) {
  3112. printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
  3113. goto err_out_iounmap;
  3114. }
  3115.  
  3116. hp->linkcheck = 0;
  3117. hp->timer_state = asleep;
  3118. hp->timer_ticks = 0;
  3119.  
  3120. init_timer(&hp->happy_timer);
  3121.  
  3122. hp->dev = dev;
  3123. dev->netdev_ops = &hme_netdev_ops;
  3124. dev->watchdog_timeo = 5*HZ;
  3125. dev->ethtool_ops = &hme_ethtool_ops;
  3126. dev->irq = pdev->irq;
  3127. dev->dma = 0;
  3128.  
  3129. /* Happy Meal can do it all... */
  3130. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
  3131.  
  3132. #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
  3133. /* Hook up PCI register/descriptor accessors. */
  3134. hp->read_desc32 = pci_hme_read_desc32;
  3135. hp->write_txd = pci_hme_write_txd;
  3136. hp->write_rxd = pci_hme_write_rxd;
  3137. hp->read32 = pci_hme_read32;
  3138. hp->write32 = pci_hme_write32;
  3139. #endif
  3140.  
  3141. /* Grrr, Happy Meal comes up by default not advertising
  3142. * full duplex 100baseT capabilities, fix this.
  3143. */
  3144. spin_lock_irq(&hp->happy_lock);
  3145. happy_meal_set_initial_advertisement(hp);
  3146. spin_unlock_irq(&hp->happy_lock);
  3147.  
  3148. if (register_netdev(hp->dev)) {
  3149. printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
  3150. "aborting.\n");
  3151. goto err_out_iounmap;
  3152. }
  3153.  
  3154. dev_set_drvdata(&pdev->dev, hp);
  3155.  
  3156. if (!qfe_slot) {
  3157. struct pci_dev *qpdev = qp->quattro_dev;
  3158.  
  3159. prom_name[0] = 0;
  3160. if (!strncmp(dev->name, "eth", 3)) {
  3161. int i = simple_strtoul(dev->name + 3, NULL, 10);
  3162. sprintf(prom_name, "-%d", i + 3);
  3163. }
  3164. printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
  3165. if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
  3166. qpdev->device == PCI_DEVICE_ID_DEC_21153)
  3167. printk("DEC 21153 PCI Bridge\n");
  3168. else
  3169. printk("unknown bridge %04x.%04x\n",
  3170. qpdev->vendor, qpdev->device);
  3171. }
  3172.  
  3173. if (qfe_slot != -1)
  3174. printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
  3175. dev->name, qfe_slot);
  3176. else
  3177. printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
  3178. dev->name);
  3179.  
  3180. printk("%pM\n", dev->dev_addr);
  3181.  
  3182. return 0;
  3183.  
  3184. err_out_iounmap:
  3185. iounmap(hp->gregs);
  3186.  
  3187. err_out_free_res:
  3188. pci_release_regions(pdev);
  3189.  
  3190. err_out_clear_quattro:
  3191. if (qp != NULL)
  3192. qp->happy_meals[qfe_slot] = NULL;
  3193.  
  3194. free_netdev(dev);
  3195.  
  3196. err_out:
  3197. return err;
  3198. }
  3199.  
  3200. static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
  3201. {
  3202. struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
  3203. struct net_device *net_dev = hp->dev;
  3204.  
  3205. unregister_netdev(net_dev);
  3206.  
  3207. dma_free_coherent(hp->dma_dev, PAGE_SIZE,
  3208. hp->happy_block, hp->hblock_dvma);
  3209. iounmap(hp->gregs);
  3210. pci_release_regions(hp->happy_dev);
  3211.  
  3212. free_netdev(net_dev);
  3213.  
  3214. dev_set_drvdata(&pdev->dev, NULL);
  3215. }
  3216.  
  3217. static struct pci_device_id happymeal_pci_ids[] = {
  3218. { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
  3219. { } /* Terminating entry */
  3220. };
  3221.  
  3222. MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
  3223.  
  3224. static struct pci_driver hme_pci_driver = {
  3225. .name = "hme",
  3226. .id_table = happymeal_pci_ids,
  3227. .probe = happy_meal_pci_probe,
  3228. .remove = __devexit_p(happy_meal_pci_remove),
  3229. };
  3230.  
  3231. static int __init happy_meal_pci_init(void)
  3232. {
  3233. return pci_register_driver(&hme_pci_driver);
  3234. }
  3235.  
