Advertisement
Guest User

Untitled

a guest
Sep 25th, 2017
78
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.79 KB | None | 0 0
  1. \documentclass[a4paper,11pt]{article}
  2. \usepackage{amsmath}
  3. \usepackage{graphicx}
  4. \usepackage{framed}
  5. \usepackage{amsmath}
  6. \usepackage{amssymb}
  7. \usepackage{amsfonts}
  8. \usepackage{mathrsfs}
  9. \usepackage{array}
  10. \usepackage{enumitem}
  11. \usepackage{amsthm}
  12. \usepackage{amstext}
  13. \usepackage{esint}
  14. \usepackage{upgreek}
  15. \newcommand*{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
  16. \hbox{\scriptsize.}\hbox{\scriptsize.}}}%
  17. =}
  18. \newcommand*{\eqdef}{=\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
  19. \hbox{\scriptsize.}\hbox{\scriptsize.}}}%
  20. }
  21. \begin{document}
  22. \pagenumbering{gobble}
  23. \section{Q4}
  24. We aim to prove that for every $x \in \mathbb{Z}$, the following is true:
  25. \begin{equation}\tag{$\ast$}
  26. p(x) \defeq \frac{1}{5}x^5 + \frac{1}{3}x^3 + \frac{7}{15}x \in \mathbb{Z}.
  27. \end{equation}
  28. First note that $p(0) = 0$ since:
  29. \begin{align*}
  30. p(0) &= \frac{1}{5}\cdot 0^5 + \frac{1}{3}\cdot 0^3 + \frac{7}{15}\cdot 0\\
  31. &= 0 \in \mathbb{Z}.
  32. \end{align*}
  33. So $(\ast)$ is true for $x = 0$.\\
  34. We now use induction to prove that $(\ast)$ is true for all $x \in \mathbb{Z}^+$. The statement holds for the base case $p(1)$:
  35. \begin{align*}
  36. p(x) &= \frac{1}{5}\cdot 1^5 + \frac{1}{3}\cdot 1^3 + \frac{7}{15}\cdot 1\\
  37. &= \frac{1}{5} + \frac{1}{3} + \frac{7}{15}\\
  38. &= 1 \in \mathbb{Z}.
  39. \end{align*}
  40. We now assume that $(\ast)$ is true for $x = k$, i.e. that $p(k) \in \mathbb{Z}$. To prove that $p(k+1) \in \mathbb{Z}$, we instead prove that $p(k+1) - p(k) = c$, for some $c \in \mathbb{Z}$. So:
  41. \begin{align*}
  42. p(k+1) - p(k) &= \frac{1}{5}(k+1)^5 + \frac {1}{3}(k+1)^3 + \frac {7}{15}(k+1) - \left(\frac{1}{5}k^5 + \frac{1}{3}k^3 + \frac{7}{15}k \right)\\
  43. &= \frac{(k+1)^5}{5} + \frac{(k+1)^3}{3} + \frac {7(k+1)}{15} - \frac{k^5}{5} - \frac{k^3}{3} - \frac{7k}{15}\\
  44. &= \frac{(k+1)^5}{5} - \frac{k^5}{5} + \frac{(k+1)^3}{3} - \frac{k^3}{3} + \frac{7k}{15} - \frac{7k}{15} + \frac{1}{15}\\
  45. &= \frac{1k + 5k + 10k^2 + 1-k^3 + 5k^4 + k^5 - k^5}{5}\\
  46. &\quad + \frac{1 + 3k + 3k^2 + k^3 - k^3}{3} + \frac{7}{15}, \quad\text{by the binomial theorem}\\
  47. &= \frac{1}{5} + \frac{5k}{5} + 2k^2 + 2k^3 + k^4 + \frac{1}{3} + k + k^2 + \frac{7}{15}\\
  48. &= 2k + 3k^2 + 2k^3 + k^4 + \frac{1}{3} + \frac{1}{5} + \frac{7}{15}\\
  49. &= 1 + 2k + 3k^2 + 2k^3 + k^4 \\
  50. &\eqdef c,
  51. \end{align*}
  52. since products of integers are integers, and sums of integers are also integers, so $c \in \mathbb{Z}$.\\
  53. So $p(k+1) - p(k) = c$ implies that $p(k+1) = c + p(k)$, and since $c, p(k) \in \mathbb{Z}$, we have that $p(k+1) \in \mathbb{Z}$, which proves that $(\ast)$ is true for all $x \in \mathbb{Z}^+$.\\
  54. To prove this also works for negative integers, we consider instead:
  55. $$p(-x) = - \frac{1}{5}x^5 - \frac{1}{3}x^3 - \frac{7}{15}x.$$
  56. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement