SHARE
TWEET

Untitled

a guest Mar 25th, 2019 202 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. {
  2.  "cells": [
  3.   {
  4.    "cell_type": "markdown",
  5.    "metadata": {},
  6.    "source": [
  7.     "# Problem Statement :\n",
  8.     "-------------\n",
  9.     "\n",
  10.     "The Indian Premier League (IPL) is a professional league for Twenty20 cricket championship in India.\n",
  11.     "It started in the year 2007-2008 and is running in its ninth year of existence.\n",
  12.     "The pattern of the league is such that each team plays all other teams twice in the league stage, one in the HOME venue and other in the AWAY venue. \n",
  13.     "After the league stage top four teams enter the semi-final stage and the top two teams enter the final contest.\n",
  14.     "\n",
  15.     "\n",
  16.     "## Objective\n",
  17.     "---------\n",
  18.     "The goal of the contest is to develop a model to predict likelihood of a team winning the match. \n",
  19.     "The true label of which team (team batting first or second) won the match is provided as “Team Won”. See data dictionary for more explanation.\n",
  20.     " \n",
  21.     "\n",
  22.     "## Dataset\n",
  23.     "-------\n",
  24.     "Dataset on all match statistics plus some derived features from season 2008 to 2012 is provided as an attachment supported by a data \n",
  25.     "dictionary for the same.\n",
  26.     "The training dataset contains match statistics from 2008 to 2011 season. And the test dataset contains match statistics from 2012 season. \n",
  27.     "\n",
  28.     "-- train data : train.csv <br/>\n",
  29.     "-- test data  : test.csv<br/>\n",
  30.     "-- data dictionary : data_dictionary.xlsx\n",
  31.     "\n",
  32.     "## Expectations\n",
  33.     "------------\n",
  34.     "\n",
  35.     "We are looking for prediction of a team (either Team 1 or Team 2) winning the match & probability score for the team winning the game.\n"
  36.    ]
  37.   },
  38.   {
  39.    "cell_type": "markdown",
  40.    "metadata": {},
  41.    "source": [
  42.     "## Solution/Approach\n",
  43.     "#### Steps\n",
  44.     "1. Reading csv/xlsx etc file and then checking dimension,few rows to know little about data etc and merging the train and test datasets\n",
  45.     "2. Variable identification to know about <b>continuous or categorical in nature</b>\n",
  46.     "3. Univariate analysis<br/>\n",
  47.     "    A. Continuous Variables<br/>\n",
  48.     "    Tabular and graphical method is used to know about <b>mean,median,mode,missing values,Q1,Q3,skewness,outliers</b> etc\n",
  49.     "    \n",
  50.     "    B. Categorical Variables<br/>\n",
  51.     "    Tabular and graphical method is used to know about number of times each value occuring in that particular column<br/>\n",
  52.     "    <br/>\n",
  53.     "4. Bivariate analysis<br/>\n",
  54.     "    Tabular and graphical method is used to know about relation between continuous-continuous variables using            \n",
  55.     "    <b>correlation</b>,categorical-continuous variables using bar plot.\n",
  56.     "5. Outliers Treatment:<br/>\n",
  57.     "    Using <b>box plot</b>, i am able to find outliers then using <b>Q1-1.5(Q3-Q1)</b> and <b>Q3+1.5(Q3-Q1)</b> , i am replacing     that outliers with median.\n",
  58.     "6. Variable Transormation:<br/>\n",
  59.     "    Using LabelEncoder from sckikit learn ,transforming categorical varaibles into numerical form. \n",
  60.     "    \n",
  61.     "7. Modeling:<br/>\n",
  62.     "   a.Separating indepedent and dependent variable from our data set<br/><br/>\n",
  63.     "   <b>7.1 Bagging and Boosting Techniques (Accuracy : 86%)</b><br/>\n",
  64.     "   <b>7.2 Logistic Regression(Accuracy : 93%)</b><br/>\n",
  65.     "   <b>7.3 Neural Network(Accuracy : 84%)</b><br/>\n",
  66.     "   \n",
  67.     "   b.Predicting the value for each of the above techniques and maximum likelihood<br/>\n",
  68.     "   c.Finally compare the <b>accuracy</b> of each of the model.<br/>\n",
  69.     "   d.<b>I had included two new columns(my_prediction,likelihood_winning) in test dataset to compare from original values.</b>"
  70.    ]
  71.   },
  72.   {
  73.    "cell_type": "markdown",
  74.    "metadata": {},
  75.    "source": [
  76.     "# 1. Exploring the dataset :"
  77.    ]
  78.   },
  79.   {
  80.    "cell_type": "code",
  81.    "execution_count": 253,
  82.    "metadata": {},
  83.    "outputs": [],
  84.    "source": [
  85.     "# importing common use libraries\n",
  86.     "\n",
  87.     "import pandas as pd\n",
  88.     "import numpy as np\n",
  89.     "import matplotlib.pyplot as plt\n",
  90.     "import seaborn as sns\n",
  91.     "%matplotlib inline\n",
  92.     "\n",
  93.     "import warnings\n",
  94.     "warnings.filterwarnings(\"ignore\")"
  95.    ]
  96.   },
  97.   {
  98.    "cell_type": "code",
  99.    "execution_count": 254,
  100.    "metadata": {},
  101.    "outputs": [
  102.     {
  103.      "data": {
  104.       "text/html": [
  105.        "<div>\n",
  106.        "<style scoped>\n",
  107.        "    .dataframe tbody tr th:only-of-type {\n",
  108.        "        vertical-align: middle;\n",
  109.        "    }\n",
  110.        "\n",
  111.        "    .dataframe tbody tr th {\n",
  112.        "        vertical-align: top;\n",
  113.        "    }\n",
  114.        "\n",
  115.        "    .dataframe thead th {\n",
  116.        "        text-align: right;\n",
  117.        "    }\n",
  118.        "</style>\n",
  119.        "<table border=\"1\" class=\"dataframe\">\n",
  120.        "  <thead>\n",
  121.        "    <tr style=\"text-align: right;\">\n",
  122.        "      <th></th>\n",
  123.        "      <th>Variable Name</th>\n",
  124.        "      <th>Description</th>\n",
  125.        "      <th>Cricketing Jargons</th>\n",
  126.        "    </tr>\n",
  127.        "  </thead>\n",
  128.        "  <tbody>\n",
  129.        "    <tr>\n",
  130.        "      <th>0</th>\n",
  131.        "      <td>Team 1</td>\n",
  132.        "      <td>Team batting first and bowling second</td>\n",
  133.        "      <td>NaN</td>\n",
  134.        "    </tr>\n",
  135.        "    <tr>\n",
  136.        "      <th>1</th>\n",
  137.        "      <td>Team 2</td>\n",
  138.        "      <td>Team batting second and bowling first</td>\n",
  139.        "      <td>Bowled\\na mode of a batsman's dismissal. Occur...</td>\n",
  140.        "    </tr>\n",
  141.        "    <tr>\n",
  142.        "      <th>2</th>\n",
  143.        "      <td>City of match</td>\n",
  144.        "      <td>City where the match is played</td>\n",
  145.        "      <td>Catch\\nto dismiss a batsman by a fielder catch...</td>\n",
  146.        "    </tr>\n",
  147.        "    <tr>\n",
  148.        "      <th>3</th>\n",
  149.        "      <td>Day</td>\n",
  150.        "      <td>Day of the week when the match is played</td>\n",
  151.        "      <td>Run out\\ndismissal by a member of the fielding...</td>\n",
  152.        "    </tr>\n",
  153.        "    <tr>\n",
  154.        "      <th>4</th>\n",
  155.        "      <td>Date of Match</td>\n",
  156.        "      <td>Date of the year when the match is played</td>\n",
  157.        "      <td>Leg before wicket (LBW)\\na way of dismissing t...</td>\n",
  158.        "    </tr>\n",
  159.        "    <tr>\n",
  160.        "      <th>5</th>\n",
  161.        "      <td>Time of Match</td>\n",
  162.        "      <td>Time of the day when the match is played</td>\n",
  163.        "      <td>Stumping: It requires co-operation between a b...</td>\n",
  164.        "    </tr>\n",
  165.        "    <tr>\n",
  166.        "      <th>6</th>\n",
  167.        "      <td>Avg Wind Speed</td>\n",
  168.        "      <td>Average speed of the wind on the day when the ...</td>\n",
  169.        "      <td>Strike rate\\n percentage equal to the number o...</td>\n",
  170.        "    </tr>\n",
  171.        "    <tr>\n",
  172.        "      <th>7</th>\n",
  173.        "      <td>Avg Humidity</td>\n",
  174.        "      <td>Average humidity on the day when the match is ...</td>\n",
  175.        "      <td>Innings\\none player's or one team's turn to ba...</td>\n",
  176.        "    </tr>\n",
  177.        "    <tr>\n",
  178.        "      <th>8</th>\n",
  179.        "      <td>Inn 1 Team 1 NOP R>25,SR>125</td>\n",
  180.        "      <td>NoP(Number of players) in Team 1 that scored m...</td>\n",
  181.        "      <td>Spin bowling\\na style of bowling in which a sp...</td>\n",
  182.        "    </tr>\n",
  183.        "    <tr>\n",
  184.        "      <th>9</th>\n",
  185.        "      <td>Inn 1 Team 1 NOP R<25, SR>125</td>\n",
  186.        "      <td>NoP(Number of players) in Team 1 that scored l...</td>\n",
  187.        "      <td>NaN</td>\n",
  188.        "    </tr>\n",
  189.        "    <tr>\n",
  190.        "      <th>10</th>\n",
  191.        "      <td>Inn 1 Team 1 Total 4s</td>\n",
  192.        "      <td>Total Number of 4s hit by Team 1 in the first ...</td>\n",
  193.        "      <td>NaN</td>\n",
  194.        "    </tr>\n",
  195.        "    <tr>\n",
  196.        "      <th>11</th>\n",
  197.        "      <td>Inn 1 Team 1 Total 6s</td>\n",
  198.        "      <td>Total Number of 6s hit by Team 1 in the first ...</td>\n",
  199.        "      <td>NaN</td>\n",
  200.        "    </tr>\n",
  201.        "    <tr>\n",
  202.        "      <th>12</th>\n",
  203.        "      <td>Inn 1 Team 1 Max Strike Rate_ALLBatsmen</td>\n",
  204.        "      <td>Maximum strike rate achieved including all bat...</td>\n",
  205.        "      <td>NaN</td>\n",
  206.        "    </tr>\n",
  207.        "    <tr>\n",
  208.        "      <th>13</th>\n",
  209.        "      <td>Inn 1 Team 2 NoP fast bowlers</td>\n",
  210.        "      <td>NoP(Number of players) in Team 2 who are fast ...</td>\n",
  211.        "      <td>NaN</td>\n",
  212.        "    </tr>\n",
  213.        "    <tr>\n",
  214.        "      <th>14</th>\n",
  215.        "      <td>Inn 1 Team 2 NoP Spinners</td>\n",
  216.        "      <td>NoP(Number of players) in Team 2 who are spinn...</td>\n",
  217.        "      <td>NaN</td>\n",
  218.        "    </tr>\n",
  219.        "    <tr>\n",
  220.        "      <th>15</th>\n",
  221.        "      <td>Inn 1 Team 2 wickets taken_catches_runout</td>\n",
  222.        "      <td>Number of wickets taken by Team 2 in the first...</td>\n",
  223.        "      <td>NaN</td>\n",
  224.        "    </tr>\n",
  225.        "    <tr>\n",
  226.        "      <th>16</th>\n",
  227.        "      <td>Inn1 Team 2 wickets taken_ bowled _lbw_caught ...</td>\n",
  228.        "      <td>Number of wickets taken by Team 2 in the first...</td>\n",
  229.        "      <td>NaN</td>\n",
  230.        "    </tr>\n",
  231.        "    <tr>\n",
  232.        "      <th>17</th>\n",
  233.        "      <td>Inn 1 Team 2 Extras conceded in_wides_No Balls</td>\n",
  234.        "      <td>Total Number Extra runs conceded by Team 2 in ...</td>\n",
  235.        "      <td>NaN</td>\n",
  236.        "    </tr>\n",
  237.        "    <tr>\n",
  238.        "      <th>18</th>\n",
  239.        "      <td>Inn 2 Team 2 NOP R>25,SR>125</td>\n",
  240.        "      <td>NoP(Number of players) in Team 2 that scored m...</td>\n",
  241.        "      <td>NaN</td>\n",
  242.        "    </tr>\n",
  243.        "    <tr>\n",
  244.        "      <th>19</th>\n",
  245.        "      <td>Inn 2 Team 2 NOP R<25, SR>125</td>\n",
  246.        "      <td>NoP(Number of players) in Team 2 that scored l...</td>\n",
  247.        "      <td>NaN</td>\n",
  248.        "    </tr>\n",
  249.        "    <tr>\n",
  250.        "      <th>20</th>\n",
  251.        "      <td>Inn 2 Team 2 Total 4s</td>\n",
  252.        "      <td>Total Number of 4s hit by Team 2 in the second...</td>\n",
  253.        "      <td>NaN</td>\n",
  254.        "    </tr>\n",
  255.        "    <tr>\n",
  256.        "      <th>21</th>\n",
  257.        "      <td>Inn 2 Team 2 Total 6s</td>\n",
  258.        "      <td>Total Number of 6s hit by Team 2 in the second...</td>\n",
  259.        "      <td>NaN</td>\n",
  260.        "    </tr>\n",
  261.        "    <tr>\n",
  262.        "      <th>22</th>\n",
  263.        "      <td>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</td>\n",
  264.        "      <td>Maximum strike rate achieved including all bat...</td>\n",
  265.        "      <td>NaN</td>\n",
  266.        "    </tr>\n",
  267.        "    <tr>\n",
  268.        "      <th>23</th>\n",
  269.        "      <td>Inn 2 Team 1 NoP fast bowlers</td>\n",
  270.        "      <td>NoP(Number of players) in Team 1 who are fast ...</td>\n",
  271.        "      <td>NaN</td>\n",
  272.        "    </tr>\n",
  273.        "    <tr>\n",
  274.        "      <th>24</th>\n",
  275.        "      <td>Inn 2 Team 1 NoP Spinners</td>\n",
  276.        "      <td>NoP(Number of players) in Team 1 who are spinn...</td>\n",
  277.        "      <td>NaN</td>\n",
  278.        "    </tr>\n",
  279.        "    <tr>\n",
  280.        "      <th>25</th>\n",
  281.        "      <td>Inn 2 Team 1 wickets taken_catches_runout</td>\n",
  282.        "      <td>Number of wickets taken by Team 1 in the secon...</td>\n",
  283.        "      <td>NaN</td>\n",
  284.        "    </tr>\n",
  285.        "    <tr>\n",
  286.        "      <th>26</th>\n",
  287.        "      <td>Inn 2 Team 1 wickets taken_ bowled _lbw_caught...</td>\n",
  288.        "      <td>Number of wickets taken by Team 1 in the secon...</td>\n",
  289.        "      <td>NaN</td>\n",
  290.        "    </tr>\n",
  291.        "    <tr>\n",
  292.        "      <th>27</th>\n",
  293.        "      <td>Inn 2 Team 1 Extras conceded in_wides_No Balls</td>\n",
  294.        "      <td>Total Number Extra runs conceded by Team 1 in ...</td>\n",
  295.        "      <td>NaN</td>\n",
  296.        "    </tr>\n",
  297.        "    <tr>\n",
  298.        "      <th>28</th>\n",
  299.        "      <td>Team won (team 1=1, team 2=0)</td>\n",
  300.        "      <td>If Team batting first i.e. Team1 won the match...</td>\n",
  301.        "      <td>NaN</td>\n",
  302.        "    </tr>\n",
  303.        "  </tbody>\n",
  304.        "</table>\n",
  305.        "</div>"
  306.       ],
  307.       "text/plain": [
  308.        "                                        Variable Name  \\\n",
  309.        "0                                              Team 1   \n",
  310.        "1                                              Team 2   \n",
  311.        "2                                       City of match   \n",
  312.        "3                                                 Day   \n",
  313.        "4                                       Date of Match   \n",
  314.        "5                                       Time of Match   \n",
  315.        "6                                      Avg Wind Speed   \n",
  316.        "7                                        Avg Humidity   \n",
  317.        "8                        Inn 1 Team 1 NOP R>25,SR>125   \n",
  318.        "9                       Inn 1 Team 1 NOP R<25, SR>125   \n",
  319.        "10                              Inn 1 Team 1 Total 4s   \n",
  320.        "11                              Inn 1 Team 1 Total 6s   \n",
  321.        "12            Inn 1 Team 1 Max Strike Rate_ALLBatsmen   \n",
  322.        "13                      Inn 1 Team 2 NoP fast bowlers   \n",
  323.        "14                          Inn 1 Team 2 NoP Spinners   \n",
  324.        "15          Inn 1 Team 2 wickets taken_catches_runout   \n",
  325.        "16  Inn1 Team 2 wickets taken_ bowled _lbw_caught ...   \n",
  326.        "17     Inn 1 Team 2 Extras conceded in_wides_No Balls   \n",
  327.        "18                       Inn 2 Team 2 NOP R>25,SR>125   \n",
  328.        "19                      Inn 2 Team 2 NOP R<25, SR>125   \n",
  329.        "20                              Inn 2 Team 2 Total 4s   \n",
  330.        "21                              Inn 2 Team 2 Total 6s   \n",
  331.        "22            Inn 2 Team 2 Max Strike Rate_ALLBatsmen   \n",
  332.        "23                      Inn 2 Team 1 NoP fast bowlers   \n",
  333.        "24                          Inn 2 Team 1 NoP Spinners   \n",
  334.        "25          Inn 2 Team 1 wickets taken_catches_runout   \n",
  335.        "26  Inn 2 Team 1 wickets taken_ bowled _lbw_caught...   \n",
  336.        "27     Inn 2 Team 1 Extras conceded in_wides_No Balls   \n",
  337.        "28                      Team won (team 1=1, team 2=0)   \n",
  338.        "\n",
  339.        "                                          Description  \\\n",
  340.        "0               Team batting first and bowling second   \n",
  341.        "1               Team batting second and bowling first   \n",
  342.        "2                      City where the match is played   \n",
  343.        "3            Day of the week when the match is played   \n",
  344.        "4           Date of the year when the match is played   \n",
  345.        "5            Time of the day when the match is played   \n",
  346.        "6   Average speed of the wind on the day when the ...   \n",
  347.        "7   Average humidity on the day when the match is ...   \n",
  348.        "8   NoP(Number of players) in Team 1 that scored m...   \n",
  349.        "9   NoP(Number of players) in Team 1 that scored l...   \n",
  350.        "10  Total Number of 4s hit by Team 1 in the first ...   \n",
  351.        "11  Total Number of 6s hit by Team 1 in the first ...   \n",
  352.        "12  Maximum strike rate achieved including all bat...   \n",
  353.        "13  NoP(Number of players) in Team 2 who are fast ...   \n",
  354.        "14  NoP(Number of players) in Team 2 who are spinn...   \n",
  355.        "15  Number of wickets taken by Team 2 in the first...   \n",
  356.        "16  Number of wickets taken by Team 2 in the first...   \n",
  357.        "17  Total Number Extra runs conceded by Team 2 in ...   \n",
  358.        "18  NoP(Number of players) in Team 2 that scored m...   \n",
  359.        "19  NoP(Number of players) in Team 2 that scored l...   \n",
  360.        "20  Total Number of 4s hit by Team 2 in the second...   \n",
  361.        "21  Total Number of 6s hit by Team 2 in the second...   \n",
  362.        "22  Maximum strike rate achieved including all bat...   \n",
  363.        "23  NoP(Number of players) in Team 1 who are fast ...   \n",
  364.        "24  NoP(Number of players) in Team 1 who are spinn...   \n",
  365.        "25  Number of wickets taken by Team 1 in the secon...   \n",
  366.        "26  Number of wickets taken by Team 1 in the secon...   \n",
  367.        "27  Total Number Extra runs conceded by Team 1 in ...   \n",
  368.        "28  If Team batting first i.e. Team1 won the match...   \n",
  369.        "\n",
  370.        "                                   Cricketing Jargons  \n",
  371.        "0                                                 NaN  \n",
  372.        "1   Bowled\\na mode of a batsman's dismissal. Occur...  \n",
  373.        "2   Catch\\nto dismiss a batsman by a fielder catch...  \n",
  374.        "3   Run out\\ndismissal by a member of the fielding...  \n",
  375.        "4   Leg before wicket (LBW)\\na way of dismissing t...  \n",
  376.        "5   Stumping: It requires co-operation between a b...  \n",
  377.        "6   Strike rate\\n percentage equal to the number o...  \n",
  378.        "7   Innings\\none player's or one team's turn to ba...  \n",
  379.        "8   Spin bowling\\na style of bowling in which a sp...  \n",
  380.        "9                                                 NaN  \n",
  381.        "10                                                NaN  \n",
  382.        "11                                                NaN  \n",
  383.        "12                                                NaN  \n",
  384.        "13                                                NaN  \n",
  385.        "14                                                NaN  \n",
  386.        "15                                                NaN  \n",
  387.        "16                                                NaN  \n",
  388.        "17                                                NaN  \n",
  389.        "18                                                NaN  \n",
  390.        "19                                                NaN  \n",
  391.        "20                                                NaN  \n",
  392.        "21                                                NaN  \n",
  393.        "22                                                NaN  \n",
  394.        "23                                                NaN  \n",
  395.        "24                                                NaN  \n",
  396.        "25                                                NaN  \n",
  397.        "26                                                NaN  \n",
  398.        "27                                                NaN  \n",
  399.        "28                                                NaN  "
  400.       ]
  401.      },
  402.      "execution_count": 254,
  403.      "metadata": {},
  404.      "output_type": "execute_result"
  405.     }
  406.    ],
  407.    "source": [
  408.     "# importing the dataset\n",
  409.     "\n",
  410.     "train=pd.read_csv('train.csv')\n",
  411.     "test=pd.read_csv('test.csv')\n",
  412.     "data_dict=pd.read_excel('data_dictionary.xlsx')\n",
  413.     "\n",
  414.     "data_dict"
  415.    ]
  416.   },
  417.   {
  418.    "cell_type": "code",
  419.    "execution_count": 255,
  420.    "metadata": {},
  421.    "outputs": [],
  422.    "source": [
  423.     "# copying the original dataset\n",
  424.     "\n",
  425.     "train_original=train.copy()\n",
  426.     "test_original=test.copy()"
  427.    ]
  428.   },
  429.   {
  430.    "cell_type": "code",
  431.    "execution_count": 256,
  432.    "metadata": {},
  433.    "outputs": [
  434.     {
  435.      "data": {
  436.       "text/plain": [
  437.        "((252, 30), (76, 30))"
  438.       ]
  439.      },
  440.      "execution_count": 256,
  441.      "metadata": {},
  442.      "output_type": "execute_result"
  443.     }
  444.    ],
  445.    "source": [
  446.     "# checking dimension\n",
  447.     "\n",
  448.     "train.shape,test.shape"
  449.    ]
  450.   },
  451.   {
  452.    "cell_type": "code",
  453.    "execution_count": 257,
  454.    "metadata": {},
  455.    "outputs": [
  456.     {
  457.      "data": {
  458.       "text/plain": [
  459.        "['Game ID',\n",
  460.        " 'Team 1',\n",
  461.        " 'Team 2',\n",
  462.        " 'City',\n",
  463.        " 'DayOfWeek',\n",
  464.        " 'DateOfGame',\n",
  465.        " 'TimeOfGame',\n",
  466.        " 'AvgWindSpeed',\n",
  467.        " 'AvgHumidity',\n",
  468.        " 'Inn 1 Team 1 NOP R>25,SR>125',\n",
  469.        " 'Inn 1 Team 1 NOP R<25, SR>125',\n",
  470.        " 'Inn 1 Team 1 Total 4s',\n",
  471.        " 'Inn 1 Team 1 Total 6s',\n",
  472.        " 'Inn 1 Team 1 Max Strike Rate_ALLBatsmen',\n",
  473.        " 'Inn 1 Team 2 NoP fast bowlers',\n",
  474.        " 'Inn 1 Team 2 NoP Spinners',\n",
  475.        " 'Inn 1 Team 2 wickets taken_catches_runout',\n",
  476.        " 'Inn1 Team 2 wickets taken_ bowled _lbw_caught by keeper_stumping',\n",
  477.        " 'Inn 1 Team 2 Extras conceded in_wides_No Balls',\n",
  478.        " 'Inn 2 Team 2 NOP R>25,SR>125',\n",
  479.        " 'Inn 2 Team 2 NOP R<25, SR>125',\n",
  480.        " 'Inn 2 Team 2 Total 4s',\n",
  481.        " 'Inn 2 Team 2 Total 6s',\n",
  482.        " 'Inn 2 Team 2 Max Strike Rate_ALLBatsmen',\n",
  483.        " 'Inn 2 Team 1 NoP fast bowlers',\n",
  484.        " 'Inn 2 Team 1 NoP Spinners',\n",
  485.        " 'Inn 2 Team 1 wickets taken_catches_runout',\n",
  486.        " 'Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping',\n",
  487.        " 'Inn 2 Team 1 Extras conceded in_wides_No Balls',\n",
  488.        " 'Winner (team 1=1, team 2=0)']"
  489.       ]
  490.      },
  491.      "execution_count": 257,
  492.      "metadata": {},
  493.      "output_type": "execute_result"
  494.     }
  495.    ],
  496.    "source": [
  497.     "# seeing columns in train dataset\n",
  498.     "\n",
  499.     "train.columns.tolist()"
  500.    ]
  501.   },
  502.   {
  503.    "cell_type": "code",
  504.    "execution_count": 258,
  505.    "metadata": {},
  506.    "outputs": [
  507.     {
  508.      "data": {
  509.       "text/plain": [
  510.        "['Game ID',\n",
  511.        " 'Team 1',\n",
  512.        " 'Team 2',\n",
  513.        " 'CityOfGame',\n",
  514.        " 'Day',\n",
  515.        " 'DateOfGame',\n",
  516.        " 'TimeOfGame',\n",
  517.        " 'AvgWindSpeed',\n",
  518.        " 'AvgHumidity',\n",
  519.        " 'Inn 1 Team 1 NOP R>25,SR>125',\n",
  520.        " 'Inn 1 Team 1 NOP R<25, SR>125',\n",
  521.        " 'Inn 1 Team 1 Total 4s',\n",
  522.        " 'Inn 1 Team 1 Total 6s',\n",
  523.        " 'Inn 1 Team 1 Max Strike Rate_ALLBatsmen',\n",
  524.        " 'Inn 1 Team 2 NoP fast bowlers',\n",
  525.        " 'Inn 1 Team 2 NoP Spinners',\n",
  526.        " 'Inn 1 Team 2 wickets taken_catches_runout',\n",
  527.        " 'Inn1 Team 2 wickets taken_ bowled _lbw_caught by keeper_stumping',\n",
  528.        " 'Inn 1 Team 2 Extras conceded in_wides_No Balls',\n",
  529.        " 'Inn 2 Team 2 NOP R>25,SR>125',\n",
  530.        " 'Inn 2 Team 2 NOP R<25, SR>125',\n",
  531.        " 'Inn 2 Team 2 Total 4s',\n",
  532.        " 'Inn 2 Team 2 Total 6s',\n",
  533.        " 'Inn 2 Team 2 Max Strike Rate_ALLBatsmen',\n",
  534.        " 'Inn 2 Team 1 NoP fast bowlers',\n",
  535.        " 'Inn 2 Team 1 NoP Spinners',\n",
  536.        " 'Inn 2 Team 1 wickets taken_catches_runout',\n",
  537.        " 'Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping',\n",
  538.        " 'Inn 2 Team 1 Extras conceded in_wides_No Balls',\n",
  539.        " 'Winner (team 1=1, team 2=0)']"
  540.       ]
  541.      },
  542.      "execution_count": 258,
  543.      "metadata": {},
  544.      "output_type": "execute_result"
  545.     }
  546.    ],
  547.    "source": [
  548.     "# seeing columns in test datset\n",
  549.     "\n",
  550.     "test.columns.tolist()"
  551.    ]
  552.   },
  553.   {
  554.    "cell_type": "code",
  555.    "execution_count": 259,
  556.    "metadata": {},
  557.    "outputs": [
  558.     {
  559.      "data": {
  560.       "text/html": [
  561.        "<div>\n",
  562.        "<style scoped>\n",
  563.        "    .dataframe tbody tr th:only-of-type {\n",
  564.        "        vertical-align: middle;\n",
  565.        "    }\n",
  566.        "\n",
  567.        "    .dataframe tbody tr th {\n",
  568.        "        vertical-align: top;\n",
  569.        "    }\n",
  570.        "\n",
  571.        "    .dataframe thead th {\n",
  572.        "        text-align: right;\n",
  573.        "    }\n",
  574.        "</style>\n",
  575.        "<table border=\"1\" class=\"dataframe\">\n",
  576.        "  <thead>\n",
  577.        "    <tr style=\"text-align: right;\">\n",
  578.        "      <th></th>\n",
  579.        "      <th>Game ID</th>\n",
  580.        "      <th>Team 1</th>\n",
  581.        "      <th>Team 2</th>\n",
  582.        "      <th>City</th>\n",
  583.        "      <th>DayOfWeek</th>\n",
  584.        "      <th>DateOfGame</th>\n",
  585.        "      <th>TimeOfGame</th>\n",
  586.        "      <th>AvgWindSpeed</th>\n",
  587.        "      <th>AvgHumidity</th>\n",
  588.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  589.        "      <th>...</th>\n",
  590.        "      <th>Inn 2 Team 2 NOP R<25, SR>125</th>\n",
  591.        "      <th>Inn 2 Team 2 Total 4s</th>\n",
  592.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  593.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  594.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  595.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  596.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  597.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  598.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  599.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  600.        "    </tr>\n",
  601.        "  </thead>\n",
  602.        "  <tbody>\n",
  603.        "    <tr>\n",
  604.        "      <th>0</th>\n",
  605.        "      <td>1</td>\n",
  606.        "      <td>Koramangala Traffic Jammers</td>\n",
  607.        "      <td>Whitefield Water Loggers</td>\n",
  608.        "      <td>Whitefield</td>\n",
  609.        "      <td>1</td>\n",
  610.        "      <td>01-01-2012</td>\n",
  611.        "      <td>20:00:00</td>\n",
  612.        "      <td>6</td>\n",
  613.        "      <td>0.49</td>\n",
  614.        "      <td>1</td>\n",
  615.        "      <td>...</td>\n",
  616.        "      <td>0</td>\n",
  617.        "      <td>3</td>\n",
  618.        "      <td>3</td>\n",
  619.        "      <td>120.00</td>\n",
  620.        "      <td>5</td>\n",
  621.        "      <td>0</td>\n",
  622.        "      <td>6</td>\n",
  623.        "      <td>4</td>\n",
  624.        "      <td>11</td>\n",
  625.        "      <td>1</td>\n",
  626.        "    </tr>\n",
  627.        "    <tr>\n",
  628.        "      <th>1</th>\n",
  629.        "      <td>2</td>\n",
  630.        "      <td>Electronic City Power Savers</td>\n",
  631.        "      <td>Silkboard Slow Movers</td>\n",
  632.        "      <td>Silkboard</td>\n",
  633.        "      <td>2</td>\n",
  634.        "      <td>01-02-2012</td>\n",
  635.        "      <td>17:00:00</td>\n",
  636.        "      <td>7</td>\n",
  637.        "      <td>0.44</td>\n",
  638.        "      <td>3</td>\n",
  639.        "      <td>...</td>\n",
  640.        "      <td>2</td>\n",
  641.        "      <td>18</td>\n",
  642.        "      <td>9</td>\n",
  643.        "      <td>215.15</td>\n",
  644.        "      <td>4</td>\n",
  645.        "      <td>1</td>\n",
  646.        "      <td>4</td>\n",
  647.        "      <td>0</td>\n",
  648.        "      <td>5</td>\n",
  649.        "      <td>1</td>\n",
  650.        "    </tr>\n",
  651.        "    <tr>\n",
  652.        "      <th>2</th>\n",
  653.        "      <td>3</td>\n",
  654.        "      <td>Indranagar Pub Watchers</td>\n",
  655.        "      <td>Sarjapur Water Tankers</td>\n",
  656.        "      <td>Sarjapur</td>\n",
  657.        "      <td>3</td>\n",
  658.        "      <td>01-03-2012</td>\n",
  659.        "      <td>20:30:00</td>\n",
  660.        "      <td>11</td>\n",
  661.        "      <td>0.23</td>\n",
  662.        "      <td>2</td>\n",
  663.        "      <td>...</td>\n",
  664.        "      <td>1</td>\n",
  665.        "      <td>18</td>\n",
  666.        "      <td>1</td>\n",
  667.        "      <td>300.00</td>\n",
  668.        "      <td>3</td>\n",
  669.        "      <td>3</td>\n",
  670.        "      <td>0</td>\n",
  671.        "      <td>1</td>\n",
  672.        "      <td>10</td>\n",
  673.        "      <td>0</td>\n",
  674.        "    </tr>\n",
  675.        "    <tr>\n",
  676.        "      <th>3</th>\n",
  677.        "      <td>4</td>\n",
  678.        "      <td>Bellandur Froth Fighters</td>\n",
  679.        "      <td>Koramangala Traffic Jammers</td>\n",
  680.        "      <td>Koramangala</td>\n",
  681.        "      <td>4</td>\n",
  682.        "      <td>01-04-2012</td>\n",
  683.        "      <td>16:00:00</td>\n",
  684.        "      <td>6</td>\n",
  685.        "      <td>0.61</td>\n",
  686.        "      <td>0</td>\n",
  687.        "      <td>...</td>\n",
  688.        "      <td>0</td>\n",
  689.        "      <td>5</td>\n",
  690.        "      <td>4</td>\n",
  691.        "      <td>100.00</td>\n",
  692.        "      <td>4</td>\n",
  693.        "      <td>2</td>\n",
  694.        "      <td>3</td>\n",
  695.        "      <td>2</td>\n",
  696.        "      <td>16</td>\n",
  697.        "      <td>0</td>\n",
  698.        "    </tr>\n",
  699.        "    <tr>\n",
  700.        "      <th>4</th>\n",
  701.        "      <td>5</td>\n",
  702.        "      <td>Marathalli Chokers</td>\n",
  703.        "      <td>Whitefield Water Loggers</td>\n",
  704.        "      <td>Marathalli</td>\n",
  705.        "      <td>5</td>\n",
  706.        "      <td>01-05-2012</td>\n",
  707.        "      <td>20:00:00</td>\n",
  708.        "      <td>6</td>\n",
  709.        "      <td>0.56</td>\n",
  710.        "      <td>3</td>\n",
  711.        "      <td>...</td>\n",
  712.        "      <td>3</td>\n",
  713.        "      <td>15</td>\n",
  714.        "      <td>6</td>\n",
  715.        "      <td>205.26</td>\n",
  716.        "      <td>4</td>\n",
  717.        "      <td>2</td>\n",
  718.        "      <td>4</td>\n",
  719.        "      <td>1</td>\n",
  720.        "      <td>5</td>\n",
  721.        "      <td>0</td>\n",
  722.        "    </tr>\n",
  723.        "    <tr>\n",
  724.        "      <th>5</th>\n",
  725.        "      <td>6</td>\n",
  726.        "      <td>Silkboard Slow Movers</td>\n",
  727.        "      <td>Indranagar Pub Watchers</td>\n",
  728.        "      <td>Indranagar</td>\n",
  729.        "      <td>6</td>\n",
  730.        "      <td>01-06-2012</td>\n",
  731.        "      <td>20:00:00</td>\n",
  732.        "      <td>11</td>\n",
  733.        "      <td>0.19</td>\n",
  734.        "      <td>1</td>\n",
  735.        "      <td>...</td>\n",
  736.        "      <td>2</td>\n",
  737.        "      <td>17</td>\n",
  738.        "      <td>7</td>\n",
  739.        "      <td>155.10</td>\n",
  740.        "      <td>5</td>\n",
  741.        "      <td>1</td>\n",
  742.        "      <td>2</td>\n",
  743.        "      <td>2</td>\n",
  744.        "      <td>10</td>\n",
  745.        "      <td>0</td>\n",
  746.        "    </tr>\n",
  747.        "    <tr>\n",
  748.        "      <th>6</th>\n",
  749.        "      <td>7</td>\n",
  750.        "      <td>Bellandur Froth Fighters</td>\n",
  751.        "      <td>Sarjapur Water Tankers</td>\n",
  752.        "      <td>Bellandur</td>\n",
  753.        "      <td>7</td>\n",
  754.        "      <td>01-07-2012</td>\n",
  755.        "      <td>20:00:00</td>\n",
  756.        "      <td>8</td>\n",
  757.        "      <td>0.20</td>\n",
  758.        "      <td>1</td>\n",
  759.        "      <td>...</td>\n",
  760.        "      <td>1</td>\n",
  761.        "      <td>15</td>\n",
  762.        "      <td>6</td>\n",
  763.        "      <td>229.26</td>\n",
  764.        "      <td>3</td>\n",
  765.        "      <td>3</td>\n",
  766.        "      <td>0</td>\n",
  767.        "      <td>1</td>\n",
  768.        "      <td>7</td>\n",
  769.        "      <td>0</td>\n",
  770.        "    </tr>\n",
  771.        "    <tr>\n",
  772.        "      <th>7</th>\n",
  773.        "      <td>8</td>\n",
  774.        "      <td>Electronic City Power Savers</td>\n",
  775.        "      <td>Marathalli Chokers</td>\n",
  776.        "      <td>Electronic City</td>\n",
  777.        "      <td>1</td>\n",
  778.        "      <td>01-08-2012</td>\n",
  779.        "      <td>20:00:00</td>\n",
  780.        "      <td>5</td>\n",
  781.        "      <td>0.73</td>\n",
  782.        "      <td>3</td>\n",
  783.        "      <td>...</td>\n",
  784.        "      <td>3</td>\n",
  785.        "      <td>19</td>\n",
  786.        "      <td>8</td>\n",
  787.        "      <td>225.00</td>\n",
  788.        "      <td>4</td>\n",
  789.        "      <td>1</td>\n",
  790.        "      <td>5</td>\n",
  791.        "      <td>2</td>\n",
  792.        "      <td>8</td>\n",
  793.        "      <td>1</td>\n",
  794.        "    </tr>\n",
  795.        "    <tr>\n",
  796.        "      <th>8</th>\n",
  797.        "      <td>9</td>\n",
  798.        "      <td>Bellandur Froth Fighters</td>\n",
  799.        "      <td>Indranagar Pub Watchers</td>\n",
  800.        "      <td>Bellandur</td>\n",
  801.        "      <td>2</td>\n",
  802.        "      <td>01-09-2012</td>\n",
  803.        "      <td>20:00:00</td>\n",
  804.        "      <td>8</td>\n",
  805.        "      <td>0.20</td>\n",
  806.        "      <td>1</td>\n",
  807.        "      <td>...</td>\n",
  808.        "      <td>3</td>\n",
  809.        "      <td>18</td>\n",
  810.        "      <td>14</td>\n",
  811.        "      <td>244.44</td>\n",
  812.        "      <td>3</td>\n",
  813.        "      <td>3</td>\n",
  814.        "      <td>5</td>\n",
  815.        "      <td>2</td>\n",
  816.        "      <td>3</td>\n",
  817.        "      <td>0</td>\n",
  818.        "    </tr>\n",
  819.        "    <tr>\n",
  820.        "      <th>9</th>\n",
  821.        "      <td>10</td>\n",
  822.        "      <td>Silkboard Slow Movers</td>\n",
  823.        "      <td>Marathalli Chokers</td>\n",
  824.        "      <td>Silkboard</td>\n",
  825.        "      <td>3</td>\n",
  826.        "      <td>01-10-2012</td>\n",
  827.        "      <td>20:00:00</td>\n",
  828.        "      <td>10</td>\n",
  829.        "      <td>0.52</td>\n",
  830.        "      <td>1</td>\n",
  831.        "      <td>...</td>\n",
  832.        "      <td>2</td>\n",
  833.        "      <td>12</td>\n",
  834.        "      <td>4</td>\n",
  835.        "      <td>170.00</td>\n",
  836.        "      <td>4</td>\n",
  837.        "      <td>1</td>\n",
  838.        "      <td>5</td>\n",
  839.        "      <td>3</td>\n",
  840.        "      <td>6</td>\n",
  841.        "      <td>1</td>\n",
  842.        "    </tr>\n",
  843.        "  </tbody>\n",
  844.        "</table>\n",
  845.        "<p>10 rows × 30 columns</p>\n",
  846.        "</div>"
  847.       ],
  848.       "text/plain": [
  849.        "   Game ID                        Team 1                       Team 2  \\\n",
  850.        "0        1   Koramangala Traffic Jammers    Whitefield Water Loggers    \n",
  851.        "1        2  Electronic City Power Savers        Silkboard Slow Movers   \n",
  852.        "2        3       Indranagar Pub Watchers       Sarjapur Water Tankers   \n",
  853.        "3        4      Bellandur Froth Fighters  Koramangala Traffic Jammers   \n",
  854.        "4        5           Marathalli Chokers     Whitefield Water Loggers    \n",
  855.        "5        6         Silkboard Slow Movers      Indranagar Pub Watchers   \n",
  856.        "6        7      Bellandur Froth Fighters       Sarjapur Water Tankers   \n",
  857.        "7        8  Electronic City Power Savers          Marathalli Chokers    \n",
  858.        "8        9      Bellandur Froth Fighters      Indranagar Pub Watchers   \n",
  859.        "9       10         Silkboard Slow Movers          Marathalli Chokers    \n",
  860.        "\n",
  861.        "              City  DayOfWeek  DateOfGame TimeOfGame  AvgWindSpeed  \\\n",
  862.        "0       Whitefield          1  01-01-2012   20:00:00             6   \n",
  863.        "1        Silkboard          2  01-02-2012   17:00:00             7   \n",
  864.        "2         Sarjapur          3  01-03-2012   20:30:00            11   \n",
  865.        "3      Koramangala          4  01-04-2012   16:00:00             6   \n",
  866.        "4       Marathalli          5  01-05-2012   20:00:00             6   \n",
  867.        "5       Indranagar          6  01-06-2012   20:00:00            11   \n",
  868.        "6        Bellandur          7  01-07-2012   20:00:00             8   \n",
  869.        "7  Electronic City          1  01-08-2012   20:00:00             5   \n",
  870.        "8        Bellandur          2  01-09-2012   20:00:00             8   \n",
  871.        "9        Silkboard          3  01-10-2012   20:00:00            10   \n",
  872.        "\n",
  873.        "   AvgHumidity  Inn 1 Team 1 NOP R>25,SR>125  ...  \\\n",
  874.        "0         0.49                             1  ...   \n",
  875.        "1         0.44                             3  ...   \n",
  876.        "2         0.23                             2  ...   \n",
  877.        "3         0.61                             0  ...   \n",
  878.        "4         0.56                             3  ...   \n",
  879.        "5         0.19                             1  ...   \n",
  880.        "6         0.20                             1  ...   \n",
  881.        "7         0.73                             3  ...   \n",
  882.        "8         0.20                             1  ...   \n",
  883.        "9         0.52                             1  ...   \n",
  884.        "\n",
  885.        "   Inn 2 Team 2 NOP R<25, SR>125  Inn 2 Team 2 Total 4s  \\\n",
  886.        "0                              0                      3   \n",
  887.        "1                              2                     18   \n",
  888.        "2                              1                     18   \n",
  889.        "3                              0                      5   \n",
  890.        "4                              3                     15   \n",
  891.        "5                              2                     17   \n",
  892.        "6                              1                     15   \n",
  893.        "7                              3                     19   \n",
  894.        "8                              3                     18   \n",
  895.        "9                              2                     12   \n",
  896.        "\n",
  897.        "   Inn 2 Team 2 Total 6s  Inn 2 Team 2 Max Strike Rate_ALLBatsmen  \\\n",
  898.        "0                      3                                   120.00   \n",
  899.        "1                      9                                   215.15   \n",
  900.        "2                      1                                   300.00   \n",
  901.        "3                      4                                   100.00   \n",
  902.        "4                      6                                   205.26   \n",
  903.        "5                      7                                   155.10   \n",
  904.        "6                      6                                   229.26   \n",
  905.        "7                      8                                   225.00   \n",
  906.        "8                     14                                   244.44   \n",
  907.        "9                      4                                   170.00   \n",
  908.        "\n",
  909.        "   Inn 2 Team 1 NoP fast bowlers  Inn 2 Team 1 NoP Spinners  \\\n",
  910.        "0                              5                          0   \n",
  911.        "1                              4                          1   \n",
  912.        "2                              3                          3   \n",
  913.        "3                              4                          2   \n",
  914.        "4                              4                          2   \n",
  915.        "5                              5                          1   \n",
  916.        "6                              3                          3   \n",
  917.        "7                              4                          1   \n",
  918.        "8                              3                          3   \n",
  919.        "9                              4                          1   \n",
  920.        "\n",
  921.        "   Inn 2 Team 1 wickets taken_catches_runout  \\\n",
  922.        "0                                          6   \n",
  923.        "1                                          4   \n",
  924.        "2                                          0   \n",
  925.        "3                                          3   \n",
  926.        "4                                          4   \n",
  927.        "5                                          2   \n",
  928.        "6                                          0   \n",
  929.        "7                                          5   \n",
  930.        "8                                          5   \n",
  931.        "9                                          5   \n",
  932.        "\n",
  933.        "   Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping  \\\n",
  934.        "0                                                  4                  \n",
  935.        "1                                                  0                  \n",
  936.        "2                                                  1                  \n",
  937.        "3                                                  2                  \n",
  938.        "4                                                  1                  \n",
  939.        "5                                                  2                  \n",
  940.        "6                                                  1                  \n",
  941.        "7                                                  2                  \n",
  942.        "8                                                  2                  \n",
  943.        "9                                                  3                  \n",
  944.        "\n",
  945.        "   Inn 2 Team 1 Extras conceded in_wides_No Balls  Winner (team 1=1, team 2=0)  \n",
  946.        "0                                              11                            1  \n",
  947.        "1                                               5                            1  \n",
  948.        "2                                              10                            0  \n",
  949.        "3                                              16                            0  \n",
  950.        "4                                               5                            0  \n",
  951.        "5                                              10                            0  \n",
  952.        "6                                               7                            0  \n",
  953.        "7                                               8                            1  \n",
  954.        "8                                               3                            0  \n",
  955.        "9                                               6                            1  \n",
  956.        "\n",
  957.        "[10 rows x 30 columns]"
  958.       ]
  959.      },
  960.      "execution_count": 259,
  961.      "metadata": {},
  962.      "output_type": "execute_result"
  963.     }
  964.    ],
  965.    "source": [
  966.     "# observing values of first 10 rows\n",
  967.     "\n",
  968.     "train.head(10)"
  969.    ]
  970.   },
  971.   {
  972.    "cell_type": "code",
  973.    "execution_count": 260,
  974.    "metadata": {},
  975.    "outputs": [
  976.     {
  977.      "data": {
  978.       "text/html": [
  979.        "<div>\n",
  980.        "<style scoped>\n",
  981.        "    .dataframe tbody tr th:only-of-type {\n",
  982.        "        vertical-align: middle;\n",
  983.        "    }\n",
  984.        "\n",
  985.        "    .dataframe tbody tr th {\n",
  986.        "        vertical-align: top;\n",
  987.        "    }\n",
  988.        "\n",
  989.        "    .dataframe thead th {\n",
  990.        "        text-align: right;\n",
  991.        "    }\n",
  992.        "</style>\n",
  993.        "<table border=\"1\" class=\"dataframe\">\n",
  994.        "  <thead>\n",
  995.        "    <tr style=\"text-align: right;\">\n",
  996.        "      <th></th>\n",
  997.        "      <th>Game ID</th>\n",
  998.        "      <th>Team 1</th>\n",
  999.        "      <th>Team 2</th>\n",
  1000.        "      <th>CityOfGame</th>\n",
  1001.        "      <th>Day</th>\n",
  1002.        "      <th>DateOfGame</th>\n",
  1003.        "      <th>TimeOfGame</th>\n",
  1004.        "      <th>AvgWindSpeed</th>\n",
  1005.        "      <th>AvgHumidity</th>\n",
  1006.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  1007.        "      <th>...</th>\n",
  1008.        "      <th>Inn 2 Team 2 NOP R<25, SR>125</th>\n",
  1009.        "      <th>Inn 2 Team 2 Total 4s</th>\n",
  1010.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  1011.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  1012.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  1013.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  1014.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  1015.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  1016.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  1017.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  1018.        "    </tr>\n",