  3236. static void happy_meal_pci_exit(void)
  3237. {
  3238. pci_unregister_driver(&hme_pci_driver);
  3239.  
  3240. while (qfe_pci_list) {
  3241. struct quattro *qfe = qfe_pci_list;
  3242. struct quattro *next = qfe->next;
  3243.  
  3244. kfree(qfe);
  3245.  
  3246. qfe_pci_list = next;
  3247. }
  3248. }
  3249.  
  3250. #endif
  3251.  
  3252. #ifdef CONFIG_SBUS
  3253. static int __devinit hme_sbus_probe(struct of_device *op, const struct of_device_id *match)
  3254. {
  3255. struct device_node *dp = op->node;
  3256. const char *model = of_get_property(dp, "model", NULL);
  3257. int is_qfe = (match->data != NULL);
  3258.  
  3259. if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
  3260. is_qfe = 1;
  3261.  
  3262. return happy_meal_sbus_probe_one(op, is_qfe);
  3263. }
  3264.  
  3265. static int __devexit hme_sbus_remove(struct of_device *op)
  3266. {
  3267. struct happy_meal *hp = dev_get_drvdata(&op->dev);
  3268. struct net_device *net_dev = hp->dev;
  3269.  
  3270. unregister_netdev(net_dev);
  3271.  
  3272. /* XXX qfe parent interrupt... */
  3273.  
  3274. of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
  3275. of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
  3276. of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
  3277. of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
  3278. of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
  3279. dma_free_coherent(hp->dma_dev,
  3280. PAGE_SIZE,
  3281. hp->happy_block,
  3282. hp->hblock_dvma);
  3283.  
  3284. free_netdev(net_dev);
  3285.  
  3286. dev_set_drvdata(&op->dev, NULL);
  3287.  
  3288. return 0;
  3289. }
  3290.  
  3291. static const struct of_device_id hme_sbus_match[] = {
  3292. {
  3293. .name = "SUNW,hme",
  3294. },
  3295. {
  3296. .name = "SUNW,qfe",
  3297. .data = (void *) 1,
  3298. },
  3299. {
  3300. .name = "qfe",
  3301. .data = (void *) 1,
  3302. },
  3303. {},
  3304. };
  3305.  
  3306. MODULE_DEVICE_TABLE(of, hme_sbus_match);
  3307.  
  3308. static struct of_platform_driver hme_sbus_driver = {
  3309. .name = "hme",
  3310. .match_table = hme_sbus_match,
  3311. .probe = hme_sbus_probe,
  3312. .remove = __devexit_p(hme_sbus_remove),
  3313. };
  3314.  
  3315. static int __init happy_meal_sbus_init(void)
  3316. {
  3317. int err;
  3318.  
  3319. err = of_register_driver(&hme_sbus_driver, &of_bus_type);
  3320. if (!err)
  3321. err = quattro_sbus_register_irqs();
  3322.  
  3323. return err;
  3324. }
  3325.  
  3326. static void happy_meal_sbus_exit(void)
  3327. {
  3328. of_unregister_driver(&hme_sbus_driver);
  3329. quattro_sbus_free_irqs();
  3330.  
  3331. while (qfe_sbus_list) {
  3332. struct quattro *qfe = qfe_sbus_list;
  3333. struct quattro *next = qfe->next;
  3334.  
  3335. kfree(qfe);
  3336.  
  3337. qfe_sbus_list = next;
  3338. }
  3339. }
  3340. #endif
  3341.  
  3342. static int __init happy_meal_probe(void)
  3343. {
  3344. int err = 0;
  3345.  
  3346. #ifdef CONFIG_SBUS
  3347. err = happy_meal_sbus_init();
  3348. #endif
  3349. #ifdef CONFIG_PCI
  3350. if (!err) {
  3351. err = happy_meal_pci_init();
  3352. #ifdef CONFIG_SBUS
  3353. if (err)
  3354. happy_meal_sbus_exit();
  3355. #endif
  3356. }
  3357. #endif
  3358.  
  3359. return err;
  3360. }
  3361.  
  3362.  
  3363. static void __exit happy_meal_exit(void)
  3364. {
  3365. #ifdef CONFIG_SBUS
  3366. happy_meal_sbus_exit();
  3367. #endif
  3368. #ifdef CONFIG_PCI
  3369. happy_meal_pci_exit();
  3370. #endif
  3371. }
  3372.  
  3373. module_init(happy_meal_probe);
  3374. module_exit(happy_meal_exit);
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement