Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- errors = zeros(num_folds, 1);
- sizes = zeros(num_folds, 1);
- for i = 1:num_folds
- classifier = learnGMMClassifier(folds{i}, folds_labels{i}, k); % learn classifier on training data
- test_data = folds([1:(i-1) (i+1):num_folds]);
- test_data = vertcat(test_data{:}); % prepare testing data
- test_labels = folds_labels([1:(i-1) (i+1):num_folds]);
- test_labels = vertcat(test_labels{:}); % prepare testing labels
- predictions = classify(classifier, test_data);
- errors(i) = mean(predictions ~= test_labels);
- sizes(i) = size(folds{i}, 1);
- end
- e = mean((errors.*sizes)/mean(sizes));
Advertisement
Add Comment
Please, Sign In to add comment