  1019.        "  </thead>\n",
  1020.        "  <tbody>\n",
  1021.        "    <tr>\n",
  1022.        "      <th>0</th>\n",
  1023.        "      <td>253</td>\n",
  1024.        "      <td>Electronic City Power Savers</td>\n",
  1025.        "      <td>Marathalli Chokers</td>\n",
  1026.        "      <td>Electronic City</td>\n",
  1027.        "      <td>6</td>\n",
  1028.        "      <td>01-01-2016</td>\n",
  1029.        "      <td>20:00:00</td>\n",
  1030.        "      <td>5</td>\n",
  1031.        "      <td>0.62</td>\n",
  1032.        "      <td>1</td>\n",
  1033.        "      <td>...</td>\n",
  1034.        "      <td>0</td>\n",
  1035.        "      <td>9</td>\n",
  1036.        "      <td>5</td>\n",
  1037.        "      <td>142.85</td>\n",
  1038.        "      <td>3</td>\n",
  1039.        "      <td>3</td>\n",
  1040.        "      <td>1</td>\n",
  1041.        "      <td>1</td>\n",
  1042.        "      <td>3</td>\n",
  1043.        "      <td>0</td>\n",
  1044.        "    </tr>\n",
  1045.        "    <tr>\n",
  1046.        "      <th>1</th>\n",
  1047.        "      <td>254</td>\n",
  1048.        "      <td>Koramangala Traffic Jammers</td>\n",
  1049.        "      <td>Sarjapur Water Tankers</td>\n",
  1050.        "      <td>Koramangala</td>\n",
  1051.        "      <td>7</td>\n",
  1052.        "      <td>01-02-2016</td>\n",
  1053.        "      <td>20:00:00</td>\n",
  1054.        "      <td>6</td>\n",
  1055.        "      <td>0.66</td>\n",
  1056.        "      <td>1</td>\n",
  1057.        "      <td>...</td>\n",
  1058.        "      <td>1</td>\n",
  1059.        "      <td>8</td>\n",
  1060.        "      <td>4</td>\n",
  1061.        "      <td>210.00</td>\n",
  1062.        "      <td>3</td>\n",
  1063.        "      <td>2</td>\n",
  1064.        "      <td>1</td>\n",
  1065.        "      <td>1</td>\n",
  1066.        "      <td>1</td>\n",
  1067.        "      <td>0</td>\n",
  1068.        "    </tr>\n",
  1069.        "    <tr>\n",
  1070.        "      <th>2</th>\n",
  1071.        "      <td>255</td>\n",
  1072.        "      <td>HSR High Rent Payers</td>\n",
  1073.        "      <td>Marathalli Chokers</td>\n",
  1074.        "      <td>Marathalli</td>\n",
  1075.        "      <td>1</td>\n",
  1076.        "      <td>01-03-2016</td>\n",
  1077.        "      <td>16:00:00</td>\n",
  1078.        "      <td>5</td>\n",
  1079.        "      <td>0.64</td>\n",
  1080.        "      <td>0</td>\n",
  1081.        "      <td>...</td>\n",
  1082.        "      <td>1</td>\n",
  1083.        "      <td>8</td>\n",
  1084.        "      <td>1</td>\n",
  1085.        "      <td>166.66</td>\n",
  1086.        "      <td>4</td>\n",
  1087.        "      <td>2</td>\n",
  1088.        "      <td>2</td>\n",
  1089.        "      <td>7</td>\n",
  1090.        "      <td>4</td>\n",
  1091.        "      <td>1</td>\n",
  1092.        "    </tr>\n",
  1093.        "    <tr>\n",
  1094.        "      <th>3</th>\n",
  1095.        "      <td>256</td>\n",
  1096.        "      <td>Indranagar Pub Watchers</td>\n",
  1097.        "      <td>Silkboard Slow Movers</td>\n",
  1098.        "      <td>Indranagar</td>\n",
  1099.        "      <td>2</td>\n",
  1100.        "      <td>01-04-2016</td>\n",
  1101.        "      <td>20:00:00</td>\n",
  1102.        "      <td>5</td>\n",
  1103.        "      <td>0.64</td>\n",
  1104.        "      <td>1</td>\n",
  1105.        "      <td>...</td>\n",
  1106.        "      <td>3</td>\n",
  1107.        "      <td>14</td>\n",
  1108.        "      <td>4</td>\n",
  1109.        "      <td>166.66</td>\n",
  1110.        "      <td>2</td>\n",
  1111.        "      <td>4</td>\n",
  1112.        "      <td>6</td>\n",
  1113.        "      <td>3</td>\n",
  1114.        "      <td>2</td>\n",
  1115.        "      <td>1</td>\n",
  1116.        "    </tr>\n",
  1117.        "    <tr>\n",
  1118.        "      <th>4</th>\n",
  1119.        "      <td>257</td>\n",
  1120.        "      <td>Whitefield Water Loggers</td>\n",
  1121.        "      <td>Sarjapur Water Tankers</td>\n",
  1122.        "      <td>Whitefield</td>\n",
  1123.        "      <td>3</td>\n",
  1124.        "      <td>01-05-2016</td>\n",
  1125.        "      <td>16:00:00</td>\n",
  1126.        "      <td>5</td>\n",
  1127.        "      <td>0.62</td>\n",
  1128.        "      <td>2</td>\n",
  1129.        "      <td>...</td>\n",
  1130.        "      <td>2</td>\n",
  1131.        "      <td>13</td>\n",
  1132.        "      <td>2</td>\n",
  1133.        "      <td>160.00</td>\n",
  1134.        "      <td>4</td>\n",
  1135.        "      <td>2</td>\n",
  1136.        "      <td>6</td>\n",
  1137.        "      <td>1</td>\n",
  1138.        "      <td>2</td>\n",
  1139.        "      <td>1</td>\n",
  1140.        "    </tr>\n",
  1141.        "  </tbody>\n",
  1142.        "</table>\n",
  1143.        "<p>5 rows × 30 columns</p>\n",
  1144.        "</div>"
  1145.       ],
  1146.       "text/plain": [
  1147.        "   Game ID                        Team 1                  Team 2  \\\n",
  1148.        "0      253  Electronic City Power Savers     Marathalli Chokers    \n",
  1149.        "1      254   Koramangala Traffic Jammers  Sarjapur Water Tankers   \n",
  1150.        "2      255          HSR High Rent Payers     Marathalli Chokers    \n",
  1151.        "3      256       Indranagar Pub Watchers   Silkboard Slow Movers   \n",
  1152.        "4      257     Whitefield Water Loggers   Sarjapur Water Tankers   \n",
  1153.        "\n",
  1154.        "        CityOfGame  Day  DateOfGame TimeOfGame  AvgWindSpeed  AvgHumidity  \\\n",
  1155.        "0  Electronic City    6  01-01-2016   20:00:00             5         0.62   \n",
  1156.        "1      Koramangala    7  01-02-2016   20:00:00             6         0.66   \n",
  1157.        "2       Marathalli    1  01-03-2016   16:00:00             5         0.64   \n",
  1158.        "3       Indranagar    2  01-04-2016   20:00:00             5         0.64   \n",
  1159.        "4       Whitefield    3  01-05-2016   16:00:00             5         0.62   \n",
  1160.        "\n",
  1161.        "   Inn 1 Team 1 NOP R>25,SR>125  ...  Inn 2 Team 2 NOP R<25, SR>125  \\\n",
  1162.        "0                             1  ...                              0   \n",
  1163.        "1                             1  ...                              1   \n",
  1164.        "2                             0  ...                              1   \n",
  1165.        "3                             1  ...                              3   \n",
  1166.        "4                             2  ...                              2   \n",
  1167.        "\n",
  1168.        "   Inn 2 Team 2 Total 4s  Inn 2 Team 2 Total 6s  \\\n",
  1169.        "0                      9                      5   \n",
  1170.        "1                      8                      4   \n",
  1171.        "2                      8                      1   \n",
  1172.        "3                     14                      4   \n",
  1173.        "4                     13                      2   \n",
  1174.        "\n",
  1175.        "   Inn 2 Team 2 Max Strike Rate_ALLBatsmen  Inn 2 Team 1 NoP fast bowlers  \\\n",
  1176.        "0                                   142.85                              3   \n",
  1177.        "1                                   210.00                              3   \n",
  1178.        "2                                   166.66                              4   \n",
  1179.        "3                                   166.66                              2   \n",
  1180.        "4                                   160.00                              4   \n",
  1181.        "\n",
  1182.        "   Inn 2 Team 1 NoP Spinners  Inn 2 Team 1 wickets taken_catches_runout  \\\n",
  1183.        "0                          3                                          1   \n",
  1184.        "1                          2                                          1   \n",
  1185.        "2                          2                                          2   \n",
  1186.        "3                          4                                          6   \n",
  1187.        "4                          2                                          6   \n",
  1188.        "\n",
  1189.        "   Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping  \\\n",
  1190.        "0                                                  1                  \n",
  1191.        "1                                                  1                  \n",
  1192.        "2                                                  7                  \n",
  1193.        "3                                                  3                  \n",
  1194.        "4                                                  1                  \n",
  1195.        "\n",
  1196.        "   Inn 2 Team 1 Extras conceded in_wides_No Balls  Winner (team 1=1, team 2=0)  \n",
  1197.        "0                                               3                            0  \n",
  1198.        "1                                               1                            0  \n",
  1199.        "2                                               4                            1  \n",
  1200.        "3                                               2                            1  \n",
  1201.        "4                                               2                            1  \n",
  1202.        "\n",
  1203.        "[5 rows x 30 columns]"
  1204.       ]
  1205.      },
  1206.      "execution_count": 260,
  1207.      "metadata": {},
  1208.      "output_type": "execute_result"
  1209.     }
  1210.    ],
  1211.    "source": [
  1212.     "test.head()"
  1213.    ]
  1214.   },
  1215.   {
  1216.    "cell_type": "markdown",
  1217.    "metadata": {},
  1218.    "source": [
  1219.     "# Observations :\n",
  1220.     "1. In train dataset we have two columns whose name is different from those two columns which are in test dataset but in both datasets, they are representing the same so i am renaming test dataset columns name with that of train dataset column name"
  1221.    ]
  1222.   },
  1223.   {
  1224.    "cell_type": "code",
  1225.    "execution_count": 261,
  1226.    "metadata": {},
  1227.    "outputs": [
  1228.     {
  1229.      "data": {
  1230.       "text/plain": [
  1231.        "(76, 30)"
  1232.       ]
  1233.      },
  1234.      "execution_count": 261,
  1235.      "metadata": {},
  1236.      "output_type": "execute_result"
  1237.     }
  1238.    ],
  1239.    "source": [
  1240.     "test.rename(columns={'CityOfGame': 'City','Day':'DayOfWeek'}, inplace=True)\n",
  1241.     "test.shape"
  1242.    ]
  1243.   },
  1244.   {
  1245.    "cell_type": "code",
  1246.    "execution_count": 262,
  1247.    "metadata": {},
  1248.    "outputs": [
  1249.     {
  1250.      "data": {
  1251.       "text/plain": [
  1252.        "(328, 30)"
  1253.       ]
  1254.      },
  1255.      "execution_count": 262,
  1256.      "metadata": {},
  1257.      "output_type": "execute_result"
  1258.     }
  1259.    ],
  1260.    "source": [
  1261.     "# merging the two dataset so that we can do analysis in one go\n",
  1262.     "\n",
  1263.     "train_data=pd.merge(train,test,how='outer')\n",
  1264.     "train_data.shape"
  1265.    ]
  1266.   },
  1267.   {
  1268.    "cell_type": "code",
  1269.    "execution_count": 263,
  1270.    "metadata": {},
  1271.    "outputs": [
  1272.     {
  1273.      "data": {
  1274.       "text/html": [
  1275.        "<div>\n",
  1276.        "<style scoped>\n",
  1277.        "    .dataframe tbody tr th:only-of-type {\n",
  1278.        "        vertical-align: middle;\n",
  1279.        "    }\n",
  1280.        "\n",
  1281.        "    .dataframe tbody tr th {\n",
  1282.        "        vertical-align: top;\n",
  1283.        "    }\n",
  1284.        "\n",
  1285.        "    .dataframe thead th {\n",
  1286.        "        text-align: right;\n",
  1287.        "    }\n",
  1288.        "</style>\n",
  1289.        "<table border=\"1\" class=\"dataframe\">\n",
  1290.        "  <thead>\n",
  1291.        "    <tr style=\"text-align: right;\">\n",
  1292.        "      <th></th>\n",
  1293.        "      <th>Game ID</th>\n",
  1294.        "      <th>Team 1</th>\n",
  1295.        "      <th>Team 2</th>\n",
  1296.        "      <th>City</th>\n",
  1297.        "      <th>DayOfWeek</th>\n",
  1298.        "      <th>DateOfGame</th>\n",
  1299.        "      <th>TimeOfGame</th>\n",
  1300.        "      <th>AvgWindSpeed</th>\n",
  1301.        "      <th>AvgHumidity</th>\n",
  1302.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  1303.        "      <th>...</th>\n",
  1304.        "      <th>Inn 2 Team 2 NOP R<25, SR>125</th>\n",
  1305.        "      <th>Inn 2 Team 2 Total 4s</th>\n",
  1306.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  1307.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  1308.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  1309.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  1310.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  1311.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  1312.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  1313.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  1314.        "    </tr>\n",
  1315.        "  </thead>\n",
  1316.        "  <tbody>\n",
  1317.        "    <tr>\n",
  1318.        "      <th>0</th>\n",
  1319.        "      <td>1</td>\n",
  1320.        "      <td>Koramangala Traffic Jammers</td>\n",
  1321.        "      <td>Whitefield Water Loggers</td>\n",
  1322.        "      <td>Whitefield</td>\n",
  1323.        "      <td>1</td>\n",
  1324.        "      <td>01-01-2012</td>\n",
  1325.        "      <td>20:00:00</td>\n",
  1326.        "      <td>6</td>\n",
  1327.        "      <td>0.49</td>\n",
  1328.        "      <td>1</td>\n",
  1329.        "      <td>...</td>\n",
  1330.        "      <td>0</td>\n",
  1331.        "      <td>3</td>\n",
  1332.        "      <td>3</td>\n",
  1333.        "      <td>120.00</td>\n",
  1334.        "      <td>5</td>\n",
  1335.        "      <td>0</td>\n",
  1336.        "      <td>6</td>\n",
  1337.        "      <td>4</td>\n",
  1338.        "      <td>11</td>\n",
  1339.        "      <td>1</td>\n",
  1340.        "    </tr>\n",
  1341.        "    <tr>\n",
  1342.        "      <th>1</th>\n",
  1343.        "      <td>2</td>\n",
  1344.        "      <td>Electronic City Power Savers</td>\n",
  1345.        "      <td>Silkboard Slow Movers</td>\n",
  1346.        "      <td>Silkboard</td>\n",
  1347.        "      <td>2</td>\n",
  1348.        "      <td>01-02-2012</td>\n",
  1349.        "      <td>17:00:00</td>\n",
  1350.        "      <td>7</td>\n",
  1351.        "      <td>0.44</td>\n",
  1352.        "      <td>3</td>\n",
  1353.        "      <td>...</td>\n",
  1354.        "      <td>2</td>\n",
  1355.        "      <td>18</td>\n",
  1356.        "      <td>9</td>\n",
  1357.        "      <td>215.15</td>\n",
  1358.        "      <td>4</td>\n",
  1359.        "      <td>1</td>\n",
  1360.        "      <td>4</td>\n",
  1361.        "      <td>0</td>\n",
  1362.        "      <td>5</td>\n",
  1363.        "      <td>1</td>\n",
  1364.        "    </tr>\n",
  1365.        "    <tr>\n",
  1366.        "      <th>2</th>\n",
  1367.        "      <td>3</td>\n",
  1368.        "      <td>Indranagar Pub Watchers</td>\n",
  1369.        "      <td>Sarjapur Water Tankers</td>\n",
  1370.        "      <td>Sarjapur</td>\n",
  1371.        "      <td>3</td>\n",
  1372.        "      <td>01-03-2012</td>\n",
  1373.        "      <td>20:30:00</td>\n",
  1374.        "      <td>11</td>\n",
  1375.        "      <td>0.23</td>\n",
  1376.        "      <td>2</td>\n",
  1377.        "      <td>...</td>\n",
  1378.        "      <td>1</td>\n",
  1379.        "      <td>18</td>\n",
  1380.        "      <td>1</td>\n",
  1381.        "      <td>300.00</td>\n",
  1382.        "      <td>3</td>\n",
  1383.        "      <td>3</td>\n",
  1384.        "      <td>0</td>\n",
  1385.        "      <td>1</td>\n",
  1386.        "      <td>10</td>\n",
  1387.        "      <td>0</td>\n",
  1388.        "    </tr>\n",
  1389.        "    <tr>\n",
  1390.        "      <th>3</th>\n",
  1391.        "      <td>4</td>\n",
  1392.        "      <td>Bellandur Froth Fighters</td>\n",
  1393.        "      <td>Koramangala Traffic Jammers</td>\n",
  1394.        "      <td>Koramangala</td>\n",
  1395.        "      <td>4</td>\n",
  1396.        "      <td>01-04-2012</td>\n",
  1397.        "      <td>16:00:00</td>\n",
  1398.        "      <td>6</td>\n",
  1399.        "      <td>0.61</td>\n",
  1400.        "      <td>0</td>\n",
  1401.        "      <td>...</td>\n",
  1402.        "      <td>0</td>\n",
  1403.        "      <td>5</td>\n",
  1404.        "      <td>4</td>\n",
  1405.        "      <td>100.00</td>\n",
  1406.        "      <td>4</td>\n",
  1407.        "      <td>2</td>\n",
  1408.        "      <td>3</td>\n",
  1409.        "      <td>2</td>\n",
  1410.        "      <td>16</td>\n",
  1411.        "      <td>0</td>\n",
  1412.        "    </tr>\n",
  1413.        "    <tr>\n",
  1414.        "      <th>4</th>\n",
  1415.        "      <td>5</td>\n",
  1416.        "      <td>Marathalli Chokers</td>\n",
  1417.        "      <td>Whitefield Water Loggers</td>\n",
  1418.        "      <td>Marathalli</td>\n",
  1419.        "      <td>5</td>\n",
  1420.        "      <td>01-05-2012</td>\n",
  1421.        "      <td>20:00:00</td>\n",
  1422.        "      <td>6</td>\n",
  1423.        "      <td>0.56</td>\n",
  1424.        "      <td>3</td>\n",
  1425.        "      <td>...</td>\n",
  1426.        "      <td>3</td>\n",
  1427.        "      <td>15</td>\n",
  1428.        "      <td>6</td>\n",
  1429.        "      <td>205.26</td>\n",
  1430.        "      <td>4</td>\n",
  1431.        "      <td>2</td>\n",
  1432.        "      <td>4</td>\n",
  1433.        "      <td>1</td>\n",
  1434.        "      <td>5</td>\n",
  1435.        "      <td>0</td>\n",
  1436.        "    </tr>\n",
  1437.        "  </tbody>\n",
  1438.        "</table>\n",
  1439.        "<p>5 rows × 30 columns</p>\n",
  1440.        "</div>"
  1441.       ],
  1442.       "text/plain": [
  1443.        "   Game ID                        Team 1                       Team 2  \\\n",
  1444.        "0        1   Koramangala Traffic Jammers    Whitefield Water Loggers    \n",
  1445.        "1        2  Electronic City Power Savers        Silkboard Slow Movers   \n",
  1446.        "2        3       Indranagar Pub Watchers       Sarjapur Water Tankers   \n",
  1447.        "3        4      Bellandur Froth Fighters  Koramangala Traffic Jammers   \n",
  1448.        "4        5           Marathalli Chokers     Whitefield Water Loggers    \n",
  1449.        "\n",
  1450.        "          City  DayOfWeek  DateOfGame TimeOfGame  AvgWindSpeed  AvgHumidity  \\\n",
  1451.        "0   Whitefield          1  01-01-2012   20:00:00             6         0.49   \n",
  1452.        "1    Silkboard          2  01-02-2012   17:00:00             7         0.44   \n",
  1453.        "2     Sarjapur          3  01-03-2012   20:30:00            11         0.23   \n",
  1454.        "3  Koramangala          4  01-04-2012   16:00:00             6         0.61   \n",
  1455.        "4   Marathalli          5  01-05-2012   20:00:00             6         0.56   \n",
  1456.        "\n",
  1457.        "   Inn 1 Team 1 NOP R>25,SR>125  ...  Inn 2 Team 2 NOP R<25, SR>125  \\\n",
  1458.        "0                             1  ...                              0   \n",
  1459.        "1                             3  ...                              2   \n",
  1460.        "2                             2  ...                              1   \n",
  1461.        "3                             0  ...                              0   \n",
  1462.        "4                             3  ...                              3   \n",
  1463.        "\n",
  1464.        "   Inn 2 Team 2 Total 4s  Inn 2 Team 2 Total 6s  \\\n",
  1465.        "0                      3                      3   \n",
  1466.        "1                     18                      9   \n",
  1467.        "2                     18                      1   \n",
  1468.        "3                      5                      4   \n",
  1469.        "4                     15                      6   \n",
  1470.        "\n",
  1471.        "   Inn 2 Team 2 Max Strike Rate_ALLBatsmen  Inn 2 Team 1 NoP fast bowlers  \\\n",
  1472.        "0                                   120.00                              5   \n",
  1473.        "1                                   215.15                              4   \n",
  1474.        "2                                   300.00                              3   \n",
  1475.        "3                                   100.00                              4   \n",
  1476.        "4                                   205.26                              4   \n",
  1477.        "\n",
  1478.        "   Inn 2 Team 1 NoP Spinners  Inn 2 Team 1 wickets taken_catches_runout  \\\n",
  1479.        "0                          0                                          6   \n",
  1480.        "1                          1                                          4   \n",
  1481.        "2                          3                                          0   \n",
  1482.        "3                          2                                          3   \n",
  1483.        "4                          2                                          4   \n",
  1484.        "\n",
  1485.        "   Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping  \\\n",
  1486.        "0                                                  4                  \n",
  1487.        "1                                                  0                  \n",
  1488.        "2                                                  1                  \n",
  1489.        "3                                                  2                  \n",
  1490.        "4                                                  1                  \n",
  1491.        "\n",
  1492.        "   Inn 2 Team 1 Extras conceded in_wides_No Balls  Winner (team 1=1, team 2=0)  \n",
  1493.        "0                                              11                            1  \n",
  1494.        "1                                               5                            1  \n",
  1495.        "2                                              10                            0  \n",
  1496.        "3                                              16                            0  \n",
  1497.        "4                                               5                            0  \n",
  1498.        "\n",
  1499.        "[5 rows x 30 columns]"
  1500.       ]
  1501.      },
  1502.      "execution_count": 263,
  1503.      "metadata": {},
  1504.      "output_type": "execute_result"
  1505.     }
  1506.    ],
  1507.    "source": [
  1508.     "train_data.head(5)"
  1509.    ]
  1510.   },
  1511.   {
  1512.    "cell_type": "markdown",
  1513.    "metadata": {},
  1514.    "source": [
  1515.     "# 2. Variables Identification :"
  1516.    ]
  1517.   },
  1518.   {
  1519.    "cell_type": "code",
  1520.    "execution_count": 264,
  1521.    "metadata": {},
  1522.    "outputs": [
  1523.     {
  1524.      "name": "stdout",
  1525.      "output_type": "stream",
  1526.      "text": [
  1527.       "<class 'pandas.core.frame.DataFrame'>\n",
  1528.       "Int64Index: 328 entries, 0 to 327\n",
  1529.       "Data columns (total 30 columns):\n",
  1530.       "Game ID                                                             328 non-null int64\n",
  1531.       "Team 1                                                              328 non-null object\n",
  1532.       "Team 2                                                              328 non-null object\n",
  1533.       "City                                                                328 non-null object\n",
  1534.       "DayOfWeek                                                           328 non-null int64\n",
  1535.       "DateOfGame                                                          328 non-null object\n",
  1536.       "TimeOfGame                                                          328 non-null object\n",
  1537.       "AvgWindSpeed                                                        328 non-null int64\n",
  1538.       "AvgHumidity                                                         328 non-null float64\n",
  1539.       "Inn 1 Team 1 NOP R>25,SR>125                                        328 non-null int64\n",
  1540.       "Inn 1 Team 1 NOP R<25, SR>125                                       328 non-null int64\n",
  1541.       "Inn 1 Team 1 Total 4s                                               328 non-null int64\n",
  1542.       "Inn 1 Team 1 Total 6s                                               328 non-null int64\n",
  1543.       "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                             328 non-null float64\n",
  1544.       "Inn 1 Team 2 NoP fast bowlers                                       328 non-null int64\n",
  1545.       "Inn 1 Team 2 NoP Spinners                                           328 non-null int64\n",
  1546.       "Inn 1 Team 2 wickets taken_catches_runout                           328 non-null int64\n",
  1547.       "Inn1 Team 2 wickets taken_ bowled _lbw_caught by keeper_stumping    328 non-null int64\n",
  1548.       "Inn 1 Team 2 Extras conceded in_wides_No Balls                      328 non-null int64\n",
  1549.       "Inn 2 Team 2 NOP R>25,SR>125                                        328 non-null int64\n",
  1550.       "Inn 2 Team 2 NOP R<25, SR>125                                       328 non-null int64\n",
  1551.       "Inn 2 Team 2 Total 4s                                               328 non-null int64\n",
  1552.       "Inn 2 Team 2 Total 6s                                               328 non-null int64\n",
  1553.       "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                             328 non-null float64\n",
  1554.       "Inn 2 Team 1 NoP fast bowlers                                       328 non-null int64\n",
  1555.       "Inn 2 Team 1 NoP Spinners                                           328 non-null int64\n",
  1556.       "Inn 2 Team 1 wickets taken_catches_runout                           328 non-null int64\n",
  1557.       "Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping    328 non-null int64\n",
  1558.       "Inn 2 Team 1 Extras conceded in_wides_No Balls                      328 non-null int64\n",
  1559.       "Winner (team 1=1, team 2=0)                                         328 non-null int64\n",
  1560.       "dtypes: float64(3), int64(22), object(5)\n",
  1561.       "memory usage: 79.4+ KB\n"
  1562.      ]
  1563.     }
  1564.    ],
  1565.    "source": [
  1566.     "train_data.info()"
  1567.    ]
  1568.   },
  1569.   {
  1570.    "cell_type": "markdown",
  1571.    "metadata": {},
  1572.    "source": [
  1573.     "## Observation:\n",
  1574.     "1. We don't have any missing value in above dataset"
  1575.    ]
  1576.   },
  1577.   {
  1578.    "cell_type": "code",
  1579.    "execution_count": 265,
  1580.    "metadata": {},
  1581.    "outputs": [
  1582.     {
  1583.      "name": "stdout",
  1584.      "output_type": "stream",
  1585.      "text": [
  1586.       "Game ID\n",
  1587.       "328    1\n",
  1588.       "103    1\n",
  1589.       "105    1\n",
  1590.       "106    1\n",
  1591.       "107    1\n",
  1592.       "108    1\n",
  1593.       "109    1\n",
  1594.       "110    1\n",
  1595.       "111    1\n",
  1596.       "112    1\n",
  1597.       "113    1\n",
  1598.       "114    1\n",
  1599.       "115    1\n",
  1600.       "116    1\n",
  1601.       "117    1\n",
  1602.       "118    1\n",
  1603.       "119    1\n",
  1604.       "120    1\n",
  1605.       "121    1\n",
  1606.       "104    1\n",
  1607.       "102    1\n",
  1608.       "327    1\n",
  1609.       "101    1\n",
  1610.       "84     1\n",
  1611.       "85     1\n",
  1612.       "86     1\n",
  1613.       "87     1\n",
  1614.       "88     1\n",
  1615.       "89     1\n",
  1616.       "90     1\n",
  1617.       "      ..\n",
  1618.       "236    1\n",
  1619.       "237    1\n",
  1620.       "238    1\n",
  1621.       "239    1\n",
  1622.       "240    1\n",
  1623.       "241    1\n",
  1624.       "242    1\n",
  1625.       "243    1\n",
  1626.       "244    1\n",
  1627.       "227    1\n",
  1628.       "226    1\n",
  1629.       "225    1\n",
  1630.       "215    1\n",
  1631.       "208    1\n",
  1632.       "209    1\n",
  1633.       "210    1\n",
  1634.       "211    1\n",
  1635.       "212    1\n",
  1636.       "213    1\n",
  1637.       "214    1\n",
  1638.       "216    1\n",
  1639.       "224    1\n",
  1640.       "217    1\n",
  1641.       "218    1\n",
  1642.       "219    1\n",
  1643.       "220    1\n",
  1644.       "221    1\n",
  1645.       "222    1\n",
  1646.       "223    1\n",
  1647.       "1      1\n",
  1648.       "Name: Game ID, Length: 328, dtype: int64\n",
  1649.       "***************************************************\n",
  1650.       "Team 1\n",
  1651.       "Electronic City Power Savers    52\n",
  1652.       "Bellandur Froth Fighters        44\n",
  1653.       "Koramangala Traffic Jammers     41\n",
  1654.       "Marathalli Chokers              39\n",
  1655.       "Indranagar Pub Watchers         37\n",
  1656.       "Silkboard Slow Movers           36\n",
  1657.       "Sarjapur Water Tankers          30\n",
  1658.       "Whitefield Water Loggers        29\n",
  1659.       "Airport Flyers                   7\n",
  1660.       "HSR High Rent Payers             7\n",
  1661.       "Forum Fans                       6\n",
  1662.       "Name: Team 1, dtype: int64\n",
  1663.       "***************************************************\n",
  1664.       "Team 2\n",
  1665.       "Whitefield Water Loggers        50\n",
  1666.       "Sarjapur Water Tankers          46\n",
  1667.       "Marathalli Chokers              38\n",
  1668.       "Silkboard Slow Movers           37\n",
  1669.       "Indranagar Pub Watchers         37\n",
  1670.       "Koramangala Traffic Jammers     34\n",
  1671.       "Bellandur Froth Fighters        32\n",
  1672.       "Electronic City Power Savers    30\n",
  1673.       "HSR High Rent Payers             9\n",
  1674.       "Forum Fans                       8\n",
  1675.       "Airport Flyers                   7\n",
  1676.       "Name: Team 2, dtype: int64\n",
  1677.       "***************************************************\n",
  1678.       "City\n",
  1679.       "Marathalli         55\n",
  1680.       "Sarjapur           48\n",
  1681.       "Koramangala        48\n",
  1682.       "Whitefield         42\n",
  1683.       "Indranagar         35\n",
  1684.       "Electronic City    35\n",
  1685.       "Silkboard          33\n",
  1686.       "Bellandur          22\n",
  1687.       "HSR                10\n",
  1688.       "Name: City, dtype: int64\n",
  1689.       "***************************************************\n",
  1690.       "DayOfWeek\n",
  1691.       "7    47\n",
  1692.       "6    47\n",
  1693.       "5    47\n",
  1694.       "4    47\n",
  1695.       "3    47\n",
  1696.       "1    47\n",
  1697.       "2    46\n",
  1698.       "Name: DayOfWeek, dtype: int64\n",
  1699.       "***************************************************\n",
  1700.       "DateOfGame\n",
  1701.       "01-11-2014    1\n",
  1702.       "03-01-2015    1\n",
  1703.       "01-02-2012    1\n",
  1704.       "02-25-2014    1\n",
  1705.       "02-24-2012    1\n",
  1706.       "03-09-2015    1\n",
  1707.       "01-07-2013    1\n",
  1708.       "02-24-2013    1\n",
  1709.       "02-06-2013    1\n",
  1710.       "02-23-2013    1\n",
  1711.       "02-04-2012    1\n",
  1712.       "03-06-2015    1\n",
  1713.       "02-01-2014    1\n",
  1714.       "02-05-2013    1\n",
  1715.       "03-03-2015    1\n",
  1716.       "01-21-2012    1\n",
  1717.       "01-31-2012    1\n",
  1718.       "02-05-2016    1\n",
  1719.       "02-21-2016    1\n",
  1720.       "03-07-2016    1\n",
  1721.       "01-24-2016    1\n",
  1722.       "02-23-2015    1\n",
  1723.       "03-14-2015    1\n",
  1724.       "02-16-2016    1\n",
  1725.       "02-23-2012    1\n",
  1726.       "03-04-2016    1\n",
  1727.       "02-26-2013    1\n",
  1728.       "01-11-2015    1\n",
  1729.       "01-15-2015    1\n",
  1730.       "01-14-2016    1\n",
  1731.       "             ..\n",
  1732.       "03-12-2016    1\n",
  1733.       "01-23-2016    1\n",
  1734.       "02-26-2012    1\n",
  1735.       "02-17-2012    1\n",
  1736.       "01-15-2016    1\n",
  1737.       "02-28-2016    1\n",
  1738.       "01-19-2016    1\n",
  1739.       "01-01-2015    1\n",
  1740.       "01-06-2015    1\n",
  1741.       "01-06-2013    1\n",
  1742.       "01-05-2015    1\n",
  1743.       "01-09-2014    1\n",
  1744.       "03-08-2016    1\n",
  1745.       "01-28-2015    1\n",
  1746.       "02-12-2013    1\n",
  1747.       "01-16-2012    1\n",
  1748.       "03-05-2015    1\n",
  1749.       "02-18-2012    1\n",
  1750.       "01-30-2016    1\n",
  1751.       "01-17-2012    1\n",
  1752.       "01-20-2014    1\n",
  1753.       "01-26-2012    1\n",
  1754.       "01-11-2016    1\n",
  1755.       "02-19-2012    1\n",
  1756.       "02-07-2013    1\n",
  1757.       "01-27-2015    1\n",
  1758.       "02-08-2014    1\n",
  1759.       "02-10-2015    1\n",
  1760.       "03-16-2016    1\n",
  1761.       "02-02-2013    1\n",
  1762.       "Name: DateOfGame, Length: 328, dtype: int64\n",
  1763.       "***************************************************\n",
  1764.       "TimeOfGame\n",
  1765.       "20:00:00    184\n",
  1766.       "16:00:00     80\n",
  1767.       "16:30:00     25\n",
  1768.       "12:30:00     22\n",
  1769.       "16:45:00     10\n",
  1770.       "20:30:00      2\n",
  1771.       "15:00:00      1\n",
  1772.       "17:10:00      1\n",
  1773.       "17:00:00      1\n",
  1774.       "20:15:00      1\n",
  1775.       "18:50:00      1\n",
  1776.       "Name: TimeOfGame, dtype: int64\n",
  1777.       "***************************************************\n",
  1778.       "AvgWindSpeed\n",
  1779.       "6     90\n",
  1780.       "7     79\n",
  1781.       "8     66\n",
  1782.       "5     34\n",
  1783.       "9     22\n",
  1784.       "10    16\n",
  1785.       "11     5\n",
  1786.       "4      4\n",
  1787.       "19     2\n",
  1788.       "15     2\n",
  1789.       "13     2\n",
  1790.       "12     2\n",
  1791.       "22     1\n",
  1792.       "18     1\n",
  1793.       "14     1\n",
  1794.       "3      1\n",
  1795.       "Name: AvgWindSpeed, dtype: int64\n",
  1796.       "***************************************************\n",
  1797.       "AvgHumidity\n",
  1798.       "0.72    23\n",
  1799.       "0.73    23\n",
  1800.       "0.74    19\n",
  1801.       "0.70    18\n",
  1802.       "0.61    15\n",
  1803.       "0.64    13\n",
  1804.       "0.65    13\n",
  1805.       "0.68    12\n",
  1806.       "0.75    12\n",
  1807.       "0.67    12\n",
  1808.       "0.62    12\n",
  1809.       "0.58    10\n",
  1810.       "0.60    10\n",
  1811.       "0.66    10\n",
  1812.       "0.71     9\n",
  1813.       "0.63     9\n",
  1814.       "0.69     9\n",
  1815.       "0.54     8\n",
  1816.       "0.55     7\n",
  1817.       "0.77     7\n",
  1818.       "0.49     7\n",
  1819.       "0.76     7\n",
  1820.       "0.56     6\n",
  1821.       "0.50     6\n",
  1822.       "0.52     4\n",
  1823.       "0.46     4\n",
  1824.       "0.44     4\n",
  1825.       "0.78     3\n",
  1826.       "0.48     3\n",
  1827.       "0.59     3\n",
  1828.       "0.53     3\n",
  1829.       "0.40     2\n",
  1830.       "0.88     2\n",
  1831.       "0.19     2\n",
  1832.       "0.20     2\n",
  1833.       "0.45     2\n",
  1834.       "0.51     2\n",
  1835.       "0.18     1\n",
  1836.       "0.39     1\n",
  1837.       "0.16     1\n",
  1838.       "0.47     1\n",
  1839.       "0.34     1\n",
  1840.       "0.28     1\n",
  1841.       "0.43     1\n",
  1842.       "0.80     1\n",
  1843.       "0.17     1\n",
  1844.       "0.82     1\n",
  1845.       "0.32     1\n",
  1846.       "0.22     1\n",
  1847.       "0.57     1\n",
  1848.       "0.23     1\n",
  1849.       "0.36     1\n",
  1850.       "Name: AvgHumidity, dtype: int64\n",
  1851.       "***************************************************\n",
  1852.       "Inn 1 Team 1 NOP R>25,SR>125\n",
  1853.       "1    112\n",
  1854.       "2    100\n",
  1855.       "0     66\n",
  1856.       "3     49\n",
  1857.       "4      1\n",
  1858.       "Name: Inn 1 Team 1 NOP R>25,SR>125, dtype: int64\n",
  1859.       "***************************************************\n",
  1860.       "Inn 1 Team 1 NOP R<25, SR>125\n",
  1861.       "1    120\n",
  1862.       "2     84\n",
  1863.       "0     66\n",
  1864.       "3     38\n",
  1865.       "4     15\n",
  1866.       "5      3\n",
  1867.       "6      2\n",
  1868.       "Name: Inn 1 Team 1 NOP R<25, SR>125, dtype: int64\n",
  1869.       "***************************************************\n",
  1870.       "Inn 1 Team 1 Total 4s\n",
  1871.       "13    38\n",
  1872.       "14    32\n",
  1873.       "15    30\n",
  1874.       "12    27\n",
  1875.       "11    21\n",
  1876.       "16    20\n",
  1877.       "10    19\n",
  1878.       "18    19\n",
  1879.       "9     16\n",
  1880.       "19    15\n",
  1881.       "17    14\n",
  1882.       "20    12\n",
  1883.       "8     11\n",
  1884.       "7     10\n",
  1885.       "6      9\n",
  1886.       "0      7\n",
  1887.       "21     6\n",
  1888.       "23     6\n",
  1889.       "22     5\n",
  1890.       "24     4\n",
  1891.       "5      3\n",
  1892.       "4      3\n",
  1893.       "25     1\n",
  1894.       "Name: Inn 1 Team 1 Total 4s, dtype: int64\n",
  1895.       "***************************************************\n",
  1896.       "Inn 1 Team 1 Total 6s\n",
  1897.       "3     48\n",
  1898.       "5     42\n",
  1899.       "6     42\n",
  1900.       "2     39\n",
  1901.       "4     34\n",
  1902.       "7     33\n",
  1903.       "8     23\n",
  1904.       "1     23\n",
  1905.       "9     12\n",
  1906.       "0     11\n",
  1907.       "10     6\n",
  1908.       "12     5\n",
  1909.       "11     3\n",
  1910.       "14     3\n",
  1911.       "16     1\n",
  1912.       "13     1\n",
  1913.       "15     1\n",
  1914.       "17     1\n",
  1915.       "Name: Inn 1 Team 1 Total 6s, dtype: int64\n",
  1916.       "***************************************************\n",
  1917.       "Inn 1 Team 1 Max Strike Rate_ALLBatsmen\n",
  1918.       "200.00    28\n",
  1919.       "300.00    15\n",
  1920.       "250.00    13\n",
  1921.       "175.00    11\n",
  1922.       "150.00    11\n",
  1923.       "166.66     8\n",
  1924.       "400.00     8\n",
  1925.       "160.00     8\n",
  1926.       "171.42     8\n",
  1927.       "185.71     7\n",
  1928.       "233.33     7\n",
  1929.       "0.00       6\n",
  1930.       "220.00     6\n",
  1931.       "180.00     6\n",
  1932.       "133.33     5\n",
  1933.       "183.33     5\n",
  1934.       "225.00     4\n",
  1935.       "142.85     4\n",
  1936.       "161.11     4\n",
  1937.       "162.50     3\n",
  1938.       "144.44     3\n",
  1939.       "135.29     3\n",
  1940.       "209.09     3\n",
  1941.       "216.66     3\n",
  1942.       "275.00     3\n",
  1943.       "164.28     3\n",
  1944.       "214.28     3\n",
  1945.       "155.55     2\n",
  1946.       "187.50     2\n",
  1947.       "262.50     2\n",
  1948.       "          ..\n",
  1949.       "105.55     1\n",
  1950.       "108.69     1\n",
  1951.       "192.10     1\n",
  1952.       "190.90     1\n",
  1953.       "253.84     1\n",
  1954.       "143.90     1\n",
  1955.       "226.66     1\n",
  1956.       "186.95     1\n",
  1957.       "252.94     1\n",
  1958.       "158.33     1\n",
  1959.       "172.72     1\n",
  1960.       "140.54     1\n",
  1961.       "285.71     1\n",
  1962.       "131.25     1\n",
  1963.       "156.25     1\n",
  1964.       "237.50     1\n",
  1965.       "137.50     1\n",
  1966.       "215.78     1\n",
  1967.       "178.94     1\n",
  1968.       "272.22     1\n",
  1969.       "223.52     1\n",
  1970.       "188.23     1\n",
  1971.       "160.86     1\n",
  1972.       "132.55     1\n",
  1973.       "182.35     1\n",
  1974.       "117.64     1\n",
  1975.       "316.66     1\n",
  1976.       "168.42     1\n",
  1977.       "177.77     1\n",
  1978.       "203.22     1\n",
  1979.       "Name: Inn 1 Team 1 Max Strike Rate_ALLBatsmen, Length: 147, dtype: int64\n",
  1980.       "***************************************************\n",
  1981.       "Inn 1 Team 2 NoP fast bowlers\n",
  1982.       "4    152\n",
  1983.       "3     85\n",
  1984.       "5     61\n",
  1985.       "2     16\n",
  1986.       "6      7\n",
  1987.       "0      7\n",
  1988.       "Name: Inn 1 Team 2 NoP fast bowlers, dtype: int64\n",
  1989.       "***************************************************\n",
  1990.       "Inn 1 Team 2 NoP Spinners\n",
  1991.       "2    128\n",
  1992.       "3     86\n",
  1993.       "1     72\n",
  1994.       "4     27\n",
  1995.       "0     13\n",
  1996.       "6      1\n",
  1997.       "5      1\n",
  1998.       "Name: Inn 1 Team 2 NoP Spinners, dtype: int64\n",
  1999.       "***************************************************\n",
  2000.       "Inn 1 Team 2 wickets taken_catches_runout\n",
  2001.       "3    79\n",
  2002.       "4    66\n",
  2003.       "5    60\n",
  2004.       "6    38\n",
  2005.       "2    29\n",
  2006.       "1    24\n",
  2007.       "0    12\n",
  2008.       "7    11\n",
  2009.       "8     5\n",
  2010.       "9     4\n",
  2011.       "Name: Inn 1 Team 2 wickets taken_catches_runout, dtype: int64\n",
  2012.       "***************************************************\n",
  2013.       "Inn1 Team 2 wickets taken_ bowled _lbw_caught by keeper_stumping\n",
  2014.       "1    81\n",
  2015.       "2    80\n",
  2016.       "3    68\n",
  2017.       "0    41\n",
  2018.       "4    32\n",
  2019.       "5    18\n",
  2020.       "6     5\n",
  2021.       "8     2\n",
  2022.       "7     1\n",
  2023.       "Name: Inn1 Team 2 wickets taken_ bowled _lbw_caught by keeper_stumping, dtype: int64\n",
  2024.       "***************************************************\n",
  2025.       "Inn 1 Team 2 Extras conceded in_wides_No Balls\n",
  2026.       "2     43\n",
  2027.       "4     43\n",
  2028.       "3     42\n",
  2029.       "5     37\n",
  2030.       "1     28\n",
  2031.       "6     26\n",
  2032.       "7     23\n",
  2033.       "8     15\n",
  2034.       "11    15\n",
  2035.       "9     14\n",
  2036.       "10    11\n",
  2037.       "0     10\n",
  2038.       "13     6\n",
  2039.       "14     6\n",
  2040.       "12     5\n",
  2041.       "16     2\n",
  2042.       "19     2\n",
  2043.       "Name: Inn 1 Team 2 Extras conceded in_wides_No Balls, dtype: int64\n",
  2044.       "***************************************************\n",
  2045.       "Inn 2 Team 2 NOP R>25,SR>125\n",
  2046.       "1    131\n",
  2047.       "2     90\n",
  2048.       "0     80\n",
  2049.       "3     26\n",
  2050.       "4      1\n",
  2051.       "Name: Inn 2 Team 2 NOP R>25,SR>125, dtype: int64\n",
  2052.       "***************************************************\n",
  2053.       "Inn 2 Team 2 NOP R<25, SR>125\n",
  2054.       "1    104\n",
  2055.       "0     97\n",
  2056.       "2     72\n",
  2057.       "3     47\n",
  2058.       "4      6\n",
  2059.       "5      2\n",
  2060.       "Name: Inn 2 Team 2 NOP R<25, SR>125, dtype: int64\n",
  2061.       "***************************************************\n",
  2062.       "Inn 2 Team 2 Total 4s\n",
  2063.       "12    35\n",
  2064.       "11    32\n",
  2065.       "10    31\n",
  2066.       "13    30\n",
  2067.       "14    26\n",
  2068.       "9     25\n",
  2069.       "15    25\n",
  2070.       "17    24\n",
  2071.       "8     16\n",
  2072.       "18    16\n",
  2073.       "16    14\n",
  2074.       "7     12\n",
  2075.       "20     8\n",
  2076.       "0      7\n",
  2077.       "19     7\n",
  2078.       "21     5\n",
  2079.       "22     3\n",
  2080.       "6      3\n",
  2081.       "5      2\n",
  2082.       "3      2\n",
  2083.       "1      2\n",
  2084.       "23     1\n",
  2085.       "4      1\n",
  2086.       "25     1\n",
  2087.       "Name: Inn 2 Team 2 Total 4s, dtype: int64\n",
  2088.       "***************************************************\n",
  2089.       "Inn 2 Team 2 Total 6s\n",
  2090.       "3     48\n",
  2091.       "4     47\n",
  2092.       "5     43\n",
  2093.       "2     38\n",
  2094.       "6     37\n",
  2095.       "1     30\n",
  2096.       "7     26\n",
  2097.       "8     15\n",
  2098.       "0     15\n",
  2099.       "9     12\n",
  2100.       "10     6\n",
  2101.       "11     5\n",
  2102.       "14     2\n",
  2103.       "13     2\n",
  2104.       "12     2\n",
  2105.       "Name: Inn 2 Team 2 Total 6s, dtype: int64\n",
  2106.       "***************************************************\n",
  2107.       "Inn 2 Team 2 Max Strike Rate_ALLBatsmen\n",
  2108.       "200.00    29\n",
  2109.       "166.66    11\n",
  2110.       "300.00    10\n",
  2111.       "266.66     9\n",
  2112.       "150.00     9\n",
  2113.       "233.33     9\n",
  2114.       "0.00       7\n",
  2115.       "171.42     6\n",
  2116.       "250.00     6\n",
  2117.       "157.14     6\n",
  2118.       "175.00     5\n",
  2119.       "142.85     4\n",
  2120.       "220.00     4\n",
  2121.       "160.00     4\n",
  2122.       "240.00     4\n",
  2123.       "187.50     4\n",
  2124.       "137.50     3\n",
  2125.       "400.00     3\n",
  2126.       "133.33     3\n",
  2127.       "176.47     3\n",
  2128.       "275.00     3\n",
  2129.       "140.00     3\n",
  2130.       "242.85     3\n",
  2131.       "125.00     3\n",
  2132.       "180.00     3\n",
  2133.       "170.00     3\n",
  2134.       "182.35     2\n",
  2135.       "325.00     2\n",
  2136.       "156.52     2\n",
  2137.       "167.74     2\n",
  2138.       "          ..\n",
  2139.       "215.15     1\n",
  2140.       "152.38     1\n",
  2141.       "121.05     1\n",
  2142.       "220.83     1\n",
  2143.       "161.90     1\n",
  2144.       "173.17     1\n",
  2145.       "143.90     1\n",
  2146.       "172.41     1\n",
  2147.       "366.66     1\n",
  2148.       "145.94     1\n",
  2149.       "178.57     1\n",
  2150.       "185.45     1\n",
  2151.       "238.46     1\n",
  2152.       "209.09     1\n",
  2153.       "195.65     1\n",
  2154.       "213.04     1\n",
  2155.       "159.09     1\n",
  2156.       "126.66     1\n",
  2157.       "147.91     1\n",
  2158.       "168.75     1\n",
  2159.       "145.09     1\n",
  2160.       "206.25     1\n",
  2161.       "231.91     1\n",
  2162.       "193.93     1\n",
  2163.       "162.50     1\n",
  2164.       "135.71     1\n",
  2165.       "385.71     1\n",
  2166.       "139.13     1\n",
  2167.       "220.58     1\n",
  2168.       "120.00     1\n",
  2169.       "Name: Inn 2 Team 2 Max Strike Rate_ALLBatsmen, Length: 163, dtype: int64\n",
  2170.       "***************************************************\n",
  2171.       "Inn 2 Team 1 NoP fast bowlers\n",
  2172.       "4    146\n",
  2173.       "3     98\n",
  2174.       "5     42\n",
  2175.       "2     29\n",
  2176.       "0      7\n",
  2177.       "6      4\n",
  2178.       "8      1\n",
  2179.       "1      1\n",
  2180.       "Name: Inn 2 Team 1 NoP fast bowlers, dtype: int64\n",
  2181.       "***************************************************\n",
  2182.       "Inn 2 Team 1 NoP Spinners\n",
  2183.       "2    122\n",
  2184.       "3     95\n",
  2185.       "1     71\n",
  2186.       "4     25\n",
  2187.       "0     13\n",
  2188.       "5      2\n",
  2189.       "Name: Inn 2 Team 1 NoP Spinners, dtype: int64\n",
  2190.       "***************************************************\n",
  2191.       "Inn 2 Team 1 wickets taken_catches_runout\n",
  2192.       "2    54\n",
  2193.       "5    53\n",
  2194.       "4    52\n",
  2195.       "1    47\n",
  2196.       "3    44\n",
  2197.       "6    33\n",
  2198.       "0    27\n",
  2199.       "7     9\n",
  2200.       "8     7\n",
  2201.       "9     2\n",
  2202.       "Name: Inn 2 Team 1 wickets taken_catches_runout, dtype: int64\n",
  2203.       "***************************************************\n",
  2204.       "Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping\n",
  2205.       "1    77\n",
  2206.       "2    73\n",
  2207.       "0    58\n",
  2208.       "3    54\n",
  2209.       "4    38\n",
  2210.       "5    17\n",
  2211.       "6     7\n",
  2212.       "7     3\n",
  2213.       "8     1\n",
  2214.       "Name: Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping, dtype: int64\n",
  2215.       "***************************************************\n",
  2216.       "Inn 2 Team 1 Extras conceded in_wides_No Balls\n",
  2217.       "3     41\n",
  2218.       "4     40\n",
  2219.       "7     38\n",
  2220.       "2     35\n",
  2221.       "6     35\n",
  2222.       "5     30\n",
  2223.       "1     28\n",
  2224.       "8     25\n",
  2225.       "9     16\n",
  2226.       "0     14\n",
  2227.       "10    11\n",
  2228.       "15     4\n",
  2229.       "13     4\n",
  2230.       "11     3\n",
  2231.       "16     2\n",
  2232.       "12     1\n",
  2233.       "14     1\n",
  2234.       "Name: Inn 2 Team 1 Extras conceded in_wides_No Balls, dtype: int64\n",
  2235.       "***************************************************\n",
  2236.       "Winner (team 1=1, team 2=0)\n",
  2237.       "0    183\n",
  2238.       "1    145\n",
  2239.       "Name: Winner (team 1=1, team 2=0), dtype: int64\n",
  2240.       "***************************************************\n"
  2241.      ]
  2242.     }
  2243.    ],
  2244.    "source": [
  2245.     "# checking how many number of times each value is coming in each of the columns\n",
  2246.     "\n",
  2247.     "for i in train_data.columns.tolist():\n",
  2248.     "    print(i)\n",
  2249.     "    print(train_data[i].value_counts())\n",
  2250.     "    print('*'*51)"
  2251.    ]
  2252.   },
  2253.   {
  2254.    "cell_type": "markdown",
  2255.    "metadata": {},
  2256.    "source": [
  2257.     "## Observations :\n",
  2258.     "\n",
  2259.     "1. Columns <b>'Game ID' and 'DateOfGame'</b> is appearing exactly like primary key(as in DBMS),in each row value differs so i will drop these two columns\n",
  2260.     "2. Columns <b>'Team 1','Team 2','City' and 'TimeOfGame'</b> have 'Object' type so we require either int or float type because scikit works on numerical value"
  2261.    ]
  2262.   },
  2263.   {
  2264.    "cell_type": "code",
  2265.    "execution_count": 266,
  2266.    "metadata": {},
  2267.    "outputs": [],
  2268.    "source": [
  2269.     "# dropping two columns 'Game ID' and 'DateOfGame'\n",
  2270.     "\n",
  2271.     "train_data.drop(['Game ID','DateOfGame'],axis=1,inplace=True)"
  2272.    ]
  2273.   },
  2274.   {
  2275.    "cell_type": "code",
  2276.    "execution_count": 267,
  2277.    "metadata": {},
  2278.    "outputs": [
  2279.     {
  2280.      "data": {
  2281.       "text/plain": [
  2282.        "(328, 28)"
  2283.       ]
  2284.      },
  2285.      "execution_count": 267,
  2286.      "metadata": {},
  2287.      "output_type": "execute_result"
  2288.     }
  2289.    ],
  2290.    "source": [
  2291.     "# now we have 28 columns instead of 30\n",
  2292.     "\n",
  2293.     "train_data.shape"
  2294.    ]
  2295.   },
  2296.   {
  2297.    "cell_type": "markdown",
  2298.    "metadata": {},
  2299.    "source": [
  2300.     "## 3. Univariate Analysis"
  2301.    ]
  2302.   },
  2303.   {
  2304.    "cell_type": "markdown",
  2305.    "metadata": {},
  2306.    "source": [
  2307.     "### 3.1 Continuous Variables"
  2308.    ]
  2309.   },
  2310.   {
  2311.    "cell_type": "code",
  2312.    "execution_count": 268,
  2313.    "metadata": {},
  2314.    "outputs": [
  2315.     {
  2316.      "data": {
  2317.       "text/html": [
  2318.        "<div>\n",
  2319.        "<style scoped>\n",
  2320.        "    .dataframe tbody tr th:only-of-type {\n",
  2321.        "        vertical-align: middle;\n",
  2322.        "    }\n",
  2323.        "\n",
  2324.        "    .dataframe tbody tr th {\n",
  2325.        "        vertical-align: top;\n",
  2326.        "    }\n",
  2327.        "\n",
  2328.        "    .dataframe thead th {\n",
  2329.        "        text-align: right;\n",
  2330.        "    }\n",
  2331.        "</style>\n",
  2332.        "<table border=\"1\" class=\"dataframe\">\n",
  2333.        "  <thead>\n",
  2334.        "    <tr style=\"text-align: right;\">\n",
  2335.        "      <th></th>\n",
  2336.        "      <th>DayOfWeek</th>\n",
  2337.        "      <th>AvgWindSpeed</th>\n",
  2338.        "      <th>AvgHumidity</th>\n",
  2339.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  2340.        "      <th>Inn 1 Team 1 NOP R<25, SR>125</th>\n",
  2341.        "      <th>Inn 1 Team 1 Total 4s</th>\n",
  2342.        "      <th>Inn 1 Team 1 Total 6s</th>\n",
  2343.        "      <th>Inn 1 Team 1 Max Strike Rate_ALLBatsmen</th>\n",
  2344.        "      <th>Inn 1 Team 2 NoP fast bowlers</th>\n",
  2345.        "      <th>Inn 1 Team 2 NoP Spinners</th>\n",
  2346.        "      <th>...</th>\n",
  2347.        "      <th>Inn 2 Team 2 NOP R<25, SR>125</th>\n",
  2348.        "      <th>Inn 2 Team 2 Total 4s</th>\n",
  2349.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  2350.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  2351.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  2352.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  2353.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  2354.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  2355.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  2356.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  2357.        "    </tr>\n",
  2358.        "  </thead>\n",
  2359.        "  <tbody>\n",
  2360.        "    <tr>\n",
  2361.        "      <th>count</th>\n",
  2362.        "      <td>328.000000</td>\n",
  2363.        "      <td>328.000000</td>\n",
  2364.        "      <td>328.000000</td>\n",
  2365.        "      <td>328.000000</td>\n",
  2366.        "      <td>328.000000</td>\n",
  2367.        "      <td>328.000000</td>\n",
  2368.        "      <td>328.000000</td>\n",
  2369.        "      <td>328.000000</td>\n",
  2370.        "      <td>328.000000</td>\n",
  2371.        "      <td>328.000000</td>\n",
  2372.        "      <td>...</td>\n",
  2373.        "      <td>328.000000</td>\n",
  2374.        "      <td>328.000000</td>\n",
  2375.        "      <td>328.000000</td>\n",
  2376.        "      <td>328.000000</td>\n",
  2377.        "      <td>328.000000</td>\n",
  2378.        "      <td>328.000000</td>\n",
  2379.        "      <td>328.000000</td>\n",
  2380.        "      <td>328.000000</td>\n",
  2381.        "      <td>328.000000</td>\n",
  2382.        "      <td>328.000000</td>\n",
  2383.        "    </tr>\n",
  2384.        "    <tr>\n",
  2385.        "      <th>mean</th>\n",
  2386.        "      <td>4.006098</td>\n",
  2387.        "      <td>7.301829</td>\n",
  2388.        "      <td>0.633323</td>\n",
  2389.        "      <td>1.411585</td>\n",
  2390.        "      <td>1.490854</td>\n",
  2391.        "      <td>13.536585</td>\n",
  2392.        "      <td>4.945122</td>\n",
  2393.        "      <td>199.352104</td>\n",
  2394.        "      <td>3.786585</td>\n",
  2395.        "      <td>2.149390</td>\n",
  2396.        "      <td>...</td>\n",
  2397.        "      <td>1.289634</td>\n",
  2398.        "      <td>12.560976</td>\n",
  2399.        "      <td>4.506098</td>\n",
  2400.        "      <td>189.311585</td>\n",
  2401.        "      <td>3.594512</td>\n",
  2402.        "      <td>2.164634</td>\n",
  2403.        "      <td>3.338415</td>\n",
  2404.        "      <td>2.112805</td>\n",
  2405.        "      <td>5.073171</td>\n",
  2406.        "      <td>0.442073</td>\n",
  2407.        "    </tr>\n",
  2408.        "    <tr>\n",
  2409.        "      <th>std</th>\n",
  2410.        "      <td>2.003046</td>\n",
  2411.        "      <td>2.183563</td>\n",
  2412.        "      <td>0.121442</td>\n",
  2413.        "      <td>0.982159</td>\n",
  2414.        "      <td>1.180852</td>\n",
  2415.        "      <td>4.729231</td>\n",
  2416.        "      <td>3.012214</td>\n",
  2417.        "      <td>72.673405</td>\n",
  2418.        "      <td>1.012251</td>\n",
  2419.        "      <td>1.013185</td>\n",
  2420.        "      <td>...</td>\n",
  2421.        "      <td>1.127207</td>\n",
  2422.        "      <td>4.327842</td>\n",
  2423.        "      <td>2.788129</td>\n",
  2424.        "      <td>60.710497</td>\n",
  2425.        "      <td>1.042037</td>\n",
  2426.        "      <td>1.000168</td>\n",
  2427.        "      <td>2.068724</td>\n",
  2428.        "      <td>1.646817</td>\n",
  2429.        "      <td>3.221793</td>\n",
  2430.        "      <td>0.497392</td>\n",
  2431.        "    </tr>\n",
  2432.        "    <tr>\n",
  2433.        "      <th>min</th>\n",
  2434.        "      <td>1.000000</td>\n",
  2435.        "      <td>3.000000</td>\n",
  2436.        "      <td>0.160000</td>\n",
  2437.        "      <td>0.000000</td>\n",
  2438.        "      <td>0.000000</td>\n",
  2439.        "      <td>0.000000</td>\n",
  2440.        "      <td>0.000000</td>\n",
  2441.        "      <td>0.000000</td>\n",
  2442.        "      <td>0.000000</td>\n",
  2443.        "      <td>0.000000</td>\n",
  2444.        "      <td>...</td>\n",
  2445.        "      <td>0.000000</td>\n",
  2446.        "      <td>0.000000</td>\n",
  2447.        "      <td>0.000000</td>\n",
  2448.        "      <td>0.000000</td>\n",
  2449.        "      <td>0.000000</td>\n",
  2450.        "      <td>0.000000</td>\n",
  2451.        "      <td>0.000000</td>\n",
  2452.        "      <td>0.000000</td>\n",
  2453.        "      <td>0.000000</td>\n",
  2454.        "      <td>0.000000</td>\n",
  2455.        "    </tr>\n",
  2456.        "    <tr>\n",
  2457.        "      <th>25%</th>\n",
  2458.        "      <td>2.000000</td>\n",
  2459.        "      <td>6.000000</td>\n",
  2460.        "      <td>0.580000</td>\n",
  2461.        "      <td>1.000000</td>\n",
  2462.        "      <td>1.000000</td>\n",
  2463.        "      <td>11.000000</td>\n",
  2464.        "      <td>3.000000</td>\n",
  2465.        "      <td>161.110000</td>\n",
  2466.        "      <td>3.000000</td>\n",
  2467.        "      <td>1.000000</td>\n",
  2468.        "      <td>...</td>\n",
  2469.        "      <td>0.000000</td>\n",
  2470.        "      <td>10.000000</td>\n",
  2471.        "      <td>2.000000</td>\n",
  2472.        "      <td>153.092500</td>\n",
  2473.        "      <td>3.000000</td>\n",
  2474.        "      <td>1.000000</td>\n",
  2475.        "      <td>2.000000</td>\n",
  2476.        "      <td>1.000000</td>\n",
  2477.        "      <td>3.000000</td>\n",
  2478.        "      <td>0.000000</td>\n",
  2479.        "    </tr>\n",
  2480.        "    <tr>\n",
  2481.        "      <th>50%</th>\n",
  2482.        "      <td>4.000000</td>\n",
  2483.        "      <td>7.000000</td>\n",
  2484.        "      <td>0.660000</td>\n",
  2485.        "      <td>1.000000</td>\n",
  2486.        "      <td>1.000000</td>\n",
  2487.        "      <td>13.500000</td>\n",
  2488.        "      <td>5.000000</td>\n",
  2489.        "      <td>185.710000</td>\n",
  2490.        "      <td>4.000000</td>\n",
  2491.        "      <td>2.000000</td>\n",
  2492.        "      <td>...</td>\n",
  2493.        "      <td>1.000000</td>\n",
  2494.        "      <td>12.000000</td>\n",
  2495.        "      <td>4.000000</td>\n",
  2496.        "      <td>182.350000</td>\n",
  2497.        "      <td>4.000000</td>\n",
  2498.        "      <td>2.000000</td>\n",
  2499.        "      <td>3.000000</td>\n",
  2500.        "      <td>2.000000</td>\n",
  2501.        "      <td>5.000000</td>\n",
  2502.        "      <td>0.000000</td>\n",
  2503.        "    </tr>\n",
  2504.        "    <tr>\n",
  2505.        "      <th>75%</th>\n",
  2506.        "      <td>6.000000</td>\n",
  2507.        "      <td>8.000000</td>\n",
  2508.        "      <td>0.720000</td>\n",
  2509.        "      <td>2.000000</td>\n",
  2510.        "      <td>2.000000</td>\n",
  2511.        "      <td>16.250000</td>\n",
  2512.        "      <td>7.000000</td>\n",
  2513.        "      <td>223.182500</td>\n",
  2514.        "      <td>4.000000</td>\n",
  2515.        "      <td>3.000000</td>\n",
  2516.        "      <td>...</td>\n",
  2517.        "      <td>2.000000</td>\n",
  2518.        "      <td>15.000000</td>\n",
  2519.        "      <td>6.000000</td>\n",
  2520.        "      <td>222.220000</td>\n",
  2521.        "      <td>4.000000</td>\n",
  2522.        "      <td>3.000000</td>\n",
  2523.        "      <td>5.000000</td>\n",
  2524.        "      <td>3.000000</td>\n",
  2525.        "      <td>7.000000</td>\n",
  2526.        "      <td>1.000000</td>\n",
  2527.        "    </tr>\n",
  2528.        "    <tr>\n",
  2529.        "      <th>max</th>\n",
  2530.        "      <td>7.000000</td>\n",
  2531.        "      <td>22.000000</td>\n",
  2532.        "      <td>0.880000</td>\n",
  2533.        "      <td>4.000000</td>\n",
  2534.        "      <td>6.000000</td>\n",
  2535.        "      <td>25.000000</td>\n",
  2536.        "      <td>17.000000</td>\n",
  2537.        "      <td>600.000000</td>\n",
  2538.        "      <td>6.000000</td>\n",
  2539.        "      <td>6.000000</td>\n",
  2540.        "      <td>...</td>\n",
  2541.        "      <td>5.000000</td>\n",
  2542.        "      <td>25.000000</td>\n",
  2543.        "      <td>14.000000</td>\n",
  2544.        "      <td>400.000000</td>\n",
  2545.        "      <td>8.000000</td>\n",
  2546.        "      <td>5.000000</td>\n",
  2547.        "      <td>9.000000</td>\n",
  2548.        "      <td>8.000000</td>\n",
  2549.        "      <td>16.000000</td>\n",
  2550.        "      <td>1.000000</td>\n",
  2551.        "    </tr>\n",
  2552.        "  </tbody>\n",
  2553.        "</table>\n",
  2554.        "<p>8 rows × 24 columns</p>\n",
  2555.        "</div>"
  2556.       ],
  2557.       "text/plain": [
  2558.        "        DayOfWeek  AvgWindSpeed  AvgHumidity  Inn 1 Team 1 NOP R>25,SR>125  \\\n",
  2559.        "count  328.000000    328.000000   328.000000                    328.000000   \n",
  2560.        "mean     4.006098      7.301829     0.633323                      1.411585   \n",
  2561.        "std      2.003046      2.183563     0.121442                      0.982159   \n",
  2562.        "min      1.000000      3.000000     0.160000                      0.000000   \n",
  2563.        "25%      2.000000      6.000000     0.580000                      1.000000   \n",
  2564.        "50%      4.000000      7.000000     0.660000                      1.000000   \n",
  2565.        "75%      6.000000      8.000000     0.720000                      2.000000   \n",
  2566.        "max      7.000000     22.000000     0.880000                      4.000000   \n",
  2567.        "\n",
  2568.        "       Inn 1 Team 1 NOP R<25, SR>125  Inn 1 Team 1 Total 4s  \\\n",
  2569.        "count                     328.000000             328.000000   \n",
  2570.        "mean                        1.490854              13.536585   \n",
  2571.        "std                         1.180852               4.729231   \n",
  2572.        "min                         0.000000               0.000000   \n",
  2573.        "25%                         1.000000              11.000000   \n",
  2574.        "50%                         1.000000              13.500000   \n",
  2575.        "75%                         2.000000              16.250000   \n",
  2576.        "max                         6.000000              25.000000   \n",
  2577.        "\n",
  2578.        "       Inn 1 Team 1 Total 6s  Inn 1 Team 1 Max Strike Rate_ALLBatsmen  \\\n",
  2579.        "count             328.000000                               328.000000   \n",
  2580.        "mean                4.945122                               199.352104   \n",
  2581.        "std                 3.012214                                72.673405   \n",
  2582.        "min                 0.000000                                 0.000000   \n",
  2583.        "25%                 3.000000                               161.110000   \n",
  2584.        "50%                 5.000000                               185.710000   \n",
  2585.        "75%                 7.000000                               223.182500   \n",
  2586.        "max                17.000000                               600.000000   \n",
  2587.        "\n",
  2588.        "       Inn 1 Team 2 NoP fast bowlers  Inn 1 Team 2 NoP Spinners  ...  \\\n",
  2589.        "count                     328.000000                 328.000000  ...   \n",
  2590.        "mean                        3.786585                   2.149390  ...   \n",
  2591.        "std                         1.012251                   1.013185  ...   \n",
  2592.        "min                         0.000000                   0.000000  ...   \n",
  2593.        "25%                         3.000000                   1.000000  ...   \n",
  2594.        "50%                         4.000000                   2.000000  ...   \n",
  2595.        "75%                         4.000000                   3.000000  ...   \n",
  2596.        "max                         6.000000                   6.000000  ...   \n",
  2597.        "\n",
  2598.        "       Inn 2 Team 2 NOP R<25, SR>125  Inn 2 Team 2 Total 4s  \\\n",
  2599.        "count                     328.000000             328.000000   \n",
  2600.        "mean                        1.289634              12.560976   \n",
  2601.        "std                         1.127207               4.327842   \n",
  2602.        "min                         0.000000               0.000000   \n",
  2603.        "25%                         0.000000              10.000000   \n",
  2604.        "50%                         1.000000              12.000000   \n",
  2605.        "75%                         2.000000              15.000000   \n",
  2606.        "max                         5.000000              25.000000   \n",
  2607.        "\n",
  2608.        "       Inn 2 Team 2 Total 6s  Inn 2 Team 2 Max Strike Rate_ALLBatsmen  \\\n",
  2609.        "count             328.000000                               328.000000   \n",
  2610.        "mean                4.506098                               189.311585   \n",
  2611.        "std                 2.788129                                60.710497   \n",
  2612.        "min                 0.000000                                 0.000000   \n",
  2613.        "25%                 2.000000                               153.092500   \n",
  2614.        "50%                 4.000000                               182.350000   \n",
  2615.        "75%                 6.000000                               222.220000   \n",
  2616.        "max                14.000000                               400.000000   \n",
  2617.        "\n",
  2618.        "       Inn 2 Team 1 NoP fast bowlers  Inn 2 Team 1 NoP Spinners  \\\n",
  2619.        "count                     328.000000                 328.000000   \n",
  2620.        "mean                        3.594512                   2.164634   \n",
  2621.        "std                         1.042037                   1.000168   \n",
  2622.        "min                         0.000000                   0.000000   \n",
  2623.        "25%                         3.000000                   1.000000   \n",
  2624.        "50%                         4.000000                   2.000000   \n",
  2625.        "75%                         4.000000                   3.000000   \n",
  2626.        "max                         8.000000                   5.000000   \n",
  2627.        "\n",
  2628.        "       Inn 2 Team 1 wickets taken_catches_runout  \\\n",
  2629.        "count                                 328.000000   \n",
  2630.        "mean                                    3.338415   \n",
  2631.        "std                                     2.068724   \n",
  2632.        "min                                     0.000000   \n",
  2633.        "25%                                     2.000000   \n",
  2634.        "50%                                     3.000000   \n",
  2635.        "75%                                     5.000000   \n",
  2636.        "max                                     9.000000   \n",
  2637.        "\n",
  2638.        "       Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping  \\\n",
  2639.        "count                                         328.000000                  \n",
  2640.        "mean                                            2.112805                  \n",
  2641.        "std                                             1.646817                  \n",
  2642.        "min                                             0.000000                  \n",
  2643.        "25%                                             1.000000                  \n",
  2644.        "50%                                             2.000000                  \n",
  2645.        "75%                                             3.000000                  \n",
  2646.        "max                                             8.000000                  \n",
  2647.        "\n",
  2648.        "       Inn 2 Team 1 Extras conceded in_wides_No Balls  \\\n",
  2649.        "count                                      328.000000   \n",
  2650.        "mean                                         5.073171   \n",
  2651.        "std                                          3.221793   \n",
  2652.        "min                                          0.000000   \n",
  2653.        "25%                                          3.000000   \n",
  2654.        "50%                                          5.000000   \n",
  2655.        "75%                                          7.000000   \n",
  2656.        "max                                         16.000000   \n",
  2657.        "\n",
  2658.        "       Winner (team 1=1, team 2=0)  \n",
  2659.        "count                   328.000000  \n",
  2660.        "mean                      0.442073  \n",
  2661.        "std                       0.497392  \n",
  2662.        "min                       0.000000  \n",
  2663.        "25%                       0.000000  \n",
  2664.        "50%                       0.000000  \n",
  2665.        "75%                       1.000000  \n",
  2666.        "max                       1.000000  \n",
  2667.        "\n",
  2668.        "[8 rows x 24 columns]"
  2669.       ]
  2670.      },
  2671.      "execution_count": 268,
  2672.      "metadata": {},
  2673.      "output_type": "execute_result"
  2674.     }
  2675.    ],
  2676.    "source": [
  2677.     "train_data.describe()"
  2678.    ]
  2679.   },
  2680.   {
  2681.    "cell_type": "code",
  2682.    "execution_count": 269,
  2683.    "metadata": {},
  2684.    "outputs": [
  2685.     {
  2686.      "data": {
  2687.       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwoAAAIbCAYAAABLxWmrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8pGd57//PpVHvXau2K2mbvdVer9e9YANeGxtT7GQNoQQnpgdyQhLICYRw4IAPJyHwoyQOpribY2xY4wa44L699yKtpJW0kla9azT37w+NjJC0fTTPzOj7fr30YvTMU67Bq5m5nvu+rtucc4iIiIiIiIwX53UAIiIiIiISeZQoiIiIiIjIJEoURERERERkEiUKIiIiIiIyiRIFERERERGZRImCiIiIiIhMokRBREREREQmUaIgIiIiIiKTKFEQEREREZFJlCiIiEhImNlqM9tnZgfN7ItTPJ9kZo8Gn19nZhXB7Xlm9qKZ9ZjZ98ftn2pmT5nZXjPbZWbfCt+rERGReK8DOBP5+fmuoqLC6zBERCLSpk2bWp1zBV5c28x8wA+AdwD1wAYzW+uc2z1utzuBdufcPDNbA9wN/DkwAHwZWBL8Ge//OudeNLNE4Hkzu9E598zJYtFnhYjIyZ3u50VUJQoVFRVs3LjR6zBERCKSmR3x8PKrgIPOucPBWB4BbgXGJwq3Al8NPn4M+L6ZmXOuF3jVzOaNP6Fzrg94Mfh4yMw2A2WnCkSfFSIiJ3e6nxeaeiQiIqFQCtSN+70+uG3KfZxzfqATyDudk5tZNnAL8PwJnr/LzDaa2caWlpYzDF1ERKaiREFERELBptjmzmKfySc2iwceBr43NmIx6STO3eOcW+mcW1lQ4MnsKxGRmKNEQUREQqEeKB/3exnQcKJ9gl/+s4C20zj3PcAB59x/hCBOERE5TUoUREQkFDYA882sMlh4vAZYO2GftcBHgo9vA15wzp10RMHMvs5oQvH5EMcrIiKnEFXFzCIiEpmcc34z+wzwHOADfuKc22VmXwM2OufWAvcC95vZQUZHEtaMHW9mNUAmkGhm7wHeCXQB/xPYC2w2M4DvO+d+HL5XJiIycylREBGRkHDOPQ08PWHbV8Y9HgBuP8GxFSc47VR1DSIiEgaaeiQiIiIiIpMoURARERERkUk09UhEAHhoXe0ZH/OBS2ZPQyQiEstO9V6j9xWRyKERBRERERERmUSJgoiIiIiITKJEQUREREREJlGiICIiIiIikyhREBERERGRSZQoiIiIiIjIJEoURERERERkEiUKIiIiIiIyiRIFERERERGZRImCiIiIiIhMokRBREREREQmiffy4mZWA3QDI4DfObfSy3hERERERGSUp4lC0Nucc61eByEiIiIiIn+kqUciIiIiIjKJ14mCA35rZpvM7C6PYxERERERkSCvpx5d4ZxrMLNC4Hdmttc59/L4HYIJxF0As2fP9iJGEREREZEZx9MRBedcQ/B/m4EngFVT7HOPc26lc25lQUFBuEMUEREREZmRPEsUzCzNzDLGHgPvBHZ6FY+IiIiIiPyRl1OPioAnzGwsjoecc896GI+IiIiIiAR5lig45w4Dy726voiIiIiInJjXXY9ERERERCQCKVEQEREREZFJlCiIiIiIiMgkShRERERERGQSJQoiIhISZrbazPaZ2UEz++IUzyeZ2aPB59eZWUVwe56ZvWhmPWb2/QnHXGRmO4LHfM+CrfJERGT6KVEQEZFzZmY+4AfAjcAi4A4zWzRhtzuBdufcPOA7wN3B7QPAl4EvTHHqHwF3AfODP6tDH72IiExFiYKIiITCKuCgc+6wc24IeAS4dcI+twI/Dz5+DLjezMw51+uce5XRhOEtZlYMZDrn3nDOOeA+4D3T+ipEROQtShRERCQUSoG6cb/XB7dNuY9zzg90AnmnOGf9Kc4pIiLTRImCiIiEwlS1A+4s9jmr/c3sLjPbaGYbW1paTnJKERE5XUoUREQkFOqB8nG/lwENJ9rHzOKBLKDtFOcsO8U5AXDO3eOcW+mcW1lQUHCGoYuIyFSUKIiISChsAOabWaWZJQJrgLUT9lkLfCT4+DbghWDtwZScc41At5ldGux29GHg16EPXUREphLvdQAiIhL9nHN+M/sM8BzgA37inNtlZl8DNjrn1gL3Aveb2UFGRxLWjB1vZjVAJpBoZu8B3umc2w18EvgZkAI8E/wREZEwUKIgIiIh4Zx7Gnh6wravjHs8ANx+gmMrTrB9I7AkdFGKiMjp0tQjERERERGZRImCiIiIiIhMokRBREREREQmUaIgIiIiIiKTKFEQEREREZFJlCiIiIiIiMgkShRERERERGQSJQoiIiIiIjKJFlwTkdPinKOpa4C9Td1kpSRwYXm21yGJiIjINFKiICKndLxnkPvePEJL9+Bb27bWdfC28wopyU7xMDIRERGZLpp6JCIn1dE3xL2vVdM76Oc9F5TypRvP49YLSqg93sdN33uFY10DXocoIiIi00CJgoicUM+gn5+8VkP/0Ah/eUUlqypzyUhO4JLKPD557Vx6B/189/kDXocpIlHuUEsPL+w9xi821nH/GzVehyMiQUoURGRKzjke31xPR98QH76sgtIJU4yKMpP54CVzeHRDHYdaejyKUkSi3ZHjvdz7ajW/39PM3qYuvvrkbvY2dXkdloigREFETmDH0U72NnXzjkVFVOanTbnPZ66bR3J8HN9+dl+YoxORWPHy/hZSE318+V2L+MI7FpKZHM+Xf7UT55zXoYnMeEoURGSSviE/T25vpDQ7hcvn5p9wv/z0JO66ei7P7mpic217GCMUkVjQ3DXAnqZuLq3KIyXRR2pSPF+88Tw21LTz+OajXocnMuMpURCRSZ7Z2UT/kJ/3rSjFF2cn3fevrqokIymeR9fXhSk6EYkVrxxsJcFnXFaV99a22y8q58LZ2XzzmT30Dfk9jE5ElCiIyJ842t7PpiPtXDkvn+KsU7c+TUuK57rzC/nt7ib8I4EwRCgisaCzf5ittR1cNCeXtKQ/dmuPizP+/p0Lae0Z4qV9LR5GKCJaR0FE3uKc4+mdjaQl+rh2YeEp939oXS0AaYnxtPcN881n9jK3IP2kx3zgktkhiVVEotvm2nYCznHlvMnTGy+pyiMvLZFndjZx09JiD6ITEYiAEQUz85nZFjP7jdexiMx0e5u6qW7t5frzi0hO8J32cQuKMkjwGbsaOqcxOhGJJYdbepiVlUxuWuKk53xxxjsXF/HCnmMMDI94EJ2IQAQkCsDngD1eByEy040EHM/sbKIgPYmLK3LP6NjE+DgWFGWwq6GLgDqViMgp+AMBatv6qDhBRzWA1UuK6R0a4bWDrWGMTETG8zRRMLMy4F3Aj72MQ0RgfU0brT2DrF4y65QFzFNZXJJF94Cfura+aYhORGLJ0fZ+hkcclXknThQuq8ojIzmeZ3Y2hTEyERnP6xGF/wD+AThhBaSZ3WVmG81sY0uLippEpkPXwDDP7zlGZX4a583KOKtznDcrA1+csatBCyWJyMlVt/YCnHREITE+jnecX8Tvdh9jWI0SRDzhWaJgZjcDzc65TSfbzzl3j3NupXNuZUFBQZiiE5lZ/vOlQ/QNjXDTkmLMznw0ASA5wcfcgjStqCoip1RzvJfCjCTSk07eU+WGJbPo7B9m3eG2MEUmIuN52fXoCuDdZnYTkAxkmtkDzrm/8DAmkRnnaEc/975azQXl2ZTmnLod6slU5aez/1gTPYP+U34BEJGZaSTgqDnex4Xl2VM+P9ZNDWB4JEB8nPGjlw5S29anrmkiYebZiIJz7kvOuTLnXAWwBnhBSYJI+P3bc/twwDsXFZ3zuebkpQJQe7z3nM8lIrGpsbOfIX+AypNMOxqT4IujPDeVmuOqfRLxgtc1CiLioZ1HO3l8y1HuvLKS7NTJLQrPVGl2CvFxpg91ETmhsfqE00kUACry0mjo6GdQbVJFwi4iEgXn3EvOuZu9jkNkJnHO8fWndpOblsgnr50bknPG++IozUnhiEYUROQEqlt7yU9PJCM54bT2r8xPwwFH1FFNJOwiIlEQkfB7YW8zbx5u4/Nvn0/maX5gn47Ru38DDPnVpUREJqtv72d27umNJgDMzk0lzqCmVTcgRMJNiYLIDDTkD/C/n95DVX4ad6wKbXHgnNxURpyjvkN3/2YiM1ttZvvM7KCZfXGK55PM7NHg8+vMrGLcc18Kbt9nZjeM2/63ZrbLzHaa2cNmlhyeVyOh1tI9SM+gn+Ks0/9PmBgfR0l2CjUaqRQJOyUKIjPQj189zKGWXv755vNJ8IX2bWB2sKD5iOoUZhwz8wE/AG4EFgF3mNmiCbvdCbQ75+YB3wHuDh67iNHGFouB1cAPzcxnZqXA3wArnXNLAF9wP4lC+5q6AZh1BokCQGVeGnXt/QyoTkEkrJQoiMwwdW19fO/5A9ywuIjrzjv3TkcTpSbGU5iRpDqFmWkVcNA5d9g5NwQ8Atw6YZ9bgZ8HHz8GXG+ji3fcCjzinBt0zlUDB4Png9FW3ilmFg+kAg3T/Dpkmoyts1KUeWaJQkV+GiMBx7a6jukIS0ROQImCyAzzr0/uIs6Mf7ll8bRdY05eGrVtfQScm7ZrSEQqBerG/V4f3DblPs45P9AJ5J3oWOfcUeD/ArVAI9DpnPvttEQv025PYzcZSfFnvM5KRV4aBqyv1sJrIuGkREFkBnlmRyO/39PM598+n5Lsc1tc7WTm5KUyMByguXtw2q4hEWmqZb0nZosn2mfK7WaWw+hoQyVQAqSZ2aQ1d8zsLjPbaGYbW1pazjBsCZe9TV1nPO0IICXRR1FmMutrlCiIhJMSBZEZ4njPIP/8q50sKc3kL6+onNZrlQaTkMaO/mm9jkSceqB83O9lTJ4m9NY+walEWUDbSY59O1DtnGtxzg0DjwOXT7ywc+4e59xK59zKgoKCEL0cCSX/SIADzT3MOsNpR2Pm5KWytbaDQEAjlSLhokRBZIb4yq930TUwzL/dfkHIC5gnyk9PIj7OaOwcmNbrSMTZAMw3s0ozS2S06HjthH3WAh8JPr4NeME554Lb1wS7IlUC84H1jE45utTMUoO1DNcDe8LwWiTEao73MuQPnNWIAkBZTgrdg36qVf8kEjZnNklQRKLCQ+tq/+T37fUdPLWjkXcuKmLTkXY2HWmf1uv74oxZWck0dGpEYSZxzvnN7DPAc4x2J/qJc26XmX0N2OicWwvcC9xvZgcZHUlYEzx2l5n9AtgN+IFPO+dGgHVm9hiwObh9C3BPuF+bnLs9jWfX8WhMac5oR7VtdR3MLUgPWVwicmJKFERiXPfAMGu3NVCWk8JV88M3JaM4K5mdR7twzjF6I1hmAufc08DTE7Z9ZdzjAeD2Exz7DeAbU2z/F+BfQhuphNvepi58cUZBetJZHV+YkURqoo/t9Z28b0VZiKMTkalo6pFIDHPO8eutDQz6A7x/RRm+uPB9YS/OSqF/eITO/uGwXVNEItfexm7mFqQRf5ZTH+PMWFKSxbZ6tUgVCRclCiIxbHt9J7sbu3jH+UVn3Lf8XI2tvKo6BREB2NvUzXmzMs/pHMvLs9jV0MWQPxCiqETkZJQoiMSoruCUo/KcFK6cnx/268/KTMaARtUpiMx4XQPDHO3o57zijHM6z7KybIb8AfYf6w5RZCJyMkoURGKQc45fbznK8EiA2y4qJ86DGoGkBB+5aYkaURARDgS/2C8sOrdEYXlZNoCmH4mEiYqZRSLcxA5Gp2NrXQd7mrq5ccksCjLOrnAwFIqzU2jQWgoiM96hltGWpnML0jnWdfYLMZbnppCTmsD2uk4+eEmoohORE9GIgkiM6eof5sntDczOTeWKeeGfcjReSVYybb1DDAyPeBqHiHjrUEsPCT6jLOfcVoQ3M5aWZWtEQSRMlCiIxJjf7GjEP+K4bUWZJ1OOxivOCq7QrOlHIjPa4ZZe5uSdfcej8S4oy2L/sW76hvwhiExETkaJgkgM2X+sm51HO7l2YQH5Hk45GlOcPdb5SNOPRGaywy09VOWnheRcy8qyCTjY1dAVkvOJyIkpURCJEcMjAdZuayA/PZGrw7iw2slkJMWTmuijSSMKIjOWfyRAbVsfVSFaTXlJaRYAu452huR8InJiShREYsTL+1to6x3i3ctLQzK8HwpmRmFGMi3dZ1+8KCLRra69n+ERR1VBaEYUijKTyE9PZKdGFESmXWR8mxCRc9LVP8zLB1pYWprFvMLQ3LULlcLMJJq7B3HOeR2KiHjgcEsPAHNDlCiYGUtKs9ipEQWRaaf2qCIx4Pm9zQQCcMPiWV6HMklRRhLrh0foGfSTkZzgdTgiEmaHg61Rq/LP/SbG+HbR+4918/PXa0gYN4L6gUtmn/M1ROSPNKIgEuWauwfYdKSNVZW55KYleh3OJIWZowXNzZp+JDIjHW7tITctkZwQvj+VZKUQcHCsS/VPItNJiYJIlPvtrmMk+OJ423mFXocypcJg9yV9oIvMTIdaekPW8WhMafZo6+WjWtBRZFopURCJYvXtfexu7OKq+fmkJ0XmTML0pHhSEnwaURCZoQ639IaskHlMdmoCKQk+Gjp0A0JkOilREIlif9jfQnJCHJfP9XYF5pMZ7XyURHOXEgWRmaazf5jWnsGQtUYdY2aUZCfToBEFkWmlREEkSjV3DbC7oYvLqvJITvB5Hc5JjXY+0p0/kZlmrONRqKceAZRkp9DUNcBIQB3VRKaLEgWRKPXygRbifRbRowljCjOS6Rsa7XwkIjPHWx2PQjyiAKOJwkjA6SaEyDRSoiAShdp7h9ha18GqilzSIrQ2YbyxgmZ9oIvMLNWtvfjijNm5qSE/d2nWaEGzph+JTB8lCiJR6PVDrQBcOb/A40hOz1stUlWnIDKjVLf2Up6TQmJ86L9u5KYnkhgfp85HItPIs0TBzJLNbL2ZbTOzXWb2r17FIhJNBv0jbKptZ0lpFlkp0bGAWWZyPEnxcep8JDLDVLf2UjEN9QkAcWaUZCWr85HINPJyRGEQuM45txy4AFhtZpd6GI9IVNha18HAcIDLq/K8DuW0vdX5SFOPRGYM5xxHjvdSkTc9iQKM1ik0dvYTcCpoFpkOniUKblRP8NeE4I/+0kVOwjnHG4eOU5KdTPk0zPmdToUZybRo6pHIjNHSM0jv0AgVedP3XlWSncLwiKNFo5Ui08LTGgUz85nZVqAZ+J1zbp2X8YhEusOtvTR3D3JZVT5m5nU4ZyQ/I4nuQT9dA8NehyIiYVDT2gcwbVOPYDRRABU0i0wXTxMF59yIc+4CoAxYZWZLJu5jZneZ2UYz29jS0hL+IEUiyJuHj5Oa6GNZWZbXoZyxgvTRzkdj7RJFJLbVtI7+rVdOY6JQkJ5EfJwpURCZJhHR9cg51wG8BKye4rl7nHMrnXMrCwqio8OLyHToGfSzp7GLi2bnkOCLiD/dM5KfkQj8cQEmEYltNcd7iY8zSoN3/aeDL84ozkqmoVP1TyLTwcuuRwVmlh18nAK8HdjrVTwikW5bXQcBByvm5HgdylnJTUskzjSiIDJT1BzvpTw3lfhpvrFRkp1CQ4cKmkWmg5e3JYuBF81sO7CB0RqF33gYj0hE21zbTllOCkXBNQmiTXxcHLlpiRzSiELMMrPVZrbPzA6a2ReneD7JzB4NPr/OzCrGPfel4PZ9ZnbDuO3ZZvaYme01sz1mdll4Xo2cq+rWvmktZB5Tmp3CoD9Ae+/QtF9LZKbxbElX59x24EKvri8STRo6+mnsHODdy0u8DuWc5KcnaUQhRpmZD/gB8A6gHthgZmudc7vH7XYn0O6cm2dma4C7gT83s0XAGmAxUAL83swWOOdGgO8CzzrnbjOzRCC62n3NUGOtUS+typ32a40VNGvhNZHQi76JziIz0ObadnxxFpVFzOMVpCdRfbyXkYCmCMSgVcBB59xh59wQ8Ahw64R9bgV+Hnz8GHC9jbbvuhV4xDk36JyrBg4y2uAiE7gauBfAOTcUrGmTCNfSPUjf0Mi0FjKPKcxMwmemhddEpoESBZEI5w8E2FrXwfnFmaQmejYIGBL5GUkM+QPqUBKbSoG6cb/XB7dNuY9zzg90AnknObYKaAF+amZbzOzHZjb93zzlnFUHOx7NmcbF1sbEx8VRlJVEQ6feV0RCTYmCSITb39RN39AIF83O9jqUczbWIvWg6hRi0VQLe0wcOjrRPifaHg+sAH7knLsQ6AUm1T6AWmlHmprjwdaoYUgUAEqyUjja3o9TQbNISClREIlwm2o7yEiKZ15hhtehnLP8DK2lEMPqgfJxv5cBDSfax8zigSyg7STH1gP14xbjfIzRxGEStdKOLNWtfST4jJLs8DRfKMtJpX94hLo2jSqIhJISBZEIdrxnkH1NXVwwOxtfXHStxDyVtEQfWSkJWkshNm0A5ptZZbDoeA2wdsI+a4GPBB/fBrzgRm8BrwXWBLsiVQLzgfXOuSagzswWBo+5HtiNRLya1vC0Rh1TljNa0LytXiUsIqEU3ROeRWLcr7c2jK6dMDs6106YyMyoKkjTiEIMcs75zewzwHOAD/iJc26XmX0N2OicW8toUfL9ZnaQ0ZGENcFjd5nZLxhNAvzAp4MdjwA+CzwYTD4OA38Z1hcmZ6XmeC8VYZp2BFCUmUx8nLGtroNborw7nEgkUaIgEsEe21Qf1WsnTGVuQTov79cc8ljknHsaeHrCtq+MezwA3H6CY78BfGOK7VuBlaGNVKbTaGvUPi6fmx+2a/rijJLsFLbXd4btmiIzgaYeiUSoXQ2d7G7sipnRhDFVBWk0dw/SPTDsdSgiMg2OdQ3SPzxCZX54l7woy0lhx9FO/COBsF5XJJYpURCJUL/cdJREX1zUr50wUVV+OvDH9okiElvG/rYrwrCGwnhlOSn0D4+oq5pICClREIlAQ/4Av9p6lHcsKor6tRMmmlc4+uXhkD7MRWLSkWBr1HDWKMBo5yOAbXUqaBYJFSUKIhHopX3NtPUOcdtFZV6HEnKzc9PwxZkKmkViVPXxXhJ9cZRkp4T1unlpiWQmx7NNdQoiIRNbtypFYsRjm+opyEjiqvn5/GJjvdfhhFRifBzlOSlKFERi1Cv7W8lKSeDRDXWn3jmEzIzl5dkaURAJIY0oiESY4z2DvLC3mfdeWBq2HuThVlWQrqlHIjHqeO8geemJnlx7WVkW+5q6GRgeOfXOInJKsfktRCSK/XprA/6A4/0rYm/a0Zi5BWlUt/YSCDivQxGREAoEHG29Q+SnJ3ly/eVl2fgDjl0Nmn4kEgpKFEQizGOb6llWlsXCWRlehzJtqgrSGfQHONrR73UoIhJCx7oHGB5x5KZ5M6JwYbCd9KYj7Z5cXyTWKFEQiSBjayfEYhHzeFXBtomH1SJVJKaMtUb1akShICOJyvw0NtQoURAJBSUKIhFkbO2EW5aVeB3KtKoqGF1L4bDqFERiSk1rH4BnNQoAK+fksLGmDec0tVHkXClREIkQY2snvH1RITkeDduHS376aBtDFTSLxJYjx3uJjzOyUhI8i+Hiylza+4b1/iISAkoURCJELK+dMJGZUVWQrhapIjGmurWXnLRE4sw8i+HiilwATT8SCQElCiIR4rFN9eSnJ3H1/AKvQwmLqoI0JQoiMabmeC/5Ho+IVuSlkp+eyIbqNk/jEIkFShREIsDY2gnvWxG7aydMNLcgnaauAXoG/V6HIiIhEAg4jhzvI8+jQuYxZsbKOblsOKJEQeRczYxvJCIR7oktR/EH3IyYdjRmbsFo56NqjSqIxITGrgEG/QFPC5nHXFyZS11bP02dA16HIhLVlCiIeMw5x0Pra7loTg4LimJ37YSJ3up81KqCQ5FYcCTYGjUvzdsRBYCLK0bXU9hQo1EFkXOhREHEY+ur2zjc0ssdq2Z7HUpYzclLJc7gkEYURGLCoWCiUJDhfaKwqDiT1ESfEgWRc6REQcRjD6+vJSM5nnctLfY6lLBKivdRnpuqFoYiMaK6pZeUBB8ZyfFeh0K8L45Vlbm8eqDV61BEopoSBREPtfcO8fTOJt53YSkpiT6vwwm7qnx1PhKJFYdbe6jMT/O0Nep4V88v4HBrL3VtfV6HIhK1lCiIeOjxLUcZ8ge445KZNe1oTFVBOtWtPQQCWkFVJNodbumlKtikIBJcvWC01fTLB1o8jkQkeilREPFIIOC4740aVszO5rxZmV6H44mqgjQGhgM0dqkziUg0G/SPUN/eR1V+5CQKcwvSKM1O4eX9ShREzpYSBRGPvLC3mSPH+/jYlZVeh+KZucHOR4eaVacgEs1qj/cRcH/sZhYJzIyrFxTw2sHjDI8EvA5HJCopURDxyE9eq6Y4K5kbFs/yOhTPjE1TOKyCZpGoNta9LJKmHgFcsyCfnkE/W2o7vA5FJCp5liiYWbmZvWhme8xsl5l9zqtYRMJtb1MXrx86zocvqyBhhqzEPJWC9CQykuI53KqCZpFoVh38G66MoKlHAJfPy8cXZ5p+JHKWvPyG4gf+zjl3PnAp8GkzW+RhPCJh89NXa0hOiOOOVeVeh+IpM6OqIE0tUkWi3OGWHgoykshITvA6lD+RmZzAheXZKmgWOUueJQrOuUbn3Obg425gD1DqVTwi4dLcNcATW4/yvhVlZKcmeh2O5+YWpKtFqkiUq27tjahC5vGuXVjA9vpOmjrVNEHkTHm/KgpgZhXAhcA6byMRmX7/9fJhRgKOj19d5XUoEaGqII3Htxylb8hPamJEvCWJyBk63NrLDYuLvA6Dh9bVTtrmD7Zf/vpTu/n+B1aEOySRqOb55GgzSwd+CXzeOdc1xfN3mdlGM9vY0qKhQ4lurT2DPLjuCLcuL2FOXmTefQu3sS4pGlUQiU4dfUO09Q5RlR85HY/GK8xIZlZmMjvqO70ORSTqeJoomFkCo0nCg865x6faxzl3j3NupXNuZUFBQXgDFAmxH79SzaA/wKfeNs/rUCLGWy1SVacQE8xstZntM7ODZvbFKZ5PMrNHg8+vC44ojz33peD2fWZ2w4TjfGa2xcx+M/2vQs7EWDOCSOt4NN7SsiyOtPXR2NnvdSgiUcXLrkcG3Avscc79u1dxiIRLR9/uTIJEAAAgAElEQVQQ979Rw7uWFjOvMDLvvHlhTl4qZhpRiAVm5gN+ANwILALumKJJxZ1Au3NuHvAd4O7gsYuANcBiYDXww+D5xnyO0Vo2iTBjf7uR1vFovKUlWQA8tb3R40hEoouXIwpXAB8CrjOzrcGfmzyMR2Ra/fClQ/QNj/DZ6+Z7HUpESU7wUZaTohapsWEVcNA5d9g5NwQ8Atw6YZ9bgZ8HHz8GXB+8cXQr8IhzbtA5Vw0cDJ4PMysD3gX8OAyvQc7Q4ZYe4uOM8txUr0M5ofyMJIqzknlqhxIFkTPhWeWgc+5VwLy6vkg41bX18bPXanj/ijIWzsrwOpyIU5WfrkXXYkMpUDfu93rgkhPt45zzm1knkBfc/uaEY8c64f0H8A+A/ngi0OGWXmbnpUb8mjBLS7P47e5j1Lf3UZYTuUmNSCSJ7L9qkRhx97N7iYuDL7xzodehRKSxFqmBYHcSiVpT3fyZ+B/1RPtMud3MbgaanXObTnphNb7wzP7mbuZHwXTKpaWj049+vbXB40hEoocSBZFptrm2nd9sb+Suq6qYlZXsdTgRaX5ROv3DIxztUKFhlKsHxq8iWAZM/Fb21j5mFg9kAW0nOfYK4N1mVsPoVKbrzOyBiRdW4wtvDPpHOHK8jwVFkT/Yk5eexKVVuTyyoVY3JUROkxIFkWk0EnD865O7yU9P4uPXzPU6nIi1oGj0buT+Y90eRyLnaAMw38wqzSyR0eLktRP2WQt8JPj4NuAF55wLbl8T7IpUCcwH1jvnvuScK3POVQTP94Jz7i/C8WLk1Gpa+xgJuKhp0HDHqtnUtfXz2qFWr0MRiQpKFESm0X1v1LCtroMv33w+aUlaTOxE5hWO3o3cf0x1CtHMOecHPgM8x2iHol8453aZ2dfM7N3B3e4F8szsIPA/gC8Gj90F/ALYDTwLfNo5NxLu1yBnZiy5j4YRBYAbFs8iOzWBR9bXnXpnEYmMlZlFYtHRjn6+/dw+rllQwLuXl3gdTkTLSkmgOCuZAxpRiHrOuaeBpyds+8q4xwPA7Sc49hvAN05y7peAl0IRp4TGgeYe4iyyW6OOl5zg4/0ryrjvjRpaewbJT0/yOiSRiKYRBZFp4JzjK7/aiXPw9fcsYbT7o5zM/KIM9ilREIkqB451MycvjeQE36l3jhB3rCpneMTxy031XociEvGUKIhMg0c31PH83mb+7p0LIrq3eCRZUJjOweYeRlRkKBI1DjT3REXHo/HmFWZwcUUOD65TUbPIqWjqkchZemhd7ZTbm7sH+MGLB5lbMHqXbfx+H7hkdrjCizoLijIY9Aeoa+ujIkqmMYjMVA+tq8UfCHC4pYey7JQTvh9Gqg9fVsFnH97CS/ubue68IuDE7+lj9P4tM5FGFERCyD8S4NENdST44rj9onLiNOXotC2YNVbQrOlHItHgeM8QAQeFmdE3z3/1klkUZiTxs9ePeB2KSERToiASQk/taKSxc4D3rygjMyXB63Ciytj0hQPN6nwkEg2auwcBKMyIvvVhEnxxfPCSOby8v0WrwouchBIFkRDZUN3Guuo2rpqfz/nFmV6HE3XSkuIpzU5hX5NGFESiQXPXAAYUZETfiALAHZeUk+Az7ntDowoiJ6JEQSQEjhzvZe22BuYXpnPD4llehxO1FhSla+qRSJQ41j1ITloiCb7o/CpRmJHMu5YW89imenoH/V6HIxKRovOvWySCtPUO8cC6WrJSE1hz8WzVJZyDBbMyONzSi38k4HUoInIKzV0DFEXpaMKYD11WQc+gn7XbGrwORSQiqeuRyDnoHfTz09eqCQQcH7msgpTEk/cSj7bOIOG2oDCDoZEAR9r6mFsQXS0XRWYSfyDA8Z6hqJ9muWJ2NguLMnh4fS1rLlZXI5GJNKIgcpaG/AHuf/MInf3DfPiyOVE7TzeSLAx2PlKdgkhka+4aZMQ5ZmVFXyHzeGbGBy6Zzfb6To529HsdjkjEUaIgchYG/SM8uO4IdW19/NnKcubkqe9/KMwrTMcXZ+xp7PI6FBE5icbO0S/VJVkpHkdy7t5zYSnJCXFsqG7zOhSRiKNEQeQM+UcC/M3DWzjQ3MN7LyxlSWmW1yHFjOQEH/MK0tnVoERBJJI1dA6Q6IsjLz3R61DOWVZKAjcvK2FrfQeD/hGvwxGJKEoURM5AIOD4h8e289yuY9y8rJiVFblehxRzFpdksquh0+swROQkGjv6mZWVHDPNG+5YNZshf4Dt9XrvERlPiYLIaXLO8eVf7+TxLUf5wjsXcPncfK9DikmLSjI51jVIa8+g16GIyBQCAUdj5wDFUV6fMN6K2dnkpyexta7D61BEIoq6HokEnawjkXOOZ3c18cqBVq6eX0BOavQPt0eqxSWjU7l2NXRxzYICj6MRkYnq2vsY9AcoyY6++oSTvc8vL8/ihT3NdPYPk5WSELbrAnzgEnVcksikEQWR0/DivmZeOdDKpVW53LC4CIuR4fZItCjYblHTj0Qi01gNUSwUMo93QVk2Dther1EFkTFKFERO4bWDrfx+TzMrZmdz87ISJQnTLCs1gbKcFHaroFkkIu1q6CTOoDAztlpC56UnUZ6ToulHIuNo6pHISWw60s5TOxpZXJLJey8si5nCPS+dzqJzmckJvHn4+Fv7alheJHLsbuiiMCOZBF/s3WtcXp7Nb7Y3cqxrgKLM2KnBEDlbsfdXLhIiexq7eGJLPfMK0/nzi8vxxSlJCJeS7GSO9wypVaFIBNrV0BVThczjLS3NwoBtmn4kAihREJlSTWsvD6+vpSQ7hQ9eMpv4OP2phFNJVgoOaOoc8DoUERmnpXuQ5u5BiqOwkPl0ZCQnMK8wne31nTjnvA5HxHP69iMyQVPnAPe9WUN2agIfvqyCpHif1yHNOGNfQho6+j2ORETGG2syUBKjIwowOqrQ1jtEo25UiChREBmvvXeIn71eTaIvjr+8opL0JJXxeCEzOZ7URB8N+qAWiShb6zowIypbo56u84sziTPYcVSd10SUKIgE9Q+N8NPXaxgaCfDRKyq1VoKHzIyynBTq2/u8DkVExtl0pJ2FRRkkJ8TuSGtaUjxVBensPKrpRyJKFEQA/0iAhzfU0t47xIcurWCWul14rjw3leauQQaGVdAsEglGAo4ttR2srMjxOpRpt7Qki+O9QzR1aVRTZjYlCiLAN57ew8HmHm69oITK/DSvwxFgdm4qjtFVYEXEe/uauukZ9LNyTq7XoUy780s0/UgEPEwUzOwnZtZsZju9ikEE4NENtfz0tRoun5vHyorY/wCMFuU5qRhQ26ZEQSQSbDrSBsBFc2J/RCE9KZ7K/DRNP5IZz8sRhZ8Bqz28vgjrq9v451/t5Kr5+dy4pNjrcGSc5AQfRZnJ1ClREIkIm460U5iRRFlO7BYyj7ekNIvWniGOdQ16HYqIZzxLFJxzLwNtXl1fpK6tj088sInynFS+f8cKLagWgcpzU6lt6yMQ0B29aGBmq81sn5kdNLMvTvF8kpk9Gnx+nZlVjHvuS8Ht+8zshuC2cjN70cz2mNkuM/tc+F6NTLTxSDsXzcnBZsgK9YuKMzFgZ4OmH8nMpRoFmZEGhkf4xAObGB4J8N8fWUlWaoLXIckUZuemMjAc4FBLj9ehyCmYmQ/4AXAjsAi4w8wWTdjtTqDdOTcP+A5wd/DYRcAaYDGjI80/DJ7PD/ydc+584FLg01OcU8LgWNcA9e39M2La0ZiM5AQq8tNUpyAzWsQnCmZ2l5ltNLONLS0tXocjMeLrT+1mV0MX3/mzC5hbkO51OHICs3NTAdhc2+5xJHIaVgEHnXOHnXNDwCPArRP2uRX4efDxY8D1Nnp7+lbgEefcoHOuGjgIrHLONTrnNgM457qBPUBpGF6LTLDpyOjf4Eyr41pamkVL9yDH1P1IZqiITxScc/c451Y651YWFBR4HY7EgCe3NfDAm7X89VWVvH1RkdfhyEnkpyeSkuBj85EOr0ORUysF6sb9Xs/kL/Vv7eOc8wOdQN7pHBucpnQhsC6EMctp2ljTTlJ8HIuKM70OJawWlwSnH2lUQWaoiE8UREKpurWXLz2+gxWzs/mH1ed5HY6cgpkxOzdVIwrRYaqJ6xOLS060z0mPNbN04JfA551zXVNeXKPP0+qNw8e5cHY2ifEz62tDRnICc/LSVKcgM5aX7VEfBt4AFppZvZnd6VUsMjMMDI/wqQc3E+8zvv+BFST4ZtYHXrSak5fKgeYe2nuHvA5FTq4eKB/3exnQcKJ9zCweyGK0qcUJjzWzBEaThAedc4+f6OIafZ4+x7oG2NPYxTULCr0OxRNLSjM51jXIwWbVSsnM42XXozucc8XOuQTnXJlz7l6vYpGZ4V+f3M2extG6hJLsmdHeLxZUBWtIXj903ONI5BQ2APPNrNLMEhktTl47YZ+1wEeCj28DXnCjTerXAmuCXZEqgfnA+mD9wr3AHufcv4flVcgkf9g/OkJzzYKZmYAtKcnCGJ22KjLT6JaqzAi/3nqUh9fX8olr5vK282bmXbFoVZqdQmZyPK8c0HSSSBasOfgM8ByjRce/cM7tMrOvmdm7g7vdC+SZ2UHgfwBfDB67C/gFsBt4Fvi0c24EuAL4EHCdmW0N/twU1hcm/GFfC0WZSZxfnOF1KJ7ITElgXmE6j26owz8S8DockbCK9zoAkel2sLmHLz2+g4srcvjCOxd4HY6cIV+ccfncfF450Ipzbsb0cI9GzrmngacnbPvKuMcDwO0nOPYbwDcmbHuVqesXJEz8IwFeOdDC6iWzZvTf3iWVuTywrpbn9zZzw+JZXocjEjYaUZCY1j80wqcf3Exygo/v3XEh8apLiEpXLcjnaEc/h1t7vQ5FZEbZWtdB14B/xtYnjFk4K5PirGQeePOI16GIhJW+NUlM++raXew71s2//9lyirNUlxCtrp4/Ojf61QOtHkciMrO8tK8FX5xx5fx8r0PxlC/OWHPxbF450EqNbljIDKJEQWLW45vreXRjHZ9+21yuXTiz74ZFu/LcVObkpapOQSTM/rC/hRWzs8lK0er1a1aV44szHlpf63UoImGjREFi0oFj3fzPJ3ZySWUuf/t21SXEgqvm5/PGoeMM+VVMKBIOx7oG2HG0c8Z2O5qoKDOZGxYX8fC6Who7+70ORyQslChIzOkb8vOpBzeTmqi6hFhy1fwCeodG2KLF10TCYqwd6I1Liz2OJHL84+rzGA4E+KfHdzDa2Xdq7b1D/OilQ1x59wtc/s3neXxzPfuPdYcxUpHQ0DcoiSnOOf7+se0caunhu2supCgz2euQJEQum5tHgs/43e5jXociMiOs3dbA0tIs5gbXMhGYk5fG399wHi/ua+GJLUcnPR8IOH7+eg2Xf+sF7n52L+U5qSwry2ZnQyc/e72GddVaD0aii9qjSky55+XDPLW9kX9cfd6ML76LNZnJCVyzoICndjTyTzedT1zczG3VKDLdqlt72V7fyf+86XyvQ4k4H728gqd3NPKvT+4mOzWBtwVr4PY2dfP1p3bz2sHjXLuwgC/deD4LZ42uPXHfGzU8+GYta7c2kJEUz6KSLA9fgcjpU6IgMePVA63c/exeblo6i09cU+V1ODINbllewu/3NLOptp2LK3K9DkckZn39qd0Y4A84Hlqn4t3xfHHGt29bxod/sp6P/Wwj5xdn4h8JcKC5h7REH99831LWXFz+J+tOxMfFcceq2dz76mEe2VDHX1+VQHluqoevYtSp/tt+4JLZYYpEIpWmHklMqGvr4zMPb2ZeYTrfvm35jF4YKJa9/fwikhPi3po7LSKh55xjW10nFflp6nZ0AlUF6bz4hWv59m3LMCAnNZH/9Z4lvPKP13HHqtlTfgYlxsfxkcsqSE308ettRwmcpMZBJFJoREGiXv/QCB+/fxMjAcd/fWglaUn6Zx2r0pLiuf78Ip7e0chXbl6kQnWRabCroYvWnkGunKfpmyeT4Ivj9pXl3L6y/LSPSU2KZ/WSYn6xsY5NRzQyKpFPn7IS1ZxzfPHx7exp6uK7ay6gMj/N65Bkmt2yrITWniHeOKyiQJHp8IuNdfjijCUlmV6HEpOWl2UxJzeV3+5qon9oxOtwRE5Kt14l4p1sDuVvdzXx0v4W3rGoiKbOQc2lnQGuXVhAelI8a7c2cNV89XcXCaXugWF+uameZaVZpGp0dlqYGbcsL+EHLx7khb3HeNeyEq9DEjkhjShI1FpXfZyX9rdwcUUO12pBoBkjOcHHTUtn8ZvtjbT3DnkdjkhMeXzzUXqHRrhsbp7XocS0kuwULpqTw5vVbbT36X1MIpduF0hU2l7fwdqtDSwsyuDdy0tVvDzD3HllFb/YWM+D647wmevmex2OyAlFU1cZ5xz3vVHD8vJsynK878gT6647r5CtdR28sLeZT79tntfhiExJIwoSdXYe7eQXG+uYk5fKHatm41M//Rln4awMrllQwM9eP8LAsOb4ioTC64eOc6ill49cNsfrUGaE7NRELqnMZfORdg619HgdjsiUlChIVNl5tJNHNtRSlpPKRy6rIDFe/4RnqruurqK1Z5C1W9UqVSQUfvpaDXlpidy0tNjrUGaMaxYWkhAfx7//br/XoYhMSd+yJGq8efg4D68fTRI+enkFSQk+r0MSD10+N4/zizO555XDBALqRy5yLnY1dPL7Pcf4i0vnkKz31rBJT4rnirn5PLW9ka11HV6HIzKJahTC6Gw68kTS/FWvBJzj97uP8dL+Fs6blcGai2drJEEwMz5xTRWfe2Qrv9xcf0a9zEXkT33v+QNkJMfzsSsrvQ5lxrl6fj47Gzr56tpdPP7Jy4nTdFqJIPq2JRGtrXeIn79ew0v7W1g5J4cPXjJHSYK85ZZlJayYnc03n9mrDkgiZ2lXQyfP7TrGnVdWaiVmDyQl+PjH1eexta6DJ7Yc9TockT+hEQWJWK8fauXv/992mroGeM8FpVxckaPuRvIn4uKMb7x3KTf/f6/yf57byzfft8zrkESizthowl9eodGEkznZrIBzHf1/34Wl3P/mEb717F5uWDKLdA/WsGjvHaK+o5+mzgHy0xNZVKwF90SJQkTpHxqhZ9CPPxAg4EbnLt7/xpEz7uoT7dOVugaG+ebTe3l4fS1z8lL5+NVVatUnJ3R+cSYfu6KC/36lmvdeWMaqylyvQxKJGptr23lu1zE+//b5Gk3wUFyc8dVbFvHeH77Ot57Zw9ffszRs1+4d9PPk9ga213f+yfb4OGN3YxdfvmURmcn6tzFTKVHwiHOOpq4BDhzr4WBLD8c6B+ge9E/az4D89CTKclKoyEtj4awMMmP0zXxgeIQH3jzCD148SGf/MHddXcXfvn2BhmLllD7/9gU8u6uJTz24iSc+dQXluUosRU7FPxLgn5/YyazMZP7qqiqvw5nxLpydw19fVcl/v1LNJZV53LJ8+lds3tPYxeOb6xkYDnDtwgIWF2dRmJlEQ0c/W+s6eHzLUTbUtPGDD65gcUnWtMcjkUeJQph1DwyzubaDzUfaaekZBGBWZjILijIoyEgiMyWBBN/oCELPoJ+ufj+Nnf0caO5hS7AjQml2CsvKslhWlh0Td4A6+oZ4eH0dP3+9hqauAa6an88/rj6PJaV6U5LTk5YUz08/ejHv++HrfPSn63n8k1eQlRr9fxsSvdp6h6hu7eFoRz8pCT5y0xK9DmmS+944wu7GLn74wRWeTHWRyf5h9XlsOtLOlx7fwZLSLCrz06blOs45fvxKNQ+8eYTirGTuvLKcWVnJbz0/Jy+NOXlpfOGGhXzmoc2894ev890/v4Ab1Tp3xtE7Q5hUt/byxJZ6Ntd2MBJwzMlL5T3zSlk4K+O0vuw752juHmRvYxe7Grt4ZmcTz+5soiI/jQvKsllSmkVKYvS0tBvyB3jlQAtrtzXw3K4mBoYDXD43j/97+3KunJ/vdXgSheYVZnDPh1fy4XvX89Gfree/PnQRhRnJpz5QJIReP9TKA28e4Xe7jzE88se2vbNzU7liXj6LijMjYpHI/3zpEN/5/X7mF6bT3jt0Vl35JPQSfHF8/wMreNf3XuGvfr6BB/7qEoqzUkJ6Df9IgK8+uYsH3qxlSUkmt68sJ8E3dZOQiytyefpvruKv79vIpx/azNffszTqpzfLmVGiMM12Hu3kR384xDM7Gokz46I5OVw5N5/8jKQzOo+ZUZSZTFFmMtcsLKS1Z5Bt9R1sq+vgia1HWbutgQWzMrigPJuB4ZGI64M9PBJgX1M3W2rbeflAK68fbKV3aITs1ATev6KMD102h/NmqXBKzs2lVXl8744L+NtHt/Gu773KDz+4gosrVLMg069rYJivPbmbxzbVk5OawIcvq+DKefk8v6eZtt5B3qxuC64Dk8KfrSwnP/3MPgNCyT8S4LHN9YwEHO9eXqImERGmJDuF//yLi7jz5xt5/w9f5747VzGvMCMk5+4Z9PPZhzbz4r4WPn5NFeU5qcSd4r9/XnoSD/7VpXzqwU380xM7aO4e4HPXz9e/mxlCicI0cM7x5uE2fvSHQ7y8v4WMpHg+fs1cslMSyAhRQVB+ehLXn1fEdQsLaegYYGtdO9uPdrKnsYsntzVww+JZ3HpBCZfPzSP+BHcKpkt77xCHW3s41NzL7sYuttZ1sLuxiyF/ABidOvWeC0u5/vxCrpxXoHanElKrlxRTkZ/GJx/YzJp73uS2FWV85rp5qluQabOhpo3PPbyFY92DfPa6eXzmunkkxY/erGnsHADg8nn5bK/v4MltjXz/hYPcvKyYi+bkeBLvt3+7j4PNPbzvwlLyPExY5MQuqcrj0Y9fykd/uoH3/+gN/umm87jtovJzGo2qa+vj4/dvYt+xbv73e0dHBk53JCkl0cc9H17JF3+5g//4/QEOtfTy7duWRdxNSQk9cy56VjRduXKl27hxo9dhnNCQP8AzOxv5yWs1bKvrID89kY9dWclfXDqHzOSEaR/aDThHdWsv3QPDPLOzie4BP/npSdy4ZBaXVuWxsiKHosxzn4ox6B+hoWOA+984QkffEO19Q3T0DXO8d4jWnkH6hkbe2jfRF0dJdgplOWM/qeSkJuhOhEy7geERfrfnGBuq2wg4x/nFmSwuyWJhUcYJp+lF+5C6mW1yzq30Og6vheuzYmye97ee3Ut5Tgr/seZCLijP/pN9Jr7vd/YP8/821nG4tZfFJZk8cOcl5ISxfuHJbQ189uEtXFKZy60XlIbturHuVO8dZ/v539Y7xIv7mtl0pJ3FJZl89rp5XLuw8Iy+oA+PBPjxK9V89/n9xMfF8YMPruCaBQWnFdfE1+Wc40d/OMT/eXYfS0uz+PbtyzQbYJwz/f/TS6f7eaERhRBo7RnkoXW1PPDmEZq7B6nMT+N/3bqY21eWhzXbjjNjbkE6H7hkNl+7dQkv7Wvm11sbeGxTPfe/eQSAvLRE5helMyc3jaLMJAoykkhNjCc10UfAwdDICEP+AEP+AAPDgbe+/B/vGeR47xBNnQM0dw/+yXUNyEpJICctkcUlWRSkJ5KfkURBehI5aYmnHNYUmQ7JCT5uWVbC1fMLePVAC9uPdrKroQsYHZEryU4mPz2J3NREctISyUlNYCTgImL+uES+lu5BvvT4Dn6/5xirF8/i/9y+7LRaSGalJPCxKyt59UArv9t9jNXffZl/u/2CsNRmPbGlnn94bDsXzcnhXctUlBoNctMSeewTl/Hk9kbufmYvn3hgMxnJ8bz9/CIumpPDBeXZVOankTahGH14JMDB5h5+s72BX21p4GhHPzcsLuKr7158TjUPZsanrp3HvIJ0vvj4Dm7+3qvceVUln7xmLtmpkVewL+fO00TBzFYD3wV8wI+dc9/yMp4zMegf4Q/7Rotxf7vrGEMjAa5eUMDdt1VwzfwCz5dgT07wsXpJMauXFDM8EmB3QxebjrSzr6mb/c3dvLCvmdaeQU41oJTgM/LSksjPSCQvLYmFRRmU5aRSmpPC3qYuclISyUxJ0JcriVhZKQm8a1kJNy4tpq6tj0MtvTR09FN7vI8d9Z2M/xP4zu/3U5qdQnluKpX5aW/9VOWnU5qTon/np+FU7+tmlgTcB1wEHAf+3DlXE3zuS8CdwAjwN865507nnOHknOPpHU18+dc76Rn08+WbF/GxKyrOaJQ0zoyrFxQwrzCdZ3Y28hf3ruOvr6rkCzcsfGvKUigFAo7vv3iQf//dfi6ryuM/P3QRT21vDPl1ZHqYGe9eXsJNS2bx+qHj/GrrUf6wr+VPWofnpCaQFfwsHvQHaOjoJ+AgzuDK+QV87dbFXH9+UchieufiWVxckcs3n9nDf/3hMD99rYablxZzywUlrJyTE7Jp1tHMPxKgqWuA1p4hjvcMMjQS4HBLDymJPspzUpmdl8riksyI///Ks0TBzHzAD4B3APXABjNb65zb7VVMJxMIOA629LC+uo0/7G95qxg3Ny2RO1aV86HLKphXmO51mFNK8MWxvDyb5ROGxP0jAdr7hukb8vPYpnrMjPi40R9fnJHgiyMpPm7KD8Ahf4Cq/Mh8vSJTiTN7q+XfGP9IgI7+Ydp7h2jrG6I4K4W69j7q2vp4YvPRP1nbJNEXx5y8YAJRkEZl3h8TiYKMJE2n47Tf1+8E2p1z88xsDXA38OdmtghYAywGSoDfm9mC4DGef1YEAo4X9zXzvecPsK2+k6WlWfz7ny1nftHZF5mWZKfwm89exTee3s1/v1LNMzub+OurqvizleUh62L3yoEWvvXMXnY1dPHeC0u5+/3LVBc2DaZzavHEc6+ck8tFs3No7xumvr2P9r5h2vuGGBweIeAgI9mY//+zd+fxedV13v9fn+vK3uxp2qZN27R0b2lLKW1RQQVFQAVUGDYVuXEYFUedcWZuuec3juNy/3SccZkZdURAEdlxoQoqOoAI0g1K9y1tumRpk2ZPmv363n+ck3qR9Wqb5FxX8u3f5bAAACAASURBVH4+HnnkXOd8zzmfc+Xkus7nfJczJZOCzFTmT8nkr9563qjElTcphZUzvSbNm8rqeHpHFT/bWoEBU7PTWDEzh+K8DLLSkkhLDpOWFCItOUxqcoiQGa8crMXMMCAlKcSk1CQy/Z9wyOKqmU4smtq72He8mSO1rRyubaW8vo3uiHcryoCksPHakXra/L8TgBksmJLFqtm5XDAzjwtm5XJeYWbgN5ujBVmjsAYodc4dAjCzR4FrgUAShe6eCM3t3TS2eW3tj9Wd4nBtK0drT3Gk7hT7jzefvmiYkZvOtRfM4IolU3nzvMmDDisW75LCIQqzUoHUER9+TSQRJIVDTM5MPT0CTfQXk3OO2tZODtW0UnayhUMnWymraeXQyVZe2FdDZ0/kdNlJKWFK/KRhem46U7K8Zn1TstL856MkkZWaTFrywIn3OBLL5/q1wBf86SeB/zLvTbkWeNQ51wGUmVmpvz1i2OaI6+yOcKS2lQPVLbxcepLf7znBiaYOivPS+er7z+cDFxaPyGd/ekqYL193Plcsmca3fr+ff16/i397dh+Xzi/k0gWTWTo9h5LJk2J6zoFzjhNNHRyqaeGl0pM8t7eavcebmZGbzjdvXMF1K2eM9/NvwjAz8ielxMXzOYpy0rl25QyuWlbEUf/aqaK+jUM1rfxhfw3tXZHhN9JHenKYH79ymOK8dGbkpjMjL50ZuRn+73TyJ6UEVsPb1tlDQ1sn5fVtHKxuYU9VE5sP17P3eNPpWpzpuemsm1vArPwMpmSlkj8phaRwiFvWzqKrJ8LxxnYO1rSw7VgjW4/V88yO4zyy6RgAWalJrJyVywUzc7lgVh7zpmQyJTt1VGobYxFkojADOBb1uhxYO9I7OVTTwv/+6Xa6ehw9EUdXT4SeiKPbn+7ucbR0dNMywFORAabnpDGrIINrL5jOBTPzWDU7j5KCDH3YioxzZnY6iVgz541DrPZEHJUNbZSdbH3Dz46KRp7dfeL0CF99hQwyU5PISEkiKezV2oX9WrzkcIiksDd9/0cuivvq6EHE8rl+uoxzrtvMGoECf/6GPuv29rYd9e8KgPtfKuOBVw7TcKqLpvau000zM1LCvHVBIVcum8bV5xeNys2hSxcUcsn8yWw+XM8TW47x4oEant7x5+ZBk1LCpPs/GclJpKWE6YlEaOvsob0rQkd3D83t3XT45144ZFxUkseXrl3KX1w0M7CLDJk4UpJCzJuSebp1Re+Nl56Io72rh47uyOnfEedY/3olDi/B7eyOnL4Wa2n3fmelJVFe38bGsjqa2/tfo2WkhJmUmkRWahKT/FqIkHm1xyEzrHc6BIb32sxwzuGcNwDM6d9+HNGvI95Mr/9md4SGNm/glo4+n+/pyWFWzc7lU5fPp6mtm1n5GUPW2iWHQ8zMz2BmfgZvWzgF/H0fOtnK1qMNbD1az9ajDfzX86Wnax7ASyBSk8OkJXutPdKSw6yalceXrlt2Ln+2YQWZKAx0pd2vxbyZ3Qnc6b9sMbN9oxpVH0eAV8Zyh/1NBk6eyQq3jlIgATrj92CcmejHD2P0HsTL/86THx9wdizvwewRD+bMxPK5PliZweYP9I075t8Ve4D/PrtVh/y7jeY5dwh4DPhw7Ksk2mdNIsUbWKxncY6djvVczs8x/DwN/DzYCzwcQ7lbRzjWZ4Avn/3qMX1fBJkolAMzo14XA5V9Cznn7gHuGaug4o2ZbZnowx1O9Pdgoh8/6D2AhHkPYvlc7y1TbmZJQA5QN8y6CftdkSB/NyCxYoXEilexjp5EijeRYu0VZOP6zcB8M5tjZil4ndjWBxiPiIicm1g+19cDt/nT1wPPOe+BPuuBm8ws1czmAPOBTTFuU0RERkFgNQp+29RPAr/FG/LufufcrqDiERGRczPY57qZfRHY4pxbD9wHPOh3Vq7Du/DHL/c4XiflbuAu51wPgL4rRESCEehzFJxzz+A1sZLBxV1VegAm+nsw0Y8f9B5AgrwHA32uO+c+HzXdDtwwyLpfAb4SyzYTSEL83XyJFCskVryKdfQkUryJFCsA5oZ74paIiIiIiEw4ifkAABERERERGVVKFOKEmV1pZvvMrNTMPjfA8r81s91mtt3M/sfMgh4GcUQNd/xR5a43M2dmCTVqQCxieQ/M7C/882CXmcUyGltCieH/YJaZPW9mW/3/hauDiHO0mNn9ZlZtZjsHWW5m9h/++7PdzFaNdYwSu1g/18Ywnn7nl5nlm9nvzOyA/zvPnx/ouWZmM/3/9T3+592n4zVeM0szs01mts2P9V/8+XPMbKMf62N+Z3z8DvuP+bFuNLOSsYq1T9xh/7P0V/Ecr5kdNrMdZva6mW3x58XdeeDvP9fMnjSzvf65e3G8xhoz7wET+gnyB6+D3kFgLpACbAOW9CnzdiDDn/448FjQcY/l8fvlsoAX8R7KtDrouAM4B+YDW4E8//WUoOMO4D24B/i4P70EOBx03CP8HlwKrAJ2DrL8auDXeM8cWAdsDDpm/Qz6t4zpc22MY+p3fgH/CnzOn/4c8DV/OtBzDSgCVvnTWcB+/38+7uL195npTycDG/0YHgdu8uf/d9Rn1yeA//anbwrq+xz4W7zh/3/lv47LeIHDwOQ+8+LuPPD3/wDwUX86BciN11hj/VGNQnxYA5Q65w455zqBR4Frows45553zp3yX27AG0t8vBj2+H1fwvuHax/L4MZILO/BXwLfcc7VAzjnqsc4xtEWy3vggGx/OocBxtNPZM65F/FGAhrMtcCPnWcDkGtmRWMTnZyhWD/Xxswg59e1eBc3+L+vi5of2LnmnKtyzr3mTzfjPfNuRjzG6++zxX+Z7P844DLgyUFi7T2GJ4HLzWygBw6OGjMrBt4N3Ou/NuI43gHE3XlgZtl4yfh9AM65TudcQzzGeiaUKMSHGcCxqNfl/rzB3IGXhY4Xwx6/mV0AzHTO/WosAxtDsZwDC4AFZvaymW0wsyvHLLqxEct78AXgg2ZWjjcKzl+PTWhx40w/KyQ4ifK3muqcqwLv4hyY4s+Pm/j9pi4X4N2pj8t4/WY8rwPVwO/wapManHPdA8RzOlZ/eSNQMFax+r4F/AMQ8V8XEL/xOuBZM3vVvCewQ3yeB3OBGuCHfpOue81sUpzGGjMlCvFhoMx8wOGozOyDwGrg66Ma0dga8vjNLAR8E/jsmEU09mI5B5Lwmh+9DbgZuNfMckc5rrEUy3twM/Aj51wxXrXtg/75MVHE/FkhgUv0v1VcxG9mmcBPgc8455qGKjrAvDGL1znX45xbiVfbvwZYPEQ8gcZqZu8Bqp1zr0bPHqBoXMQLvNk5twq4CrjLzC4domyQsSbhNe37nnPuAqAVr6nRYIJ+X2Mykb5g41k5MDPqdTEDNKkws3cA/whc45zrGKPYxsJwx58FLANeMLPDeG351tv46tAcyzlQDjzlnOtyzpUB+/ASh/EilvfgDrx2tDjnXgHSgMljEl18iOmzQuJCovytTvQ2d/B/9zZpDDx+M0vGSxIecs79zJ8dt/EC+E1NXsD7nso1s97nVUXHczpWf3kOQzc5HGlvBq7xv08fxWty9K14jdc5V+n/rgZ+jpeIxeN5UA6UO+c2+q+fxEsc4jHWmClRiA+bgfn+iAMpeJ2F1kcX8JvefB8vSRhvbdOHPH7nXKNzbrJzrsQ5V4LXR+Ma59yWYMIdFcOeA8Av8Dq1Y2aT8ZoiHRrTKEdXLO/BUeByADNbjJco1IxplMFaD3zYHy1jHdDYW6UtcSeW8zkerAdu86dvA56Kmh/Yuea3gb8P2OOc+0Y8x2tmhb21u2aWDrwDr0/F88D1g8TaewzXA88558ay9uNu51yx/316k7//W+MxXjObZGZZvdPAFcBO4vA8cM4dB46Z2UJ/1uV4T5qPu1jPyFj1mtbP0D94zSj247Vr/Ed/3hfxLogBfg+cAF73f9YHHfNYHn+fsi8wzkY9ivEcMOAbeB88O/BHpxhPPzG8B0uAl/FGkHkduCLomEf4+B8BqoAuvLtNdwAfAz4WdQ58x39/dozH/4Px9DPQ+RxwPAOdXwXA/wAH/N/5ftlAzzXgLXjNMLZHfe9dHY/xAsvxRqTbjncR+3l//lxgE1AKPAGk+vPT/Nel/vK5AZ4Tb+PPox7FXbx+TNv8n11R3wtxdx74+18JbPHPhV8AefEaa6w/ejKziIiIiIj0o6ZHIiIiIiLSjxIFERERERHpR4mCiIiIiIj0o0RBRERERET6UaIgIiIiIiL9KFGQhGdm7zMzZ2aLzmEbh/1nE/S+fpuZ/WqE4rvGzAZ8OqOZtfi/p5vZk/70SjO7eiT2LSIiInK2lCjIeHAz8BLeg2PijnNuvXPuq8OUqXTO9T7oZiXeeOEiIkPqvdkwAtspMLPnzazFzP5rkDI/N7PXzazUzBr96dfN7E0jEUMMMX7azA76N4ZyBynzDn/5bVHzLvLnfWYEYlhsZn/wj3uPmX3Pn7/KzK4cYr21ZvZNf/rLZxuLmX3UzGr8/e81s0/FsM5l/gO9zpqZPW1mf+wzr99xmFmSmTUMsP6Xzawi6n37jpkNeQ1qZu8/lxuAMjKUKEhCM7NMvMfR34GfKJjZY9F35M3sR2b2ATPLMLPHzWy7X2ajma2OYR9fMLO/i3q908xK/J+9ZnavP+8h/0vqZTM7YGZr/PIf6f3i9Z/S+oqZbTazL0Vts8TfRgreA8Zu9D9Qb/S3VeiXC/lf0pMRERk57cA/AX83WAHn3PuccyuBjwJ/dM6t9H/+NEYxvghcBlQMU24Hb7xxdBPeA7tGwn8B/+q/D0uA7/rzVwEDJgpmluSc2+ic+5sRiuEhf/+XAF8ws6Jhyl8GnHWiYGYFwPnAVDObdbbbAb7ux70MuBDvu3so7weUKARMiYIkuuuA3zjn9gN1ZrYKeBS4EcC/8L4ceAb4BFDvnFsOfAnvgyra8713yIB7Y9z/PODbeE/mXATcgvdE0b8D/s8A5b8NfM85dxFwvO9C51wn8HngMf8L+DHgJ8CtfpF3ANuccydjjE9EJgC/ueQLZvakfwPjITMzf9lhM/sXM3vNzHYMdJfWOdfqnHsJL2E4m/1f5N9pf9XMfm1mU/35H/NvjGwzsyfMLN2f/xP/rvLzfi3BpWb2gB/7fQPtwzm31Tl3JIZwDgHZZjbZfw/eCfw2KtbBYnrazG7xp+8yswcG2HYR3lOtcZ4d/vqfB271v0Ou9++gf9/Mfgf80L+J9IsB3reP+/tNM7P5ZvZb/z180cwWDHWQzrka/1iL/G1d698A22pmz5rZFDM7Dy+x+3s/tjeZ2VQz+5mZbTGzTTZ8bcP1eE8Zfgz/u/UcpQCpQIMfd7+/h5ldglez/k0/7hIz+xsz2+2X+4m/7pfNuxn4rH+eX2dm/+7feHvazJL8coOdny+Z2Vf992GfjVHtWCJRoiCJ7ma8xAD/983Ar4HLzCwVuAp40TnXhncB/yiAc24n3iPWo7299w4Z3gdrLMqcczuccxG8x8v/j/Med74DKBmg/JuBR/zpB2Pcx/3Ah/3p/wX8MMb1RGRiuQD4DN6d7rm88Y7tSefcKuB7DFFrcDb8z9pvAx9wzl2Id3Ojt8b0CefcRc65FcBB4CNRq+Y4594O/APwS+BrfuwXmtmycwzrp3gXuJcCG4GuqGWDxfRR4Iv+ReqngE8PsN1vAC+a2TNm9hkzy/G/X76If6ffOfekX/YC4L3OuQ8NFKB5zXauAN7nnGsH7gE+4b+Hd+PVXgzKzEqAMLDTn/UisM45dwHwM+CzzrmDeDe+vh5V+/MfeLUiq4G/YPgbYzfjfW894k+frb/3b8RVAjucczv8+f3+Hs65P+Ld4PsbP+7DeOfJSr/cJ6O2OwcvqfgA8DDezcNlQAS4cpjzE8Ccc2uAv8dL+CRKUtABiJwtvzr0MmCZmTm8D0yH92HyAvAuvLsfvRfmdpa76uaNSXVa1HRH1HQk6nWEwf+/3Jns3Dl3zMxOmNllwFr+XLsgIhJtk3OuHMC/ICvB678F3oUjwKt4TTpG0mJgKfB7vxIjjH/XHVhuZl8EcoEsIHqQiF/6v3cAlc653X7su/3Yd3L2HsO7GbMf7zvgsqhlA8bknKvy5z+Pd4Hfr629c+5eM/s13vfL+4A7zWzlIDE85ScAA7kdOAK83znXbV6fi3XAT/33EAb/DrnVzN4JLARu92uiAWYBj5vZNLw79vsHWf8dwMKo/eSZWbqf8LyBmc3wt7vBOefMLGxmi5xzewfZ9lC+7pz7lnk1/T83s+v9pGqocyTaLuAnZvYUXg1Hr2f893AHgHPud/783ht2Q52f8Mb/jZKzOK5xTTUKksiuB37snJvtnCtxzs0EyvhzzcHteG04e6ucX8K7e4KZLcFrcxmLw3jtTzGvadOcc4j5Zf7cdnawC/5mvA/LaPfi3QV53DnXcw77F5HxK/rGRQ9vvNDsGGT+SDBge1SfhfOdc1f5y34MfNw5dz7wZQa+0RJ9k6X39TnF6Jyr8ON6K96No2hDxXQ+UAtMH2rbzrn7nXPvxbuOWjxI0dYhQtyBV+szw39teLU+K6N+BqtVecg5txR4G/BtM5viz/8O8E3/uD7R57iiGbAmaj8zBkoSfDcCBUCZmR3GSxrOaeAQP7H5DV5tDwz994j2LuC/gTXAFjML+/Ojz6POqPK959FQ52f0+qPxv5HwlChIIrsZ+HmfeT/F6yfwLN6H0O+j7rZ8Fyg0s+3A/8ZretQYw35+CuT7d+g+zuB3aWLxaeAuM9sM5AxS5nlgid8us7c96HogEzU7EpH4sxuYYX8ewCHFzJb6yyYBx80sGe+zeSz9E/C//aah0QaMycwuxuvTtgq42wbouGtmV0a1e58O5OE1pRnoBs9QtgB3Ab80s2nOuXqgysze5287ZGYrhtqA36fkEeCv/Vk5QIV5t81viyraN7bf+/vuPabBakTA+559h38zrgTvIv1cmh/hx/cmvGZGMPg5cjpuPykods49h9dEqBDIiHGXQ52fMgxlTpKwnHNvG2Def0S9LOizuB34oHOu3e/g9T94Vb/4H4DR23kB/y6Uf6flikHCOH3Hxzn3kajpw73LnHM/An7kT5cBF0et/9UBytcBF/XZzwq8TsxnU90rIjIs/45xNpBiZtcBV/Q2BxqKc67DzK4H/sPMsvCuLf4dr6nI54FNwFG8pkSD3S2OJb6/Bf4WmAbsMrNfOef+aoi4XhpkUb+YzOuQfA/ed0SFmf0DcL+ZvdPvd9brKry7+O14zUg/45yrMbPn8NrgbwW+EsvxOOf+YN4zdp72mxLdBHzPzL6A1+H3Jww/WtNXgU1m9lXgC3g3z8r94+sdDekp4Akzez9egnCXv5/b8f5WzxOVOPTyvyen4SU1vTEfMLMOM+sdDCR6VMBuvAE+ss0sumnPv/q//97MPgIkA1uB7/vzBztHHgG+b2afxavZuN8/v0LA15xzzVHNpwY1zPkpw7A3nv8i45f/AfE83oeU4d1p+nWwUQ3P/yL5OHDrEF98IiIiIiNKiYKIiIiIiPSjpkciIiIiE5iZfZQ3DjkK3tDiwz75WcY31SiIiIiIiEg/GvVIRERERET6UaIgIiIiIiL9KFEQEREREZF+lCiIiIiIiEg/ShRERERERKQfJQoiIiIiItKPEgUREREREelHiYKIiIiIiPSjREFERERERPpRoiAiIiIiIv0oURARERERkX6Sgg7gTEyePNmVlJQEHYaISFx69dVXTzrnCoOOQ0RExoeEShRKSkrYsmVL0GGIiMQlMzsSdAwiIjJ+qOmRiIiIiIj0o0RBRERERET6UaIgIiIiIiL9KFEQEREREZF+lCiIiIiIiEg/ShRERERERKQfJQoiIiIiItKPEgUREREREeknoR64JvLwxqNnVP6WtbNGKRIRERGR8U01CiIiIiIi0o8SBRERERER6UeJgoiIiIiI9KNEQURERERE+lGiICIiIiIi/ShREBERERGRfpQoiIiIiIhIP0oURERERESkHyUKIiIiIiLSjxIFERERERHpJynoAERG08Mbj55R+VvWzhqlSEREREQSi2oURERERESkn5gSBTO70sz2mVmpmX1ugOWpZvaYv3yjmZVELbvbn7/PzN4VNf9vzGyXme00s0fMLG0kDkhERERERM7dsImCmYWB7wBXAUuAm81sSZ9idwD1zrl5wDeBr/nrLgFuApYCVwLfNbOwmc0APgWsds4tA8J+ORERERERiQOx1CisAUqdc4ecc53Ao8C1fcpcCzzgTz8JXG5m5s9/1DnX4ZwrA0r97YHXPyLdzJKADKDy3A5FRERERERGSiyJwgzgWNTrcn/egGWcc91AI1Aw2LrOuQrg34CjQBXQ6Jx79mwOQERERERERl4sox7ZAPNcjGUGnG9meXi1DXOABuAJM/ugc+4n/XZudidwJ8CsWRqRRs5MZ3eEfSea2V3ZSHVzB4umZbFqVh4FmalBhyYiIiIS12KpUSgHZka9LqZ/M6HTZfymRDlA3RDrvgMoc87VOOe6gJ8Bbxpo5865e5xzq51zqwsLC2MIV8TT1tnD9/5QyiObjnKguoXUpBAv7Kvh33+3n6e3VxJxffNdEREREekVS43CZmC+mc0BKvA6Hd/Sp8x64DbgFeB64DnnnDOz9cDDZvYNYDowH9gERIB1ZpYBtAGXA1tG4HhEAOiORHho0xFONndyy5pZLC7KJhwyGtu6eGFfNS8frKW5o5vrVxWTFNYowSIiIiJ9DZsoOOe6zeyTwG/xRie63zm3y8y+CGxxzq0H7gMeNLNSvJqEm/x1d5nZ48BuoBu4yznXA2w0syeB1/z5W4F7Rv7wZCJyzvGLrZUcqmnl+guLWTYj5/SynPRkrlkxnbyMFH6z6zgdXRE+dPFsQjZQKzkRERGRiSumJzM7554Bnukz7/NR0+3ADYOs+xXgKwPM/2fgn88kWJFYHDrZymtH63n7wkJWzcrrt9zMuHRBISlJIdZvq+S5vdW8Y/HUACIVERERiV9qcyHjzgv7qslKS+JtC6cMWW7tnHxWzcrj+b3V7D/RPEbRiYiIiCQGJQoyrhyrO8XBmlbeMm8yycP0PTAzrlkxnanZaTy+5RhNbV1jFKWIiIhI/FOiIOPKC/uqSU8Os2ZOfkzlU5JC3LJmFp3dEX61Xc/8ExEREemlREHGjeNN7ew53szF5xWQmhSOeb3JWam8fdEUdlY28fze6lGMUERERCRxKFGQcWPz4TqSQsab5hac8bqXzJ9MYVYq//TUTto6e0YhOhEREZHEokRBxgXnHLsrm5g/JZOM1JgG83qDpFCI61bOoLy+je88XzoKEYqIiIgkFiUKMi6U17fR2NbF0qhnJpypOZMncc2K6dz3UhnVTe0jGJ2IiIhI4lGiIOPCrsomQgaLp2Wf03Y+e8UCunoi/OdzqlUQERGRiU2JgiQ85xy7Khs5rzCT9JTYOzEPZHbBJG5eM4tHNh3lSG3rCEUoIiIikniUKEjCO9HUQW1rJ0unn32zo2h/fdk8ksMh/v3Z/SOyPREREZFEpERBEt7OykYMWFyUNSLbm5KdxkfeXMIvt1dyqKZlRLYpIiIikmiUKEjC21PVxOyCDLLSkkdsm3e8ZQ4p4RA/+OOhEdumiIiISCJRoiAJ7VRnN8cb25k3ZWRqE3pNzkzlhtXF/PTVCo2AJCIiIhOSEgVJaEdqT+HwhjYdaX95yVy6IxHuf/nwiG9bREREJN4pUZCEVnaylaSQUZyXPuLbnl0wiavOL+KhDUdoau8a8e2LiIiIxLMzf4StSBwpO9nKzPwMksOjk/N+7NLzeHp7FT99tZzb3zznDcse3nj0jLZ1y9pZIxmaiIiIyKhSjYIkrPauHiob2kal2VGv84tzWDkzl4c2HsU5N2r7EREREYk3ShQkYfX2TygpGL1EAeDWtbMorW5hU1ndqO5HREREJJ4oUZCEVXaylbAZs/IzRnU/71k+ney0JB46w6ZGIiIiIolMiYIkrLKTLczISyclaXRP4/SUMB+4sJhf76ziZEvHqO5LREREJF4oUZCE1NkdoWKU+ydEu3XtbLp6HE9sKR+T/YmIiIgETYmCJKTyhlNEHJQUjG6zo17zpmSypiSfJ189pk7NIiIiMiEoUZCEVFHfBsCMvLFJFADet2oGB2ta2VXZNGb7FBEREQmKEgVJSBUNbeSmJ5OZOnaPArl6WREp4RA/31oxZvsUERERCYoSBUlIFfVtTM8d+acxDyUnI5m3Lypk/bZKunsiY7pvERERkbGmREESTltnD7WtnRTnjW2iAPC+C2ZQ09zBnw7Wjvm+RURERMaSEgVJOJWNfv+EMa5RAHjbwilkpyXxCzU/EhERkXFOiYIknNMdmQNIFNKSw1x9fhG/2XWczm41PxIREZHxS4mCJJzyhjbyMpLJGMOOzNHes3w6pzp7OFDdHMj+RURERMaCEgVJOBX1pwKpTei1dm4+uRnJGiZVRERExjUlCpJQTnV0U3+qa0yfn9BXcjjEOxdPZU9Vk0Y/EhERkXFLiYIklIoAOzJHu3LZNDq6IxysaQk0DhEREZHRokRBEkqQHZmjvWX+ZFKTQuxU8yMREREZp5QoSEKpamwnLyOZ9JRwoHGkJoVZOC2LPVVN9ERcoLGIiIiIjAYlCpJQjje1My07LegwAFg2PYdTnT2UnWwNOhQRERGREadEQRJGe1cPtS0dTM2Jj0RhwdQskkLGnuNqfiQiIiLjjxIFSRil1S1EHHFTo5CSFGLelEz2VjXhnJofiYiIyPiiREESxr7j3gPO4iVRAFg8LZv6U12caOoIOhQRERGREaVEQRLG3uNNJIWMgszUoEM5bWFRFuDFJiIiIjKeKFGQhLH3eDNTslIJhyzoUE7LTkumOC+dPVVKFERERGR8iSlRMLMrzWyfmZWa2ecGWJ5qZo/5+6GffQAAIABJREFUyzeaWUnUsrv9+fvM7F1R83PN7Ekz22tme8zs4pE4IBm/9h1vZlqcdGSOtmhaNsfq22hu7wo6FBEREZERM2yiYGZh4DvAVcAS4GYzW9Kn2B1AvXNuHvBN4Gv+ukuAm4ClwJXAd/3tAXwb+I1zbhGwAthz7ocj41VdayfVzR1x1T+h1+LTzY+aA45EREREZOTEUqOwBih1zh1yznUCjwLX9ilzLfCAP/0kcLmZmT//Uedch3OuDCgF1phZNnApcB+Ac67TOddw7ocj41VvH4B4GRo12rTsNHLTk9mr5kciIiIyjsSSKMwAjkW9LvfnDVjGOdcNNAIFQ6w7F6gBfmhmW83sXjObdFZHIBPC3qr4G/Gol5mxqCib0poWOrsjQYcjIiIiMiJiSRQG6jnad9D4wcoMNj8JWAV8zzl3AdAK9Ov7AGBmd5rZFjPbUlNTE0O4Mh7tO95MwaQUstKSgw5lQIuLsujqcRysaQk6FBEREZEREUuiUA7MjHpdDFQOVsbMkoAcoG6IdcuBcufcRn/+k3iJQz/OuXucc6udc6sLCwtjCFfGo73Hm1jk9wWIR3MmTyI1KaTRj0RERGTciCVR2AzMN7M5ZpaC1zl5fZ8y64Hb/Onrgeec96ja9cBN/qhIc4D5wCbn3HHgmJkt9Ne5HNh9jsci41Qk4jhQ3cKCqfGbKCSFQiyYmsW+481E9JRmERERGQeShivgnOs2s08CvwXCwP3OuV1m9kVgi3NuPV6n5AfNrBSvJuEmf91dZvY4XhLQDdzlnOvxN/3XwEN+8nEIuH2Ej03GicrGNk519jB/SvwmCgCLpmWxo6KRivo2ZuZnBB2OiIiIyDkZNlEAcM49AzzTZ97no6bbgRsGWfcrwFcGmP86sPpMgpWJ6UC11+5//tRMDpyI3z4AC6dlETLYc7xJiYKIiIgkPD2ZWeJeqZ8czCvMDDiSoWWkJDG7YNLpEZpEREREEpkSBYl7pdUtTM5MJW9SStChDGvxtCyON7VT39oZdCgiIiIi50SJgsS9A9XNzJuSGI/ZWFSUDXjNj0REREQSmRIFiWvOeSMexXtH5l6TM1MpzExV8yMRERFJeEoUJK5VN3fQ3N7N/Knx3T8h2uKiLA6dbKG9q2f4wiIiIiJxSomCxLVSf8SjeVMSKVHIJuJg/wnVKoiIiEjiUqIgce2Af7GdKE2PAGbmZ5CREmbvcSUKIiIikriUKEhcO1DdQk56MpMz43/Eo14hMxZNy2Lv8SZ6InpKs4iIiCQmJQoS17yOzJmYWdChnJFF07Jp74pwpLY16FBEREREzooSBYlrpdUtCdWRudf8qZmEQ6bmRyIiIpKwlChI3Kpt6aCutZN5CdQ/oVdqUpjzCiexu6oJ59T8SERERBJPUtABiAymd8Sj+WM44tHDG4+O2LYWTctm/bZKapo7mJKdNmLbFRERERkLqlGQuHUgAYdGjbb49FOa1fxIREREEo8SBYlbpdUtTEoJU5STmHfjc9KTmZ6bxt6qpqBDERERETljShQkbh2obmbe1KyEG/Eo2uJp2RytO0VLR3fQoYiIiIicESUKErdK/aFRE9miomwcsE/Nj0RERCTBKFGQuNTY1sWJpo6E7Z/Qa3pOGtlpSexR8yMRERFJMEoUJC4FMeLRaDAzlkzPYf+JZjU/EhERkYSiREHiUmm111RnfgI+Q6GvFcU5dEccv9t9POhQRERERGKmREHiUml1C2nJIWbkpQcdyjmbmZ9Bbnoy61+vDDoUERERkZgpUZC4dKC6hfMKMwmHEnfEo14hM5YX5/DHAyepb+0MOhwRERGRmChRkLh04ERLwndkjra8OJfuiOOZnVVBhyIiIiISEyUKEndaO7qpaGhL+I7M0Ypy0phbOEnNj0RERCRhKFGQuHOwxhvxaN446Mjcy8y4ZsV0Nh2uo6qxLehwRERERIalREHizumhUaeOnxoFgOtWzsA5+NlrFUGHIiIiIjIsJQoSdw5Ut5AcNmbnZwQdyogqmTyJNXPyeWLLMZxzQYcjIiIiMqSkoAMQ6evAiRbmTJ5EUnh85bEPbzzKzLwMNpXV8f8/s5eSyZOGLH/L2lljFJmIiIhIf+PrSkzGhdLq5nHxoLWBLJuRTUpSiFeP1gcdioiIiMiQlChIXGnv6uFo3alxNTRqtNSkMOfPyGFHeSMd3T1BhyMiIiIyKCUKElfKTrYSceOvI3O0C2fl0dkTYWdFY9ChiIiIiAxKiYLElQPVvUOjjt9EYXZBBpMzU9lUVhd0KCIiIiKDUqIgcaX0RDMhgznDdPRNZGbGurn5HKtvo6Jez1QQERGR+KREQeLKgeoWSgomkZoUDjqUUbVqVh7JYWNDWW3QoYiIiIgMSImCxJXS6pZx3eyoV1pymJUz89h2rIFTnd1BhyMiIiLSjxIFiRtdPRHKTraO647M0dbNzac74njtiIZKFRERkfijREHixpHaVrojbkLUKAAU5aQzOz+DDWV1RPSkZhEREYkzShQkbhw44Y14NF4ftjaQdXMLqGvtpNQf7UlEREQkXihRkLhxoLoFMzivcGLUKAAsnZHNpNQkNhxSp2YRERGJL0oUJG6UVrdQnJdOesr4HvEoWlIoxEUleew73kx9a2fQ4YiIiIicFlOiYGZXmtk+Mys1s88NsDzVzB7zl280s5KoZXf78/eZ2bv6rBc2s61m9qtzPRBJfAeqW5g3gWoTeq0pyQdg02E9gE1ERETix7CJgpmFge8AVwFLgJvNbEmfYncA9c65ecA3ga/56y4BbgKWAlcC3/W31+vTwJ5zPQhJfD0Rx8GaFuZPnTj9E3rlZqSwuCibzYfr6OqJBB2OiIiICBBbjcIaoNQ5d8g51wk8Clzbp8y1wAP+9JPA5WZm/vxHnXMdzrkyoNTfHmZWDLwbuPfcD0MS3ZHaVjq7IyyYgIkCeJ2aT3X2sLOiMehQRERERIDYEoUZwLGo1+X+vAHLOOe6gUagYJh1vwX8A6BbqMK+480ALJygicJ5hZOYnJmqTs0iIiISN2JJFGyAeX0HfR+szIDzzew9QLVz7tVhd252p5ltMbMtNTU1w0crCWnfiWbMmDDPUOjLzFg3N59j9W1U1LcFHY6IiIhITIlCOTAz6nUxUDlYGTNLAnKAuiHWfTNwjZkdxmvKdJmZ/WSgnTvn7nHOrXbOrS4sLIwhXElE+080U1IwaUKNeNTXqll5pIRDqlUQERGRuBBLorAZmG9mc8wsBa9z8vo+ZdYDt/nT1wPPOeecP/8mf1SkOcB8YJNz7m7nXLFzrsTf3nPOuQ+OwPFIgtp3vJkFUydmbUKvtOQwK2flsq28gVMd3UGHIyIiIhPcsImC3+fgk8Bv8UYoetw5t8vMvmhm1/jF7gMKzKwU+Fvgc/66u4DHgd3Ab4C7nHM9I38Yksjau3o4XHtqwvZPiLZubgHdEceWI/VBhyIiIiITXFIshZxzzwDP9Jn3+ajpduCGQdb9CvCVIbb9AvBCLHHI+HSwpoWeiGPBNCUK07LTKCmYxMayWnoijnBooG4+IiIiIqMvpkRBZLQ8vPEoW496d88PnGjh4Y1HA44oeOvm5vPo5mP8YX81ly2aGnQ4IiIiMkHF9GRmkdF0oqmDsBmTM1ODDiUuLJ2eQ1ZaEg/86UjQoYiIiMgEpkRBAneiqZ3CrFQ1s/GFQ8ZFJfn8YX8Nh0+2Bh2OiIiITFBKFCRwJ5ramZqt2oRoa0rySQoZP9mgWgUREREJhhIFCVR7Vw8NbV1MzU4LOpS4kp2ezLuWTePxLcdo69RAYSIiIjL2lChIoKqb2gGUKAzgQ+tm09TezS+3932+oYiIiMjoU6IggapSojCotXPymT8lU82PREREJBBKFCRQVY3tpCWHyMtIDjqUuGNmfOji2Wwvb2TbsYagwxEREZEJRomCBKqqoY2inHTMNOLRQN53wQwyUsKqVRAREZExp0RBAtMTcRxvaqcoR82OBpOVlsx1F8xg/bZKGk51Bh2OiIiITCBKFCQwZSdb6epxTM9JDzqUuPbBtbPp6I7w5KvlQYciIiIiE4gSBQnM7qomAIpyVaMwlCXTs1k9O4+HNh4lEnFBhyMiIiIThBIFCczuyibCZhRm6WFrw/ngutmUnWzl5YMngw5FREREJgglChKY3VVNTMlOJSmk03A4V50/jfxJKTz4ijo1i4iIyNjQFZoEZndlE0XqnxCT1KQwN140k9/vOUFVY1vQ4YiIiMgEoERBAlHd3M7Jlg6NeHQGblkzCwc8svFo0KGIiIjIBKBEQQKxq9LryDw9VzUKsZqZn8HbF07hkc3H6OqJBB2OiIiIjHNKFCQQu/1EQTUKZ+ZD62ZT09zBs7tOBB2KiIiIjHNKFCQQuyubKM5LJy05HHQoCeXSBYXMzE/nwQ2Hgw5FRERExjklChKI7RUNLC/OCTqMhBMOGbesmc2GQ3UcONEcdDgiIiIyjilRkDFX29LBsbo2VhTnBh1KQvqL1cWkhEM8pE7NIiIiMoqUKMiY217RCMByJQpnpSAzlXcvL+Knr5bT0tEddDgiIiIyTilRkDG37VgDZnC+mh6dtY+8qYTmjm4e23ws6FBERERknFKiIGNue3kj8wozyUxNCjqUhLViZi5r5uRz/0tlGipVRERERoUSBRlTzjm2HWtgxUw1OzpXd14yl4qGNp7ZURV0KCIiIjIOKVGQMVVe30Zta6cShRFw2aIpnFc4iXtePIRzLuhwREREZJxR2w8ZU9vLvY7MK9Q/YVgPxzCq0fLiXH6+tYIv/WoPn3/vkjGISkRERCYK1SjImNpW3kBKOMSiadlBhzIurJyZS3ZaEs/trVatgoiIiIwoJQoyprYda2Dx9GxSknTqjYTkcIhLFxRyuLaVVw7VBh2OiIiIjCO6WpMx0xNx7KhoZKWaHY2oi0ryyU5L4lu/P6BaBRERERkxShRkzOw93sSpzh5WzlJH5pGUHA7x1gWFbCqrU62CiIiIjBglCjJmNpfVAd4dcBlZq0vymZqdyr8/u1+1CiIiIjIilCjImNl8pJ7pOWkU52UEHcq4kxwO8Zl3LODVI/X8ZufxoMMRERGRcUDDo8qYcM6xuayOdXMLgg5l3OqJOKZlp/GPv9hJTXMHSeGh7wPcsnbWGEUmIiIiiUg1CjImjtW1Ud3cwUVz1OxotITMuGrZNOpaO9mgvgoiIiJyjpQoyJjYdNjrn7BG/RNG1fypWSyYmslz+6pp6egOOhwRERFJYEoUZExsLqsjJz2Z+VMygw5l3Lt6WRFd3Y5f76gKOhQRERFJYEoUZExsPlLH6tl5hEIWdCjj3pTsNC5ZMJmtxxo4WNMSdDgiIiKSoJQoyKg72dLBoZpW9U8YQ29fOIWCSSn8YmsFXT2RoMMRERGRBKREQUbdlsN6fsJYSw6HuHblDGpbO3lub3XQ4YiIiEgCiilRMLMrzWyfmZWa2ecGWJ5qZo/5yzeaWUnUsrv9+fvM7F3+vJlm9ryZ7TGzXWb26ZE6IIk/fzpYS3pymPNn5AQdyoQyb0omF87O48X9NRytbQ06HBEREUkwwyYKZhYGvgNcBSwBbjazJX2K3QHUO+fmAd8EvuavuwS4CVgKXAl8199eN/BZ59xiYB1w1wDblHHipQMnWTs3n5QkVWCNtXefX0RORjJPvFpOZ7eaIImIiEjsYrlyWwOUOucOOec6gUeBa/uUuRZ4wJ9+ErjczMyf/6hzrsM5VwaUAmucc1XOudcAnHPNwB5gxrkfjsSbioY2Dp1s5S3zJgcdyoSUlhzm+guLqWvt5JmdGgVJREREYhdLojADOBb1upz+F/WnyzjnuoFGoCCWdf1mShcAG2MPWxLFSwdqALhkfmHAkUxccydn8pZ5k9lUVseOisagwxEREZEEEUuiMNB4li7GMkOua2aZwE+BzzjnmgbcudmdZrbFzLbU1NTEEK7Ekz8eOMmUrFQWTNXzE4L0zqVTKc5L52evlVPX2hl0OCIiIpIAYkkUyoGZUa+LgcrByphZEpAD1A21rpkl4yUJDznnfjbYzp1z9zjnVjvnVhcW6q50IolEHH86WMtb5k3Ga4kmQUkKhbj5olmYwSObjtKtIVNFRERkGLEkCpuB+WY2x8xS8Donr+9TZj1wmz99PfCcc87582/yR0WaA8wHNvn9F+4D9jjnvjESByLxZ3dVE3WtnbxlvvonxIO8SSlcv6qYioY2nnq9Eu9fVERERGRgwyYKfp+DTwK/xet0/LhzbpeZfdHMrvGL3QcUmFkp8LfA5/x1dwGPA7uB3wB3Oed6gDcDHwIuM7PX/Z+rR/jYJGAvlZ4EUEfmOLJkeg5vXziFV4/W88OXDwcdjoiIiMQxS6S7iqtXr3ZbtmwJOgwZwsMbj56evu+lQ7R0dPPpyxcEGJH0FXGOhzceZe/xJn50+xouXaAmfeOFmb3qnFsddBwiIjI+aGB7GRVtnT2UnWxl4dSsoEORPkJm3LC6mPlTsvjkw69RdlIPYxMREZH+lCjIqNhf3UzEweKi7KBDkQGkJoW597bVhEPGRx/YTFN7V9AhiYiISJxRoiCjYk9VE5NSwszMzwg6FBnEzPwMvnvrhRypPcWnH9lKTyRxmiGKiIjI6EsKOgAZf7ojEfYdb2bZjBxCGhY1rl18XgFfuGYp/98vdvIvv9zFv1yzdNChbKP7n8TilrWzRiJEERERCYgSBRlxZSdb6eiOsETNjhLCB9fN5khtKz/4Yxmz8jP46CVzgw5JRERE4oASBRlxe6qaSA4b5xXqacyJ4u6rFlNe38ZXntlDcV46Vy4rCjokERERCZj6KMiIcs6xp6qZeVOySEnS6ZUoQiHjmzeuZOXMXD796OtsPVofdEgiIiISMF3JyYiqaGijsa2LJUUaFjXRpCWH+cGHVzM1O42PPrCFo7Wngg5JREREAqREQUbUtmMNhEPGkqKcoEORszA5M5Uf3n4R3RHHR360iYZTnUGHJCIiIgFRoiAjpifi2F7RyMKpWaSnhIMOR87SeYWZ3POhCymva+POB1+lo7sn6JBEREQkAEoUZMRsPFRLc3s3K2bmBh2KnKO1cwv4+g3L2VRWxz88uR3n9IwFERGRiUajHsmIeer1SlKSQiyapv4J48G1K2dQXt/G13+7j1n5GRTlpAcdkoiIiIwh1SjIiOjo7uGZnVUsLcomOazTarz4xNvO48bVM/nP50rZcrgu6HBERERkDKlGQUbEC/tq1OxoHDIzvvy+ZVQ0tPGL1yvIzUhh3hQ9H0NERGQi0K1fGRFPbDnG5MxUPWRtHEoOh/juB1dRmJXKQxuPcLypPeiQREREZAwoUZBzVtnQxnN7q7nxomLCIQs6HBkF2WnJ3HZxCSlJIR7402Ga2rqCDklERERGmRIFOWePbT6GA266aFbQocgoys1I4cMXl9DW2cODG47Q1RMJOiQREREZRUoU5Jx090R4bPMxLplfyMz8jKDDkVE2IzedGy+aSWVDGz99rVzDpoqIiIxj6sw8yh7eePSMyt+yNrHuyj+/r4bjTe184ZqlQYciY2RxUTbvXDKVZ3efoCg7jbcunBJ0SCIiIjIKVKMg5+ThjUeYkpXK5Yt1sTiRvHVBIcuLc3h29wn2VDUFHY6IiIiMAiUKctZKq5t5fl8NN6+ZpWcnTDBmxgdWFTM9N53HthzjhEZCEhERGXd0dSdn7ft/OERacogPXzw76FAkAMnhEB9cN5vUcIgHNxzhVEd30CGJiIjICFKiIGelqtF7ANdfrJ5JQWZq0OFIQHLSk7l13Wya2rp4eNNReiLq3CwiIjJeKFGQs3L/S2VEHPzlJXODDkUCNis/g+sumMGhk608vaMq6HBERERkhGjUIzljjae6eHjjUd59fpGGRBUAVs3K40RjO38sPcm07DTWzMkPOiQRERE5R0oU5Iz994sHae3s4WNvPS/oUOQcnOnQvcN517JpnGhuZ/22CnIzkkd02yIiIjL21PRIzkhVYxv3v1TGdSuns2R6dtDhSBwJmXHzRbOYmp3Gw5uOsrOiMeiQRERE5BwoUZAz8q3fHcA5+OwVC4MOReJQanKY2y4uISM5zO0/2syR2tagQxIREZGzpERBYnbgRDNPvHqMD108W30TZFDZ6cnc9qYSunoi3PKDjVQ2tAUdkoiIiJwF9VGQmDjn+MIvdzEpNYlPvn1e0OFInJuancaD/2stt/xgA7feu5HH/modU7LSAo3pTPtk3LJ21ihFIiIikhhUoyAxeWJLOS+X1vK5qxaRNykl6HAkAZxfnMMPb7+I443t3Pj9DVSoZkFERCShqEZhBEUijk2H63jq9Ur2Hm+isqGNxrYuJmemUpiZytLp2Syclk04ZEGHekZONLXzpad3s2ZOPjdfpLusErvVJfk8eMcabv/RZm743p948KNrOa8wM+iwREREJAaqURgBkYjjyVfLeeu/Pc9N92xg/esVZKSEuXR+ISuKc0lLCrP/RDM/2XiUr/92Ly/ur6G7JxJ02DFxzvFPv9hJZ3eEr77/fEIJluRI8FaX5PPonevo7Ilw/ff+xCsHa4MOSURERGKgGoVz9NrRej7/1E52VjSxojiHz75zIVcsnUpGivfW9raL7ok49h1vZmNZLb/ZdZzNh+t4z/IiFk6L7yFG73upjGd3n+Afr17MXN0JljPQt0/AbReX8ONXjnDrvRt474rprJ1T8Ibl6hMgIiISX5QonKXO7gjf/p/9fO+Fg0zNTuPbN63kvcunD3rHPRwylkzPZsn0bA6caOaX26t44JUjrJqVy3uWTyctOTzGRzC8P5We5P8+s4erlk3jo5fMCTocSXAFmal8/G3n8djmYzz1eiVlJ1u5dsUM0lPi79wXERERJQpnZf+JZv7msdfZVdnEDRcW8/n3LiErLfYn0c6fmsWnLp/E83tr+MP+ag7VtPKBC4vjqu324ZOt3PXwa5xXmMnXb1iBmZocyblLSw7zoYtn88K+Gp7be4Ijtad43wUzWDA1K+jQREREpA8lCmcgEnHc/3IZ//rbfWSlJnHPhy7kiqXTzmpbSaEQ71wylUXTsnh8yzHue6mMN59XwPtXzQi8dqHsZCs337MBgPcun8761ysDjUfGl5AZly2awoKpmTy+5Rg/+tNhFk/L4s3zCphdMGnU99/W2UNVUxsnGtupP9VFQ1sXHV09dEccBmSkJpGZmkSPcyybns3iouzA/ydFRESCYM65oGOI2erVq92WLVsC2Xd5/Sn+7oltbDhUxzsWT+WrHzifyZmpw64Xy9jtnd0RfrOrig2H6pg/JZNv3riSZTNyRiLsM3awpoVbfrCBrh7HQx9dy9ajDYHEIRNDd0+El0tP8vy+Gnqc45oV07nz0rksLhqZvjvOOQ7XnmLz4Toe23yMI7WtnGzpPL08KWTkZiSTnhwmHArhnKO1s4fm9i46ur0BB9KSQ1w8t4DLFk3hXcumBf48iKGY2avOudVBxyEiIuODEoVh9EQcj285xv99eg8R5/jna5Zyw4XFMTfFOZOHPB040cwzO6uobenkU5fP52NvPY+UpLEbmOo3O6v4+ye3kxIO8fBfrmPhtKwzfkiVyNloauuipqWDRzYd5VRnD8uLc3jP8iIuXzyVuZMnxfz/VtfaybbyBrYfa2R7eQPbyhtOJwbpyWFmF2QwKz+D6bnpTMtOIystacBtO+d468JCdlY0seFQLS/sq+Zw7SlCBmvnFPDeFdO5ctk08uPsmSJKFEREZCQpURjC5sN1/Msvd7Gzoom1c/L5txtWMDM/44y2caYX2u8+v4h/emon67dVMrsgg/9z9WKuWDJ1VPsINLZ18Y1n9/HAK0dYUZzDf92y6vRxKlGQsXLL2lk0nuri8S3HWL+tkh0VjQDkZSRzfnEuM3LTmZ6TRnpKmHDI6OqJ0HCqi7rWTo7UnuJIbSuVje0AmMF5hZksL85h9ex8LirJY2NZHaEz+D/qOwpT7yAEv9pWyaGTrYRDxlvmTeY9y4u4Yuk0ctJj76c0WpQoiIjISIopUTCzK4FvA2HgXufcV/ssTwV+DFwI1AI3OucO+8vuBu4AeoBPOed+G8s2BzIWiYJzjj8eOMn3XjjIK4dqmZadxt1XL+KaFdPP6mL9TC+0ey9OXthXzVee3sOB6haWF+dwx1vmcPX5RSSHR66Goa2zh4c3HeU/nztAw6kubn9zCXdftfgNtRhKFGSs9L0wP1LbyisHa3ntaD27KpuoamynrrXzDWVCBhkpSeRlJFOQmcq07DSK89KZnpt+zv0KBhuu1TnH7qomfrW9il9uq6S8vo2UcIhLFxTy3hVFvGPxVCalBtP9S4mCiIiMpGETBTMLA/uBdwLlwGbgZufc7qgynwCWO+c+ZmY3Ae9zzt1oZkuAR4A1wHTg98ACf7UhtzmQ0UoUunsi/6+9e4+yqjzvOP79zXBVlKsgARRUVEQUJY5GTWrxhtaEqDRqaGNdWpeJNuIyWk0aa4xdjc2qJllaG6s23uL9BkK0Gi9oUlEQYcArIOpwEamA4GVw4Okf+x08zDlz5jDMMMOZ32ets+bs97x7n+fZswf2u9/33Zt5Sz/mifnLN/3HP2Dnrpx95DAmHrr7Vv2n39yGQn1c98+q4b+mL2LRyk/YZaeuHD9yAONGDmTM7r2bdVvJz9ZvYNa7q5havZQpc5axrraOI/bqy+UnjCg4L8INBdtWSnmOQm3dBmrrNrJhQ/DI7CV06VTRar1tpcQTEcypWcOUOUuZOncZyz/+nG6dK7L5DCN35eDdejO4d/dtdtcwNxTMzKwllXIGXAUsiIhFAJLuAcYDuSf144Er0/sHgOuV/c84HrgnImqBdyQtSNujhG22mNq6Daz+9Iv0Ws+qT7/gw7Wfs/DDT3jrg7W8+v5qPl2/YdNQgouP25sTRw2ka6e2vdNJp8oKzqjajdO+OoRn3lzBQ68s4cFZS7hHpX0TAAANOUlEQVTzxffoVCFGDNyZfXbdiSG9d2Bgr27s3K1zNuYaCOCT2jpWf/YFH66t5Z2Vn7BgxTrmL13DFxuC7p0rOXHUQE47ZAiHDO3t25/adqFrp8pNf5dd28GdiCQxekgvRg/pxU9OHMHMd1fx2NylTKtexrTq5QD069GFvQfsxJ679GBQ7+7069GVvj26sEuPrvTZsQvdO1fSqVJ0rqygS2WFn35uZmbtRikNhUHA+znLNcChjdWJiDpJa4C+qfzFBusOSu+b2maLmFuzmm9d/6eCn+3YpZI9+/dgwpjBVA3rw9f26EvfEu5ktK1VVIijRwzg6BED+Gz9Bv68cCWvvLeK2e+t5oW3V7L848+b3Eb/nboyrN+OnH3kHhy6Rx+qhvZps+ERZuWookJUDetD1bA+XHHSfryxfC2z31vFnJo1vL1iHY/MXsLa2romt1NZIWb90zH02qF9TZQ2M7OOp5QzxUKXtxqOV2qsTmPlhQbaFxwDJelc4Ny0uE7Sm43E2SyvAVNacoP5+gErS608sZWCeJdsfNd9rbT9HFuU73auI+UKrZxvax37zTWxDX+/vf+12avu3oJhmJlZB1dKQ6EGGJKzPBho+ASu+jo1kjoBPYGPmli3qW0CEBE3ATeVEGe7JGlmRxoz3JHy7Ui5gvM1MzPraEq5hc7LwHBJwyR1AU4HJjeoMxk4M72fADwd2SzpycDpkrpKGgYMB14qcZtmZmZmZtZGmuxRSHMOLgCeILuV6a0RMV/SVcDMiJgM3ALckSYrf0R24k+qdx/ZCJ864PyI2ABQaJstn56ZmZmZmTXHdvXAte2RpHPT8KkOoSPl25FyBedrZmbW0bihYGZmZmZmeVruMb9mZmZmZlY23FBoRZLGSXpT0gJJl7V1PFtL0q2SVkial1PWR9KTkt5OP3unckn6Tcp9rqSD2y7y5pE0RNIzkl6XNF/Sham87HKW1E3SS5LmpFx/lsqHSZqRcr033XyAdIOCe1OuMyQNbcv4m0tSpaTZkh5Ly2Wdr5mZ2ZZwQ6GVSKoEbgBOAPYDzpC0X9tGtdV+B4xrUHYZ8MeIGA78MS1Dlvfw9DoXuHEbxdiS6oCLI2IEcBhwfvodlmPOtcDYiDgQGA2Mk3QYcA1wXcp1FXB2qn82sCoi9gKuS/W2RxcCr+csl3u+ZmZmJXNDofVUAQsiYlFErAfuAca3cUxbJSKmk93VKtd44Lb0/jbg2znlt0fmRaCXpIHbJtKWERHLIuKV9H4t2QnlIMow5xTzurTYOb0CGAs8kMob5lq/Dx4AjpZU6AGL7ZakwcBfATenZVHG+ZqZmW0pNxRazyDg/ZzlmlRWbgZExDLITqyB/qm8rPJPQ00OAmZQpjmnYTivAiuAJ4GFwOqIqEtVcvPZlGv6fA3Qd9tGvNV+BVwKbEzLfSnvfM3MzLaIGwqtp9DVxo50i6myyV9SD+BBYFJEfFysaoGy7SbniNgQEaPJnpReBYwoVC393K5zlXQSsCIiZuUWF6haFvmamZk1hxsKracGGJKzPBhY2kaxtKYP6ofXpJ8rUnlZ5C+pM1kj4a6IeCgVl3XOEbEaeJZsXkYvSfUPZszNZ1Ou6fOe5A9La8+OAL4laTHZsMCxZD0M5ZqvmZnZFnNDofW8DAxPd1HpQva06sltHFNrmAycmd6fCTyaU/69dCegw4A19cN1thdpDPotwOsRcW3OR2WXs6RdJPVK77sDx5DNyXgGmJCqNcy1fh9MAJ6O7eihLBFxeUQMjoihZH+bT0fERMo0XzMzs+bwA9dakaQTya5SVgK3RsS/tHFIW0XS3cBRQD/gA+CfgUeA+4DdgPeAv46Ij9JJ9vVkd0n6FDgrIma2RdzNJelI4Hmgmi/Hsf+YbJ5CWeUs6QCyybqVZBcQ7ouIqyTtQXbFvQ8wG/ibiKiV1A24g2zexkfA6RGxqG2i3zqSjgJ+FBEndYR8zczMSuWGgpmZmZmZ5fHQIzMzMzMzy+OGgpmZmZmZ5XFDwczMzMzM8rihYGZmZmZmedxQMDMzMzOzPG4omJmZmZlZHjcU2iFJ61poO8dKmiWpOv0cW6DOw5JelbRA0pr0/lVJh7dEDCXEeI+kNyXNk3RzzlNxc+scIykknZlTdkgqm9QCMYyQ9FzK+3VJN6bygyWNK7LeoZKuS++vbm4sks6R9GH6/jck/bCEdcamh7o1m6Spkp5vUJaXh6ROklYXWP9qSUty9tsNkor+myLpFEn7bk3cZmZmtm24oVDeVgLfjIhRZE+VvaNhhYg4OSJGA+cAz0fE6PT68zaK8XZgX+AAoCdwViP1qsmeoFvvdGBOC8VwPfBvaT/sB/xHKj+Y7OFpeSR1iogZEXFRC8VwV/r+rwNXShrYRP2xQLMbCpL6AqOAAZJ2a+52gF+muPcHxgBHNFH/FLLft5mZmbVzbii0Y5KOkvSspAfSlea70tN/kbRY0s8kvZJ6DPJOviJidkQsTYvzgW6Sum7B9x+SrrTPkvQHSQNS+XmSXpY0R9L9krqn8jvTVeVnJC2U9A1Jt6XYbyn0HRExLTIbgZeAwY2EswjYWVK/tA+OBZ7IibWxmKZK+m56f76k2wpseyBQk+KJiKhO618BTExXzCekK+i/lfQk8N+pp+ORAvvt++l7u0kaLumJtA+nS9q72D6PiA9TrgPTtsZLmiFptqT/kdRf0p5kDbtL6nt/JA2Q9JCkmZJeKqG3YQLZU7XvBU5rom4pugBdgdUp7rzfh6SvAycC16W4h0q6SNJrqd6dad2rJf0u5btY0rcl/buyXqepSr1ORY7PFyT9Iu2HN7WNesfMzMzKjRsK7d9BwCSyK917sPkV25URcTBwI/CjJrZzKjA7ImpL+dLUoPg1cGpEjAHuBH6ePr4/Ig6JiAOBhcDf5azaMyL+ErgUmAJck2IfI2n/It/XBZgIPF4krAfJTnC/AcwAvsj5rLGYzgGuSiepPwQuLLDda4HpkqZJmiSpZ0R8BlxFutIfEQ+kugeR9dL8bSN5TAKOA06OiM+Bm4AfpH14OVnvRaMkDQUqgXmpaDpwWEQcBDwEXBwRC4GbSVfzU+/Pb8h6Rb4KfCd9XswZwN3pdUYTdYu5RNKrwFKgOiKqU3ne7yMingemAReluBeTHSejU70LcrY7jKxRcSrwe+DxiNgf2AiMa+L4hOyp81XAJWQNPjMzM9tCeePBrd15KSJqANIJ2VDghfTZQ+nnLLIhHQVJGkl2wn7cFnzvCGAk8FTqxKgkXXUHDpB0FdAL2Al4LGe9KelnNbA0Il5LMbyWYp9HYf8JPBUR/1skpnvJhk+9RXaCmzvnomBMEbEslT9DdoKfN9Y+Im6W9AfgeOBk4FxJoxuJ4dHUACjkLOBd4JSIqJPUi2x40INpH0Ljf3MTJR0L7AOcFRHrU/luwH2SdiW7Yv9WI+sfA+yT8z29JXVPDZ7NSBqUtvtiRISkSkn7RsQbjWy7mF9GxK9SQ+9hSRNSo6rYMZJrPnCnpEfJejjqTUv7sBogIp5M5dVkx1Gx4xM2/9sY2oy8zMzMOjz3KLR/uT0AG9j8RLO2kfJNJA0GHga+l65El0rA3Jw5C6Mi4oT02e3A99Pch6uBbgVi2tgg9o1FYvw52fyES4sFFBFLUlx/ATzb4ONiMY0C/g/4SrFtR8StEfFNsr+LEY1U/aRIiNVkvT6D0rLIen1G57wa61W5KyJGAkcBv5bUP5XfAFyX8vpBg7xyCajK+Z5BhRoJyWlAX+AdSYvJGg2nN1K3JKlh8zhZbw8U/33kOp6skVgFzJRUmcpzj6P1OfXrj6Nix2fu+o3+bZiZmVlxbiiUsXRFeypweUT8aQtXfw0YJKkqbatL6pkA2BFYLqkz8N2tjPE8spPjiWmeQlN+CvxjgboFY5L0NeBosonJl6vAxF1J43LGvX8F6E02lGYt2dXwUs0EzgemSNo1IlYByySdnLZdIenAYhuIiBfIekv+IRX1BJakeRln5lRtGNtT6bvrc2qsRwSyoUbHRMTQiBhKdpK+NcOPSPEdTjbMCBo/RjbFnRoFgyPiabIhQrsAO5T4lcWOTzMzM2sBbiiUtwuAvYCf6svbnvZvaiWANJdhAnCtpDnAbODQ9PEVZBOPnyQ7YWuWdKJ4PdnE3RdTfD9pIq4XImJygY/yYlI2IfkmsqE8S8h6LG5Vzvic5ARgfspzGjApTSp+GjgwTSSeUEpOEfEccBkwVVIfsiv156VtzwdOKmEzvwDOkbQjcCVZj9BzwAc5dR4FvpNiO5yskXCEpLlpmNffF9pwmgi9K1mjpj7mt4FaSWNS0ZWSatJrcSrbOaesRl/ewrV+jsI8sqv3v03ljR0jdwM/TuvsBfxe0lzgFeCaiFhbwv5p6vg0MzOzFqCIaOsYzMzMzMysnXGPgpmZmZmZ5fEkP7MyJekcNr/lKMD0iGjyyc9mZmZmHnpkZmZmZmZ5PPTIzMzMzMzyuKFgZmZmZmZ53FAwMzMzM7M8biiYmZmZmVkeNxTMzMzMzCzP/wPxnkwx8R8LgAAAAABJRU5ErkJggg==\n",
  2688.       "text/plain": [
  2689.        "<Figure size 936x648 with 3 Axes>"
  2690.       ]
  2691.      },
  2692.      "metadata": {
  2693.       "needs_background": "light"
  2694.      },
  2695.      "output_type": "display_data"
  2696.     }
  2697.    ],
  2698.    "source": [
  2699.     "#train_data.hist('AvgHumidity')\n",
  2700.     "\n",
  2701.     "plt.figure(figsize=(13,9))\n",
  2702.     "plt.subplot(221)\n",
  2703.     "sns.distplot(train_data['AvgHumidity'])\n",
  2704.     "plt.subplot(222)\n",
  2705.     "sns.distplot(train_data['Inn 1 Team 1 Max Strike Rate_ALLBatsmen'])\n",
  2706.     "plt.subplot(223)\n",
  2707.     "sns.distplot(train_data['Inn 2 Team 2 Max Strike Rate_ALLBatsmen'])\n",
  2708.     "plt.show()"
  2709.    ]
  2710.   },
  2711.   {
  2712.    "cell_type": "markdown",
  2713.    "metadata": {},
  2714.    "source": [
  2715.     "## Observations :\n",
  2716.     "\n",
  2717.     "1. AvgHumidity plot is <b>left skew</b> implies outliers is present to the left(below(Q1)<br/>\n",
  2718.     "2. 'Inn 1 Team 1 Max Strike Rate_ALLBatsmen' is <b>right skew</b> implies outliers is present to the right(above Q3)<br/>\n",
  2719.     "3. 'Inn 2 Team 2 Max Strike Rate_ALLBatsmen' is neither too left nor too right so we are moving to boxplot which purely show outliers are present or not"
  2720.    ]
  2721.   },
  2722.   {
  2723.    "cell_type": "code",
  2724.    "execution_count": 270,
  2725.    "metadata": {},
  2726.    "outputs": [
  2727.     {
  2728.      "data": {
  2729.       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAIbCAYAAACzJZJcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X+cnWV95//XmxAIovIzoiRg2DZtB6ct2pS6a3bXgBRwu0JbXYlaf3QqS9WpLbYVOrtW3Y4KulJ0LRQdK7Z2gNqKaYUilWHb2VYlVETCSE1BJUYhQqAtfgkhfr5/nDt4EibJnOQkZybn9Xw8zuPc93Vf5z6fM5nMfd73fd33napCkiRJUv84oNcFSJIkSdq3DAGSJElSnzEESJIkSX3GECBJkiT1GUOAJEmS1GcMAZIkSVKfMQRIkiRJfcYQIEmSJPUZQ4AkSZLUZwwBkiRJUp85sNMXJDkDuBSYB3ykqt6z3fJnAx8FFgIPAq+qqnU7W+fRRx9dS5Ys6bQUSeobt95663eramGv6+g1txeStHMz3V50FAKSzAM+BJwGrANuSbKqqu5s6/Y+4ONVdWWSU4B3A7+0s/UuWbKE1atXd1KKJPWVJN/odQ2zgdsLSdq5mW4vOh0OdDKwtqrurqrHgKuAs7brcyLwuWZ6YprlkiRJknqo0xCwCLi3bX5d09buy8AvNtM/DzwtyVG7V54kSZKkbus0BGSattpu/jeB/5zkS8B/Br4FPP6kFSXnJlmdZPWGDRs6LEOSJEnS7uo0BKwDjmubXwysb+9QVeur6heq6rnASNP28PYrqqorqmpZVS1buLDvz3WTJEmS9plOQ8AtwNIkJyQ5CDgHWNXeIcnRSbau90JaVwqSJPWBJIcn+WSSryaZSvLvkxyZ5MYkX2uej2j6JskHkqxNcnuS5/W6fknqFx2FgKp6HHgTcAMwBVxTVWuSvDPJS5puLwTuSvJPwDHAaBfrlSTNbpcCf11VPwb8JK1txQXA56pqKa0LR1zQ9D0TWNo8zgUu2/flSrtneHiYBQsWkIQFCxYwPDzc65KkjnR8s7Cquq6qfqSqfqiqRpu2t1XVqmb6k1W1tOnzK1W1qdtFS5JmnyRPB/4TMAZQVY9V1UO0rhJ3ZdPtSuDsZvosWpeUrqr6PHB4kmft47Kljg0PD3P55Zfzrne9i0ceeYR3vetdXH755QYBzSneMViS1C3/DtgA/FGSLyX5SJJDgWOq6tsAzfMzmv4zueKcNOt8+MMf5qKLLuL888/nKU95Cueffz4XXXQRH/7wh3tdmjRjhgD1hSR7/SGJA4HnAZc1F4d4hB8M/ZnOTK4459XkNOts2rSJ8847b5u28847j02bHPygucMQoL5QVR09dvc1Up9bB6yrqi8085+kFQru2zrMp3m+v63/Tq84B15NTrPPwQcfzOWXX75N2+WXX87BBx/co4qkzhkCJEldUVXfAe5N8qNN06nAnbSuIveapu01wKeb6VXAq5urBD0feHjrsCFpNnv961/PW9/6Vt7//vfzve99j/e///289a1v5fWvf32vS5Nm7MBeFyBJ2q8MA59oLiN9N/A6WjucrkkyBHwTeFnT9zrgxcBa4HtNX2nW++AHPwjA7/zO7/CWt7yFgw8+mPPOO++JdmkuyGwYxrBs2bJavXp1r8uQnpDEIT6aVZLcWlXLel1Hr7m9kKSdm+n2wuFAkiRJUp8xBEiSJEl9xhAgSZIk9RlDgCRJktRnDAGSJElSnzEESJIkSX3GECBJkiT1GUOAJEmS1GcMAZIkSVKfMQRIkiRJfcYQIEmSJPUZQ4AkSZLUZwwBkiRJUp/pOAQkOSPJXUnWJrlgmuXHJ5lI8qUktyd5cXdKlSRJktQNHYWAJPOADwFnAicCK5OcuF23/wFcU1XPBc4B/qAbhUqSJEnqjk6PBJwMrK2qu6vqMeAq4Kzt+hTw9Gb6MGD9npUoSZIkqZsO7LD/IuDetvl1wM9s1+ftwGeTDAOHAi/a7eokSZIkdV2nRwIyTVttN78S+FhVLQZeDPxxkie9T5Jzk6xOsnrDhg0dliFJkiRpd3UaAtYBx7XNL+bJw32GgGsAquofgAXA0duvqKquqKplVbVs4cKFHZYhSZIkaXd1GgJuAZYmOSHJQbRO/F21XZ9vAqcCJBmgFQLc1S9JkiTNEh2FgKp6HHgTcAMwResqQGuSvDPJS5pubwFen+TLwDjw2qrafsiQJEmSpB7p9MRgquo64Lrt2t7WNn0n8II9L02SJEnS3uAdgyVJkqQ+YwiQJEmS+owhQJIkSeozhgBJUtck+XqSryS5Lcnqpu3IJDcm+VrzfETTniQfSLI2ye1Jntfb6iWpfxgCJEndtqKqTqqqZc38BcDnqmop8LlmHuBMYGnzOBe4bJ9XKkl9yhAgSdrbzgKubKavBM5ua/94tXweODzJs3pRoCT1G0OAJKmbCvhskluTnNu0HVNV3wZonp/RtC8C7m177bqmbRtJzk2yOsnqDRu896QkdUPH9wmQJGknXlBV65M8A7gxyVd30jfTtD3p5pJVdQVwBcCyZcu8+aQkdYFHAiRJXVNV65vn+4FPAScD920d5tM83990Xwcc1/byxcD6fVetJPUvQ4AkqSuSHJrkaVungZ8F7gBWAa9pur0G+HQzvQp4dXOVoOcDD28dNiRJ2rscDiRJ6pZjgE8lgdb25U+r6q+T3AJck2QI+Cbwsqb/dcCLgbXA94DX7fuSJak/GQIkSV1RVXcDPzlN+wPAqdO0F/DGfVCaJGk7DgeSJEmS+owhQJIkSeozhgBJkiSpzxgCJEmSOjQ+Ps7g4CDz5s1jcHCQ8fHxXpckdcQTgyVJkjowPj7OyMgIY2NjLF++nMnJSYaGhgBYuXJlj6uTZsYjAZIkSR0YHR1lbGyMFStWMH/+fFasWMHY2Bijo6O9Lk2aMY8EaM458sgj2bhx415/n+Za53vNEUccwYMPPrhX30OS1H1TU1MsX758m7bly5czNTXVo4qkznV8JCDJGUnuSrI2yQXTLL8kyW3N45+SPNSdUqWWjRs3UlVz/rEvgowkqfsGBgaYnJzcpm1ycpKBgYEeVSR1rqMQkGQe8CHgTOBEYGWSE9v7VNVvVNVJVXUS8EHgL7pVrCRJUq+NjIwwNDTExMQEmzdvZmJigqGhIUZGRnpdmjRjnQ4HOhlY29wVkiRXAWcBd+6g/0rgd3e/PEmSpNll68m/w8PDTE1NMTAwwOjoqCcFa07pNAQsAu5tm18H/Mx0HZM8GzgBuGn3SpMkSZqdVq5c6Zd+zWmdnhMw3ZmStYO+5wCfrKot064oOTfJ6iSrN2zY0GEZkiRJknZXpyFgHXBc2/xiYP0O+p4D7PDOGVV1RVUtq6plCxcu7LAMSZIkSbur0xBwC7A0yQlJDqL1RX/V9p2S/ChwBPAPe16iJEmSpG7qKARU1ePAm4AbgCngmqpak+SdSV7S1nUlcFVV7WiokCRJ0pw1Pj7O4OAg8+bNY3BwkPHxHQ5+kGaljm8WVlXXAddt1/a27ebfvmdlSZIkzU7j4+OMjIwwNjbG8uXLmZycZGhoCMCThTVndHyzMEmSpH42OjrK2NgYK1asYP78+axYsYKxsTFGR0d7XZo0Y4YASZKkDkxNTbF8+fJt2pYvX87U1FSPKpI6ZwiQJEnqwMDAAJOTk9u0TU5OMjAw0KOKpM4ZAiRJkjowMjLC0NAQExMTbN68mYmJCYaGhhgZGel1adKMdXxisCRJUj/bevLv8PAwU1NTDAwMMDo66knBmlMMAZIkSR1auXKlX/o1pzkcSJIkSeozHgnQnFO/+3R4+2G9LmOP1e8+vdclSJKkPmUI0JyTd/wL+8PNqJPgbfW0P0oyD1gNfKuqfi7JCcBVwJHAPwK/VFWPJTkY+DjwU8ADwMur6us9KluS+orDgSRJ3fZmoP2C6RcBl1TVUmAjMNS0DwEbq+qHgUuaftKcsGDBApI88ViwYEGvS5I6YgiQJHVNksXAfwE+0swHOAX4ZNPlSuDsZvqsZp5m+alNf2lWW7BgAZs2beKYY45hamqKY445hk2bNhkENKc4HEiS1E2/D/w28LRm/ijgoap6vJlfByxqphcB9wJU1eNJHm76f3fflSt1bmsA+M53vgPAd77zHZ75zGdy33339bgyaeY8EiBJ6ookPwfcX1W3tjdP07VmsKx9vecmWZ1k9YYNG7pQqbTnbr755p3OS7OdIUCS1C0vAF6S5Ou0TgQ+hdaRgcOTbD3yvBhY30yvA44DaJYfBjy4/Uqr6oqqWlZVyxYuXLh3P4E0Qy984Qt3Oi/NdoYASVJXVNWFVbW4qpYA5wA3VdUrgQngpU231wCfbqZXNfM0y2+q/eHSX9rvHXzwwdx3330885nP5Ktf/eoTQ4EOPvjgXpcmzZjnBEiS9ra3Alcl+T3gS8BY0z4G/HGStbSOAJzTo/qkjjz66KMsWLCA++67j4GBAaAVDB599NEeVybNnCFAktR1VXUzcHMzfTdw8jR9HgVetk8Lk7rEL/ya6xwOJEmSJPUZQ4AkSZLUZzoOAUnOSHJXkrVJLthBn/+W5M4ka5L86Z6XKUmSJKlbOgoBSeYBHwLOBE4EViY5cbs+S4ELgRdU1XOAX+9SrZIkSbPC+Pg4g4ODzJs3j8HBQcbHx3tdktSRTk8MPhlY25zkRZKraN32/c62Pq8HPlRVGwGq6v5uFCpJkjQbjI+PMzIywtjYGMuXL2dycpKhoSEAVq5c2ePqpJnpdDjQE7d4b7Tf/n2rHwF+JMn/S/L5JGfsSYGSJEmzyejoKGNjY6xYsYL58+ezYsUKxsbGGB0d7XVp0ox1eiRgJrd4PxBYCryQ1p0h/y7JYFU9tM2KknOBcwGOP/74DsuQJEnqjampKZYvX75N2/Lly5mamupRRVLnOj0S8MQt3hvtt39v7/PpqtpcVfcAd9EKBdvwNvCSJGkuGhgYYHJycpu2ycnJJ24cJs0FnYaAW4ClSU5IchCtuzuu2q7PtcAKgCRH0xoedPeeFipJkjQbjIyMMDQ0xMTEBJs3b2ZiYoKhoSFGRkZ6XZo0Yx0NB6qqx5O8CbgBmAd8tKrWJHknsLqqVjXLfjbJncAW4Leq6oFuFy5JktQLW0/+HR4eZmpqioGBAUZHRz0pWHNKp+cEUFXXAddt1/a2tukCzm8ekiRJkmaZjkOAJElSP/MSodofdHzHYGk2SDLnH0cccUSvf4ySpN3gJUK1P/BIgOac1oizvSvJPnkfSdLc4yVCtT/wSIAkSVIHvESo9gceCZAkSerAyMgIL3/5yzn00EP55je/yfHHH88jjzzCpZde2uvSpBnzSIAkSdJucuio5ipDgCRJUgdGR0e5+uqrueeee/j+97/PPffcw9VXX+2JwZpTDAGSJEkd8MRg7Q8MAZIkSR0YGBjgHe94B4ODg8ybN4/BwUHe8Y53eGKw5hRDgCRJUgdWrFjBu9/9br773e9SVXz3u9/l3e9+NytWrOh1adKMGQIkSZI6cO211/L0pz+dQw45hCQccsghPP3pT+faa6/tdWnSjBkCJEmSOrBu3TquueYa7rnnHrZs2cI999zDNddcw7p163pdmjRjhgBJkiSpzxgCJEmSOrB48WJe/epXMzExwebNm5mYmODVr341ixcv7nVp0owZAiRJXZFkQZIvJvlykjVJ3tG0n5DkC0m+luTqJAc17Qc382ub5Ut6Wb80UxdffDFbtmzhl3/5lzn44IP55V/+ZbZs2cLFF1/c69KkGTMESJK6ZRNwSlX9JHAScEaS5wMXAZdU1VJgIzDU9B8CNlbVDwOXNP2kWW/lypVceumlHHrooSTh0EMP5dJLL2XlypW9Lk2aMUOAJKkrquXfmtn5zaOAU4BPNu1XAmc302c18zTLT02SfVSu9CRJZvx4xStewZo1a/j+97/PmjVreMUrXjHj10qzgSFAktQ1SeYluQ24H7gR+Gfgoap6vOmyDljUTC8C7gVolj8MHLVvK5Z+oKo6fuzO66TZwBAgSeqaqtpSVScBi4GTgeluobr1W9B0u0Sf9A0pyblJVidZvWHDhu4VK0l9zBAgSeq6qnoIuBl4PnB4kgObRYuB9c30OuA4gGb5YcCD06zriqpaVlXLFi5cuLdLl6S+0HEISHJGkruaqzlcMM3y1ybZkOS25vEr3SlVkjSbJVmY5PBm+hDgRcAUMAG8tOn2GuDTzfSqZp5m+U3lWAlJ2icO3HWXH0gyD/gQcBqtPTi3JFlVVXdu1/XqqnpTl2qUJM0NzwKubLYVBwDXVNVfJbkTuCrJ7wFfAsaa/mPAHydZS+sIwDm9KFqS+lFHIYDW+M61VXU3QJKraF3dYfsQIEnqM1V1O/DcadrvprX92L79UeBl+6A0SdJ2Oh0O9MSVHBrtV3lo94tJbk/yySTHTbciT/SSJEmSeqPTEDCTKzn8JbCkqn4C+Bt+cA3obV/kiV6SJElST3QaAp64kkOj/SoPAFTVA1W1qZn9MPBTu1+eJEmSpG7rNATcAixNckKSg2idxLWqvUOSZ7XNvoTWlSEkSZIkzRIdnRhcVY8neRNwAzAP+GhVrUnyTmB1Va0Cfi3JS4DHaV3t4bVdrlmSJEnSHuj06kBU1XXAddu1va1t+kLgwj0vTZIkSdLe4B2DJUmSpD5jCJAkSZL6jCFAkiRJ6jOGAEmSJKnPGAIkSZKkPmMIkCRJkvqMIUCSJEnqM4YASZIkqc8YAiRJkqQ+YwiQJEmS+owhQJIkSeozhgBJkiSpzxgCJEmSpD5jCJAkSZL6jCFAkiRJ6jMH9roASZKkveHII49k48aNe/19kuy1dR9xxBE8+OCDe2396l+GAEmStF/auHEjVdXrMvbI3gwY6m8OB5IkSZL6jCFAkiRJ6jMdh4AkZyS5K8naJBfspN9Lk1SSZXtWoiRpLkhyXJKJJFNJ1iR5c9N+ZJIbk3yteT6iaU+SDzTbk9uTPK+3n0CS+kdHISDJPOBDwJnAicDKJCdO0+9pwK8BX+hGkZKkOeFx4C1VNQA8H3hjs424APhcVS0FPtfMQ2tbsrR5nAtctu9LlqT+1OmRgJOBtVV1d1U9BlwFnDVNv/8FXAw8uof1SZLmiKr6dlX9YzP9r8AUsIjWduLKptuVwNnN9FnAx6vl88DhSZ61j8uWpL7UaQhYBNzbNr+uaXtCkucCx1XVX+1hbZKkOSrJEuC5tI4IH1NV34ZWUACe0XTb5TZFkrR3dBoCprtO1RPX3kpyAHAJ8JZdrig5N8nqJKs3bNjQYRmSpNkqyVOBPwd+var+ZWddp2l70vUc3V5IUvd1GgLWAce1zS8G1rfNPw0YBG5O8nVaY0JXTXdycFVdUVXLqmrZwoULOyxDkjQbJZlPKwB8oqr+omm+b+swn+b5/qZ9V9sUwO2FJO0NnYaAW4ClSU5IchBwDrBq68Kqeriqjq6qJVW1BPg88JKqWt21iqXdkKSjx+6+Rupnaf1HGAOmqur9bYtWAa9ppl8DfLqt/dXNVYKeDzy8ddiQJGnv6uiOwVX1eJI3ATcA84CPVtWaJO8EVlfVqp2vQeqNuX7HSGmOeAHwS8BXktzWtP0O8B7gmiRDwDeBlzXLrgNeDKwFvge8bt+WK0n9q6MQAFBV19H6w93e9rYd9H3h7pUlSZprqmqS6cf5A5w6Tf8C3rhXi1Jfq999Orz9sF6XsUfqd5/e6xK0n+o4BEiSJM0Fece/zPkjwUmot/e6Cu2POr5jsCRJkqS5zRAgSZIk9RlDgNRmfHycwcFB5s2bx+DgIOPj470uSZIkqes8J0BqjI+PMzIywtjYGMuXL2dycpKhoSEAVq5c2ePqJEmSuscjAVJjdHSUsbExVqxYwfz581mxYgVjY2OMjo72ujRJkqSuMgRIjampKZYvX75N2/Lly5mamupRRZIkSXuHIUBqDAwMMDk5uU3b5OQkAwMDPapIkiRp7/CcAKkxMjLCy1/+cg499FC+8Y1v8OxnP5tHHnmESy+9tNelSZJ2U7Kj+9fNDUcccUSvS9B+yhAgTWOubzQkSeyTG4UlmfM3JFN/cjiQ1BgdHeXqq6/mnnvuYcuWLdxzzz1cffXVnhgsSZL2O4YAqeGJwZIkqV8YAqSGJwZLkqR+YQiQGiMjIwwNDTExMcHmzZuZmJhgaGiIkZGRXpcmSZLUVZ4YLDVWrlzJ3//933PmmWeyadMmDj74YF7/+td7t2BJkrTf8UiA1BgfH+czn/kM119/PY899hjXX389n/nMZxgfH+91aZIkSV1lCJAao6OjjI2NsWLFCubPn8+KFSsYGxvz6kCSJGm/YwiQGl4dSJIk9QtDgNTw6kCSJKlfdBwCkpyR5K4ka5NcMM3y85J8JcltSSaTnNidUqW9y6sDSZKkftHR1YGSzAM+BJwGrANuSbKqqu5s6/anVXV50/8lwPuBM7pUr7TXbL0K0PDwMFNTUwwMDDA6OurVgSRJ0n6n00uEngysraq7AZJcBZwFPBECqupf2vofCtSeFintKytXrvRLvyRJ2u91GgIWAfe2za8Dfmb7TkneCJwPHAScstvVSZIkSeq6Ts8JyDRtT9rTX1UfqqofAt4K/I9pV5Scm2R1ktUbNmzosAxJkiRJu6vTELAOOK5tfjGwfif9rwLOnm5BVV1RVcuqatnChQs7LEOSNNsk+WiS+5Pc0dZ2ZJIbk3yteT6iaU+SDzQXmbg9yfN6V7kk9Z9OQ8AtwNIkJyQ5CDgHWNXeIcnSttn/Anxtz0qU9p3x8XEGBweZN28eg4OD3i1Y6szHePKFIC4APldVS4HPNfMAZwJLm8e5wGX7qEZJEh2eE1BVjyd5E3ADMA/4aFWtSfJOYHVVrQLelORFwGZgI/Cabhct7Q3j4+OMjIwwNjbG8uXLmZycZGhoCMCThaUZqKq/TbJku+azgBc201cCN9MaKnoW8PGqKuDzSQ5P8qyq+va+qVaS+lunJwZTVdcB123X9ra26Td3oS5pnxsdHWVsbIwVK1YAsGLFCsbGxhgeHjYESLvvmK1f7Kvq20me0bRPd6GJRYAhQD2TTHfqY/df18q+Um91HAKk/dXU1BTLly/fpm358uVMTU31qCJpvzajC01A60IStIYMcfzxx+/NmtTn/HKuftLxHYOl/dXAwACTk5PbtE1OTjIwMNCjiqT9wn1JngXQPN/ftM/4QhNeSEKSus8QIDVGRkYYGhpiYmKCzZs3MzExwdDQECMjI70uTZrLVvGDc8NeA3y6rf3VzVWCng887PkAkrTvOBxIamwd9z88PMzU1BQDAwOMjo56PoA0Q0nGaZ0EfHSSdcDvAu8BrkkyBHwTeFnT/TrgxcBa4HvA6/Z5wZLUxwwBUpuVK1f6pV/aTVW1o/88p07Tt4A37t2KJEk74nAgSZIkqc8YAiRJkqQ+YwiQJEmS+owhQJIkSeozhgBJkiSpzxgCJEmSpD5jCJDajI+PMzg4yLx58xgcHGR8fLzXJUmSJHWd9wmQGuPj44yMjDA2Nsby5cuZnJxkaGgIwHsHSJKk/YpHAqTG6OgoY2NjrFixgvnz57NixQrGxsYYHR3tdWmSJEldZQiQGlNTU6xbt26b4UDr1q1jamqq16VJkiR1lcOBpMaxxx7LW9/6Vj7xiU88MRzola98Jccee2yvS5MkSeoqjwRIbapqp/OSJEn7A0OA1Fi/fj0XX3wxw8PDLFiwgOHhYS6++GLWr1/f69IkSZK6yuFAUmNgYIDFixdzxx13PNE2MTHBwMBAD6uSJEnqvo6PBCQ5I8ldSdYmuWCa5ecnuTPJ7Uk+l+TZ3SlV2rtGRkYYGhpiYmKCzZs3MzExwdDQECMjI70uTZIkqas6CgFJ5gEfAs4ETgRWJjlxu25fApZV1U8AnwQu7kah0t62cuVKli5dyqmnnspBBx3EqaeeytKlS71HgCRJ2u90eiTgZGBtVd1dVY8BVwFntXeoqomq+l4z+3lg8Z6XKe19w8PD3HTTTbzvfe/jkUce4X3vex833XQTw8PDvS5NkiSpqzoNAYuAe9vm1zVtOzIEXN9pUVIvfPjDH+aiiy7i/PPP5ylPeQrnn38+F110ER/+8Id7XZokSVJXdRoCMk3btNdQTPIqYBnw3h0sPzfJ6iSrN2zY0GEZUvdt2rSJu+66iwULFpCEBQsWcNddd7Fp06ZelyZJktRVnYaAdcBxbfOLgSddPzHJi4AR4CVVNe03qKq6oqqWVdWyhQsXdliG1H0HHHAAH/nIR3jXu97FI488wrve9S4+8pGPcMABXklXkiTtXzr9dnMLsDTJCUkOAs4BVrV3SPJc4A9pBYD7u1OmtPcloap473vfy9Oe9jTe+973UlUk0x0AkyRJmrs6CgFV9TjwJuAGYAq4pqrWJHlnkpc03d4LPBX4syS3JVm1g9VJs8qWLVt46lOfygMPPMD3v/99HnjgAZ761KeyZcuWXpcmSZLUVR2Pc6iq66rqR6rqh6pqtGl7W1WtaqZfVFXHVNVJzeMlO1+jNDsk4VWvehWPPfYYVcVjjz3Gq171Ko8ESJKk/Y53DJbaXH755XzqU5/i/vvv5xnPeAb33Xdfr0uSJEnqOs94lBqLFi3ikEMO2WY40CGHHMKiRTu7Cq4kSdLcYwiQ2hx22GHccMMNPPbYY9xwww0cdthhvS5J2q8lOSPJXUnWJrmg1/VIUr8wBEiN9evXc/bZZ3PmmWdy0EEHceaZZ3L22Wezfv2TroIrqQuSzAM+BJwJnAisTHJib6uSZuaoo44iyROPo446qtclSR0xBEiNY489lmuvvZbrr7+exx57jOuvv55rr72WY489ttelSfurk4G1VXV3VT0GXAWc1eOapF066qijePDBB3nOc57DN77xDZ7znOfw4IMPGgQ0pxgCpDZVtdN5SV21CLi3bX5d0ybNalsDwB133MHxxx/PHXfc8UQQkOYKQ4DUWL9+PRdffDHDw8MsWLCA4eFhLr74YocDSXvPdNfffVLyTnJuktVJVm/YsGEflCXt2nXXXbfTeWm2MwRIjYGBARYvXswdd9zBli1buOOOO1i8eDEDAwO9Lk3aX60DjmubXww8KXVX1RVO+P5nAAAgAElEQVRVtayqli1cuHCfFSftzItf/OKdzkuznSFAaoyMjDA0NMTExASbN29mYmKCoaEhRkZGel2atL+6BVia5IQkBwHnAN5lXrPekUceyZo1axgcHOSb3/wmg4ODrFmzhiOPPLLXpUkz5s3CpMbKlSsBGB4eZmpqioGBAUZHR59ol9RdVfV4kjcBNwDzgI9W1ZoelyXt0gMPPMBRRx3FmjVrePaznw20gsEDDzzQ48qkmTMESG1Wrlzpl35pH6qq6wAHU2vO8Qu/5jqHA0mSJEl9xhAgSZIk9RlDgCRJktRnDAGSJElSnzEESJIkSX0mVU+6OeO+LyLZAHyj13VIbY4GvtvrIqQ2z66qvr9TltsLzUJuLzTbzGh7MStCgDTbJFldVct6XYckaXZze6G5yuFAkiRJUp8xBEiSJEl9xhAgTe+KXhcgSZoT3F5oTvKcAEmSJKnPeCRAkiRJ6jOGAKlNko8muT/JHb2uRZI0e7m90FxnCJC29THgjF4XIUma9T6G2wvNYYYAqU1V/S3wYK/rkCTNbm4vNNcZAiRJkqQ+YwiQJEmS+owhQJIkSeozhgBJkiSpzxgCpDZJxoF/AH40ybokQ72uSZI0+7i90FznHYMlSZKkPuORAEmSJKnPGAIkSZKkPmMIkCRJkvqMIUCSJEnqM4YASZIkqc8YAjSrJfn5JJXkx/ZgHV9PcnTb/AuT/FWX6ntJkgt2sOzfmudjk3yymT4pyYu78d6SJEm7yxCg2W4lMAmc0+tCplNVq6rqPbvos76qXtrMngQYAiTt1NadCF1Yz1FJJpL8W5L/s4M+n0pyW5K1SR5upm9L8h+6UcMManxzkn9udvgcvoM+L2qWv6at7aebtl/vQg0DSf5v87mnklzWtD8vyRk7ed3PJLmkmf693a0lya8k2dC8/1eT/NoMXnNKkufvzvu1reMzSf5uu7YnfY4kByZ5aJrX/16Sb7X93D6UZKffLZP8wp7s2FP3GAI0ayV5KvACYIgmBCS5un1PepKPJfnFJE9Jck2S25s+X0iybAbv8fYkv9k2f0eSJc3jq0k+0rR9otkI/b8kX0tyctP/tVs3rElOSPIPSW5J8r/a1rmkWcdBwDuBlzd/MF/erGth0++AZiN8NJLUHY8C/xP4zR11qKqfr6qTgF8B/q6qTmoef7+Pavxb4BTgW7vo9xW23SF0DvDlLtXwf4CLm5/DicAfNO3PA6YNAUkOrKovVNVvdKmGTzTv/x+Btyd51i76nwLsdghIchTw48AxSY7f3fUA723qHgR+itZ2e2d+ATAEzAKGAM1mZwN/XVX/BDyY5HnAVcDLAZov1acC1wFvADZW1U8A/4vWH6J2E1v3bgEfmeH7/zBwKfATtP5gvQJYTmtj+jvT9L8UuKyqfhr4zvYLq+ox4G3A1c0G9mrgT4BXNl1eBHy5qr47w/ok7eea4Ys3J/lks2PiE0nSLPt6knck+cckX5lu72pVPVJVk7TCwO68/083e8hvTXJ9kmOa9vOaHR5fTvJnSQ5p2v+k2Rs80ezd/09JrmxqH5vuParqS1X1jRmUczfw9CRHNz+D04Ab2mrdUU2fSfKKZvqNSa6cZt3PAtY19VRVfaV5/duAVzbbj5c2e77/MMmNwB81O4eunebn9qvN+y5IsjTJDc3P8G+T/MjOPmRVbWg+67OadZ3V7Nj6UpLPJnlGkh+iFdp+q6ntPyQ5JslfJFmd5IvZ9VGClwLXAlfTbFf30EHAwcBDTd1P+vdI8h9pHQ2/pKl7SZLfSHJn0+9Pmtf+Xlo7+T7b/J6fneR/NzvUPpPkwKbfjn4/J5O8p/k53JV9dFRrrjEEaDZbSetLP83zSuB64JQkBwNnAn9bVf8frS/nVwFU1R3A7duta8XWvVu0/nDOxD1V9ZWq+j6wBvhctW6x/RVgyTT9XwCMN9N/PMP3+Cjw6mb6l4E/muHrJPWP5wK/TmsP9b9j2z2t362q5wGXsZO9/buj+Tt7KfCLVfVTtHZabD3K+WdV9dNV9ZPAPwOvbXvpYVW1Avht4C+Bi5rafyrJ4B6W9ee0vrz+J+ALwOa2ZTuq6VeAdzZfQH8NePM0630/8LdJrkvy60kOa7Yt76TZQ19Vn2z6Phf4r1X1S9MVmNZQmp8Ffr6qHgWuAN7Q/AwvpHXUYYeSLAHmAXc0TX8LPL+qngv8BfCWqvpnWju03tt21OYDtI5mLAP+G7ve4bWS1jZrvJneXb/V7GBbD3ylqr7StD/p36Oq/o7WjrvfaOr+Oq3fk5Oafm9qW+8JtALDLwJ/Smun4CDwfeCMXfx+AqSqTgZ+i1aY03YO7HUB0nSaw5SnAINJitYfxKL1x+Jm4HRaey62funObr7V42wbhhe0TW9qm/5+2/z32fH/nerkzavq3iT3JTkF+Bl+cFRAkrb6YlWtA2i+bC2hda4UtL4UAtxKa5hFNw0AzwH+pjn4MI9mbznwE0neCRwOPA1ov9jCXzbPXwHWV9WdTe13NrXfwe67mtZOln+i9ff/lLZl09ZUVd9u2idofXl/0tj2qvpIkutpbVt+Hjg3yUk7qOHTzZf76bwO+AbwC1X1eFrnODwf+PPmZwg73n68MslpwI8Cr2uOHgMcD1yT5Jm09rT/0w5e/yLgR9ve54gkhzRhZhtJFjXr/XxVVZJ5SX6sqr66g3XvzHur6vfTOjr/qSQvbQLTzn5H2q0B/iTJp2kdmdjquuZn+BWAqrqxad+6I25nv5+w7f+NJbvxufZ7HgnQbPVS4ONV9eyqWlJVxwH38IM9/q+jNW5y66HgSVp7PkhyIq1xjjPxdVpjPklruNEJe1Dz/+MH41V39GX+X2n9MWz3EVp7MK6pqi178P6S9k/tOyS2sO2XyE07aO+GALe3nSPw41V1ZrPs48CvVtWPA7/H9DtQ2neebJ3foxqr6ltNXf+Z1g6hdjur6ceBB4Bjd7buqvpoVf1XWt+PBnbQ9ZGdlPgVWkdrFjXzoXW05qS2x46Ohnyiqp4DvBC4NMkzmvYPAZc0n+sN232udgFObnufRdMFgMbLgaOAe5J8nVYg2KMLcDSh5a9pHaWBnf97tDsduBw4GVidZF7T3v579Fhb/62/Rzv7/Wx//d74v7FfMARotloJfGq7tj+nNS7/s7T+yPxN256SPwAWJrkdeCut4UAPz+B9/hw4stm79qvseA/LTLwZeGOSW4DDdtBnAjixGQu5dQzmKuCpOBRI0uxyJ7AoP7gQwkFJntMsOxT4TpL5tP4u70v/E3hrM1Sz3bQ1Jfn3tM4fex5wYaY5CTbJGW3jzI8FjqA1vGW6HTc7sxp4I/CXSZ5ZVRuBbyf5+WbdByT5yZ2toDmHYxwYbpoOA76V1u7u17R13b62v2nee+tn2tGRDGhtY1/U7GRbQusL+J4MCaKp7z/QGvoDO/4deaLu5gv/4qq6idawnYXAU2b4ljv7/dQMmIw0K1XVC6dp+0Db7FHbLX4UeFVVPdqcMPU5Wodkaf7Ata/nZpo9SM1ekp/dQRlP7K2pqte2TX9967Kq+hjwsWb6HuDft73+PdP0fxD46e3e5ydpnRC8O4dhJWmnmj29TwcOSnI28LNbh+jsTFVtSvJS4ANJnkbrO8P/pjV8423AF4Fv0hres6O9vDOp73zgfOCZwJokf1VV/30ndU3uYNGTakrr5N4raG0fvpXkt4GPJjmtOcdrqzNp7X1/lNawzl+vqg1JbqI15v1LwOhMPk9V/d+07h/zmWZ4zznAZUneTuvk2T9h11c1eg/wxSTvAd5Oa6fYuubzbb1q0KeBP0vyC7S+/L+xeZ/X0fq3mqAtFGzVbCOfSSuwbK35a0k2Jdl6UY32K+c9TutCGU9P0j7c5uLm+beSvBaYD3wJ+MOmfUe/I+PAHyZ5C60jEh9tfr8OAC6qqn9tG9K0Q7v4/dQMZNv/A9Lc1PwBmKD1Ryi09hJd39uqdq3ZUPwq8MqdbNgkSZK6yhAgSZIk9RmHA0mSJO2HkvwK2152E1qX1t7lHYm1//NIgCRJktRnvDqQJEmS1GcMAZIkSVKfMQRIkiRJfcYQIEmSJPUZQ4AkSZLUZwwBkiRJUp8xBEiSJEl9xhAgSZIk9RlDgCRJktRnDAGSJElSnzEESJIkSX3mwF4XAHD00UfXkiVLel2GJM1at95663eramGv65Ak7R9mRQhYsmQJq1ev7nUZkjRrJflGr2uQJO0/HA4kSZIk9RlDgCRJktRnDAGSJElSnzEESJIkSX1mxiEgybwkX0ryV838CUm+kORrSa5OclDTfnAzv7ZZvmTvlC5JkiRpd3RyJODNwFTb/EXAJVW1FNgIDDXtQ8DGqvph4JKmnzQnnH766RxwwAEk4YADDuD000/vdUmSJEldN6MQkGQx8F+AjzTzAU4BPtl0uRI4u5k+q5mnWX5q01+a1U4//XQ++9nPct555/HQQw9x3nnn8dnPftYgIEmS9jszvU/A7wO/DTytmT8KeKiqHm/m1wGLmulFwL0AVfV4koeb/t/tSsXSXnLjjTfyq7/6q/zBH/wBwBPPl19+eS/LkiRJ6rpdHglI8nPA/VV1a3vzNF1rBsva13tuktVJVm/YsGFGxUp7U1Xx7ne/e5u2d7/73VQ96ddXkiRpTpvJcKAXAC9J8nXgKlrDgH4fODzJ1iMJi4H1zfQ64DiAZvlhwIPbr7SqrqiqZVW1bOHChXv0IaRuSMKFF164TduFF16Io9kkSdL+ZpchoKourKrFVbUEOAe4qapeCUwAL226vQb4dDO9qpmnWX5TuStVc8Bpp53GZZddxhve8AYefvhh3vCGN3DZZZdx2mmn9bo0SZKkrkon38+TvBD4zar6uST/jtaRgSOBLwGvqqpNSRYAfww8l9YRgHOq6u6drXfZsmW1evXq3fwIUvecfvrp3HjjjVQVSTjttNO44YYbel2WRJJbq2pZr+uQJO0fZnpiMABVdTNwczN9N3DyNH0eBV7Whdqkfe61r30t3/rWt5iammJgYIDXvva1vS5JkiSp6zoKAdL+bHx8nJGREcbGxli+fDmTk5MMDbVuf7Fy5coeVydJktQ9HQ0H2lscDqTZYHBwkA9+8IOsWLHiibaJiQmGh4e54447eliZ5HAgSVJ3GQKkxrx583j00UeZP3/+E22bN29mwYIFbNmypYeVSYYASVJ3zeiOwVI/GBgYYHJycpu2yclJBgYGelSRJEnS3mEIkBojIyMMDQ0xMTHB5s2bmZiYYGhoiJGRkV6XJkmS1FWeGCw1tp78Ozw8/MTVgUZHRz0pWJIk7Xc8J0CS5gDPCZAkdZPDgSRJkqQ+YwiQ2oyPjzM4OMi8efMYHBxkfHy81yVJkiR1necESA1vFiZJkvqF5wRIDW8WptnMcwIkSd1kCJAa3ixMs5khQJLUTZ4TIDW8WZgkSeoXhgCp4c3CJElSv/DEYKnhzcIkSVK/8JwASZoDPCdAktRNuxwOlGRBki8m+XKSNUne0bR/LMk9SW5rHic17UnygSRrk9ye5Hl7+0NIkiRJmrmZDAfaBJxSVf+WZD4wmeT6ZtlvVdUnt+t/JrC0efwMcFnzLEmSJGkW2OWRgGr5t2Z2fvPY2Riis4CPN6/7PHB4kmfteamSJEmSumFGVwdKMi/JbcD9wI1V9YVm0Wgz5OeSJAc3bYuAe9tevq5pkyRJkjQLzCgEVNWWqjoJWAycnGQQuBD4MeCngSOBtzbdM90qtm9Icm6S1UlWb9iwYbeKlyRJktS5ju4TUFUPATcDZ1TVt5shP5uAPwJObrqtA45re9liYP0067qiqpZV1bKFCxfuVvGSJEmSOjeTqwMtTHJ4M30I8CLgq1vH+ScJcDZwR/OSVcCrm6sEPR94uKq+vVeqlyRJktSxmVwd6FnAlUnm0QoN11TVXyW5KclCWsN/bgPOa/pfB7wYWAt8D3hd98uWJEmStLt2GQKq6nbgudO0n7KD/gW8cc9LkyRJkrQ3dHROgLS/Gx8fZ3BwkHnz5jE4OMj4+HivS5IkSeq6mQwHkvrC+Pg4IyMjjI2NsXz5ciYnJxkaGgJg5cqVPa5OkiSpe9IavdNby5Ytq9WrV/e6DPW5wcFBPvjBD7JixYon2iYmJhgeHuaOO+7YySulvS/JrVW1rNd1SJL2D4YAqTFv3jweffRR5s+f/0Tb5s2bWbBgAVu2bOlhZZIhQJLUXZ4TIDUGBgaYnJzcpm1ycpKBgYEeVSRJkrR3GAKkxsjICENDQ0xMTLB582YmJiYYGhpiZGSk16VJkiR1lScGS42tJ/8ODw8zNTXFwMAAo6OjnhQsSZL2O54TIElzgOcESJK6ySMB6gtJ9vp7zIZALUmSNBOGAPWFTr+gJ/FLvSRJ2m95YrAkSZLUZwwBkiRJUp8xBEiSJEl9xhAgSZIk9RlDgCRJktRnDAGSJElSn9llCEiyIMkXk3w5yZok72jaT0jyhSRfS3J1koOa9oOb+bXN8iV79yNIkiRJ6sRMjgRsAk6pqp8ETgLOSPJ84CLgkqpaCmwEhpr+Q8DGqvph4JKmnyRJkqRZYpchoFr+rZmd3zwKOAX4ZNN+JXB2M31WM0+z/NTsi9u1SpIkSZqRGZ0TkGRektuA+4EbgX8GHqqqx5su64BFzfQi4F6AZvnDwFHdLFqSJEnS7ptRCKiqLVV1ErAYOBkYmK5b8zzdXv/aviHJuUlWJ1m9YcOGmdYrSZIkaQ91dHWgqnoIuBl4PnB4kgObRYuB9c30OuA4gGb5YcCD06zriqpaVlXLFi5cuHvVS5IkSerYTK4OtDDJ4c30IcCLgClgAnhp0+01wKeb6VXNPM3ym6rqSUcCJEmSJPXGgbvuwrOAK5PMoxUarqmqv0pyJ3BVkt8DvgSMNf3HgD9OspbWEYBz9kLdkiRJknbTLkNAVd0OPHea9rtpnR+wffujwMu6Up0kSZKkrvOOwZIkSVKfMQRIkiRJfcYQIEmSJPUZQ4AkSZLUZwwBkiRJUp8xBEiSJEl9xhAgSZIk9RlDgCRJktRnDAGSJElSnzEESJIkSX3GECBJkiT1GUOAJEmS1GcMAZIkSVKfMQRIkiRJfcYQIEmSJPUZQ4AkSZLUZ3YZApIcl2QiyVSSNUne3LS/Pcm3ktzWPF7c9poLk6xNcleS0/fmB5AkSZLUmQNn0Odx4C1V9Y9JngbcmuTGZtklVfW+9s5JTgTOAZ4DHAv8TZIfqaot3SxckiRJ0u7Z5ZGAqvp2Vf1jM/2vwBSwaCcvOQu4qqo2VdU9wFrg5G4UK0mSJGnPdXROQJIlwHOBLzRNb0pye5KPJjmiaVsE3Nv2snXsPDRIkiRJ2odmHAKSPBX4c+DXq+pfgMuAHwJOAr4N/O+tXad5eU2zvnOTrE6yesOGDR0XLkmSJGn3zCgEJJlPKwB8oqr+AqCq7quqLVX1feDD/GDIzzrguLaXLwbWb7/OqrqiqpZV1bKFCxfuyWeQJEmS1IGZXB0owBgwVVXvb2t/Vlu3nwfuaKZXAeckOTjJCcBS4IvdK1mSJEnSnpjJ1YFeAPwS8JUktzVtvwOsTHISraE+Xwf+O0BVrUlyDXAnrSsLvdErA0mSJEmzxy5DQFVNMv04/+t28ppRYHQP6pIkSZK0l3jHYEmSJKnPGAIkSZKkPmMIkCRJkvqMIUCSJEnqM4YASZIkqc8YAiRJkqQ+YwiQJEmS+owhQJIkSeozhgBJkiSpz+zyjsHSbHPkkUeycePGvf4+yXQ3yu6eI444ggcffHCvvockSdJ0DAGaczZu3EhV9bqMPba3Q4YkSdKOOBxIkiRJ6jOGAEmSJKnPGAIkSZKkPmMIkCRJkvqMIUCSJEnqM4YASZIkqc/sMgQkOS7JRJKpJGuSvLlpPzLJjUm+1jwf0bQnyQeSrE1ye5Ln7e0PIUmSJGnmZnIk4HHgLVU1ADwfeGOSE4ELgM9V1VLgc808wJnA0uZxLnBZ16uWJEmStNt2GQKq6ttV/3979x8sV1nfcfz9KYjaRH4oATFAkwpVQSTgFa2MFgUVmDqAoqKMpAyUqlCLY7VgR0HlD6yjVEelUqVAQRQVBEtEwV9IK2BQNICiQa4aQiH+BmyxwLd/7BNcwt4fuXeXGzjv18zO7j77nHO+u/ckcz7nOc9ufbs9vgP4PrAQOAA4s3U7EziwPT4AOKt6rgQ2T7LN0CuXJEmSNCPrNScgySJgN+AqYOuquhV6QQHYqnVbCPysb7FVrU2SJEnSBmDaISDJfOCzwLFV9dvJug5oqwHrOyrJ8iTL16xZM90yJEmSJM3StEJAkkfRCwDnVNX5rfm2tZf5tPvbW/sqYLu+xbcFVq+7zqo6rarGqmpswYIFM61fkiRJ0nqazrcDBfg48P2qen/fSxcBS9vjpcCFfe2HtW8Jeg7wm7WXDUmSJEmaextPo8+ewGuBFUmubW1vA04GzktyBPBT4BXttWXA/sBK4HfA4UOtWJIkSdKsTBkCquoKBl/nD7D3gP4FHD3LuiRJkiSNiL8YLEmSJHWMIUCSJEnqGEOAJEmS1DGGAEmSJKljpvPtQNIGpU7YFE7cbK7LmLU6YdO5LkGSJHWUIUAPO3nnb+l9CdXDWxLqxLmuQpIkdZGXA0mSJEkdYwiQJEmSOsYQIEmSJHWMIUCSJEnqGEOAJEmS1DGGAEmSJKljDAGSJElSxxgCJEmSpI4xBEiSJEkdYwiQJEmSOmbKEJDk9CS3J7mur+3EJLckubbd9u977fgkK5PcmOQloypckiRJ0sxMZyTgDGDfAe2nVNWSdlsGkGQn4BBg57bMR5JsNKxiJUmSJM3exlN1qKrLkyya5voOAD5ZVXcDNydZCewBfHPGFUoDJJnrEmZtiy22mOsSJElSR00ZAiZxTJLDgOXAm6vqV8BC4Mq+PqtamzQ0VTXybSR5SLYjSZI0F2Y6MfhU4MnAEuBW4H2tfdDp2YFHUkmOSrI8yfI1a9bMsAxJkiRJ62tGIaCqbquqe6vqPuBf6V3yA70z/9v1dd0WWD3BOk6rqrGqGluwYMFMypAkSZI0AzMKAUm26Xt6ELD2m4MuAg5J8ugki4EdgatnV6IkSZKkYZpyTkCSc4G9gC2TrAJOAPZKsoTepT7jwN8AVNX1Sc4DbgDuAY6uqntHU7okSZKkmciGMPlxbGysli9fPtdlSPdzYrA2NEmuqaqxua5DkvTI4C8GS5IkSR1jCJAkSZI6xhAgSZIkdYwhQJIkSeoYQ4AkSZLUMYYASZIkqWMMAZIkSVLHGAIkSZKkjjEESJIkSR1jCJAkSZI6xhAgSZIkdYwhQJIkSeoYQ4AkSZLUMYYASZIkqWMMAZIkSVLHGAIkSZKkjpkyBCQ5PcntSa7ra3t8kkuT/Kjdb9Hak+SDSVYm+V6S3UdZvCRJkqT1N52RgDOAfddpOw74clXtCHy5PQfYD9ix3Y4CTh1OmZIkSZKGZcoQUFWXA79cp/kA4Mz2+EzgwL72s6rnSmDzJNsMq1hJkiRJszfTOQFbV9WtAO1+q9a+EPhZX79VrU2SJEnSBmLYE4MzoK0GdkyOSrI8yfI1a9YMuQxJkiRJE5lpCLht7WU+7f721r4K2K6v37bA6kErqKrTqmqsqsYWLFgwwzIkSZIkra+ZhoCLgKXt8VLgwr72w9q3BD0H+M3ay4YkSZIkbRg2nqpDknOBvYAtk6wCTgBOBs5LcgTwU+AVrfsyYH9gJfA74PAR1CxJkiRpFqYMAVX16gle2ntA3wKOnm1R0rAlg6arDHeZ3u4vSZK04ZsyBEiPBB6gS5Ik/cGwvx1IkiRJ0gbOECBJkiR1jCFAkiRJ6hhDgCRJktQxhgBJkiSpYwwBkiRJUscYAiRJkqSOMQRIkiRJHWMIkCRJkjrGECBJkiR1jCFAkiRJ6hhDgCRJktQxhgBJkiSpYwwBkiRJUscYAiRJkqSOMQRIkiRJHbPxbBZOMg7cAdwL3FNVY0keD3wKWASMA6+sql/NrkxJkiRJwzKMkYAXVNWSqhprz48DvlxVOwJfbs8lSZIkbSBGcTnQAcCZ7fGZwIEj2IYkSZKkGZptCCjgS0muSXJUa9u6qm4FaPdbzXIbkiRJkoZoVnMCgD2ranWSrYBLk/xgugu20HAUwPbbbz/LMiRJkiRN16xGAqpqdbu/HbgA2AO4Lck2AO3+9gmWPa2qxqpqbMGCBbMpQ5IkSdJ6mHEISDIvyePWPgZeDFwHXAQsbd2WAhfOtkhJkiRJwzOby4G2Bi5IsnY9n6iqS5J8CzgvyRHAT4FXzL5MSZIkScMy4xBQVT8Gdh3Q/gtg79kUJUmSJGl0/MVgSZIkqWMMAZIkSVLHGAIkSZKkjjEESJIkSR1jCJAkSZI6xhAgSZIkdYwhQJIkSeoYQ4AkSZLUMYYASZIkqWMMAZIkSVLHGAIkSZKkjjEESJIkSR1jCJAkSZI6xhAgSZIkdYwhQJIkSeoYQ4AkSZLUMSMLAUn2TXJjkpVJjhvVdiRJkiStn5GEgCQbAR8G9gN2Al6dZKdRbEsapvnz55Pk/tv8+fPnuiRJkqShG9VIwB7Ayqr6cVX9HvgkcMCItiUNxfz587nrrrtYtGgRK1euZNGiRdx1110GAUmS9Iiz8YjWuxD4Wd/zVcCzR7QtaSjWBoCbb74ZgJtvvpnFixczPj4+t4VJkiQN2ahGAjKgrR7QITkqyfIky9esWTOiMqT1c9lll036XJIk6ZFgVCFgFbBd3/NtgdX9HarqtKoaq6qxBQsWjKgMaf3ss88+kz6XJEl6JBhVCPgWsGOSxUk2AQ4BLhrRtqShmDdvHuPj4yxevJibbrrp/kuB5s2bN9elSZIkDdVI5gRU1T1JjgG+CGwEnF5V149iW9Kw3HnnncyfP5/x8XF22GEHoBcM7rzzzjmuTJIkabhGNTGYqloGLBvV+qVR8IBfkiR1gb8YLEmSJHWMIUCSJEnqGEOAJOEYQSIAAAhlSURBVEmS1DGGAEmSJKljDAGSJElSx6Sqpu416iKSNcBP5roOqc+WwM/nugipz59Ulb+sKEkaig0iBEgbmiTLq2psruuQJEkaBS8HkiRJkjrGECBJkiR1jCFAGuy0uS5AkiRpVJwTIEmSJHWMIwGSJElSxxgCpD5JTk9ye5Lr5roWSZKkUTEESA90BrDvXBchSZI0SoYAqU9VXQ78cq7rkCRJGiVDgCRJktQxhgBJkiSpYwwBkiRJUscYAiRJkqSOMQRIfZKcC3wTeEqSVUmOmOuaJEmShs1fDJYkSZI6xpEASZIkqWMMAZIkSVLHGAIkSZKkjjEESJIkSR1jCJAkSZI6xhAgSZIkdYwh4CGW5M4hredFSa5JsqLdv3BAnwuSXJtkZZLftMfXJnnuMGqYRo2fTHJjkuuSfCzJxgP67JOkkizta3tWazt2CDU8LcnX2/v+fpJTW/vuSfadZLlnJzmlPT5pprUkOTLJmrb9HyR54zSWeWGS58xke33ruDjJN9Zpe9D7SLJxkl8PWP6kJLf0fW4fTjLp/xdJXpbkqbOpW5IkPTQMAQ9fPwdeWlW7AEuBf1+3Q1UdVFVLgCOBb1TVknb7r4eoxrOApwLPADYDDp+g3wrgkL7nhwDfHVINHwL+qX0OOwEfae27AwNDQJKNq+qqqnrTkGo4p23/ecCJSbaZov8LgRmHgCRPAHYBtk6y/UzXA7y31f104JnAnlP0fxm9v7ckSdrAGQLmSJK9knwtyWfaGeJzkqS9Np7knUm+3c70P+jAqqq+U1Wr29PrgcckefR6bP9Z7Qz5NUm+kGTr1v66JN9K8t0kn07y2NZ+djsb/NUkNyV5fpIzW+0fH7SNqlpWPfcBVwPbTlDOj4FNk2zZPoMXAV/sq3Wimi5O8pr2+OgkZw5Y9zbAqlZPVdWKtvw7gEPbme6D25nvjya5FPi3NkLxuQGf2+vbdh+TZMckX2yf4eVJ/myyz7yq1rT3uk1b1wFJrkrynSRfSrJVkifTC21vWTtqk2TrJOcnWZ7k6mmMEhwMfA74FPCqKfpOxybAo4Fft7of9PdI8jxgf+CUVveiJG9KckPrd3Zb9qQkZ7T3O57kwCTvS2+06OK00aJJ9s8rkpzcPocb8xCNakmS9EhjCJhbuwHH0jtD/ac88Ezrz6tqd+BU4O+nWM/Lge9U1d3T2WgLCx8AXl5VzwTOBt7dXv50VT2rqnYFbgL+qm/RzarqBcBbgc8D72m1PzPJ0yfZ3ibAocAlk5T1WXoHr88HrgL+r++1iWo6EnhXOwB9I/B3A9b7fuDyJMuSHJtks6r6H+BdtDP0VfWZ1nc3eqMrr53gfRwLvBg4qKr+FzgNeEP7DI+nN+owoSSLgI2A61rT5cBzqmo34HzgzVV1E/Ax2ln4NmrzQXqjGWPAK9vrk3k1cG67vXqKvpN5S5JrgdXAiqpa0dof9Peoqm8Ay4A3tbrH6e0nS1q/Y/rWu5heYHg58Angkqp6OnAfsO8U+yf0ful8D+At9MKcJElaTw+6RlsPqaurahVAO9haBFzRXju/3V9D7zKLgZLsTO9g/MXrsd2nATsDl7XBh41oZ8uBZyR5F7A58DjgP/qW+3y7XwGsrqobWg03tNqvY7B/AS6rqm9OUtOn6F3S9EN6B6/9cxwG1lRVt7b2r9I7eH/Qte1V9bEkXwBeAhwEHJVkyQQ1XNgO7gc5HPgJ8LKquifJ5vQu2fls+wxh4n9PhyZ5EfAU4PCq+n1r3x44L8kT6Z1p/+EEy+8DPKVvO1skeWwLMw+QZGFb75VVVUk2SvLUqvrBBOuezHur6p9biLsgycEtME22j/S7Hjg7yYX0RibWWtY+wxUAVXVpa19Bbz+abP+EB/7bWDSD9yVJUuc5EjC3+s/c38sDDyLvnqD9fkm2BS4ADmtnkKcrwPf65gjsUlX7tdfOAl7f5hqcBDxmQE33rVP7fZPU+G568wHeOllBVXVLq+svgK+t8/JkNe0C/AJ40mTrrqrTq+ql9Pb5p03Q9a5JSlxBb7RmYXseeqM1S/puE42GnFNVOwN7AR9IslVr/zBwSntfb1jnffULsEffdhYOCgDNq4AnADcnGacXCA6ZoO+0tNByCb1RGpj879HvJfQC4B7A8iQbtfb+/ej3ff3X7keT7Z/9y0/4b0OSJE3OEPAw1c5EXwwcX1X/uZ6L3wAsTLJHW9cmbUQBYB7w30keBbxmljW+jt6B76FtXsBU3g78w4C+A2tK8ufA3vQm+R6fAZNgk+zbd535k4At6F3ecge9s9jTtRw4Gvh8kidW1a+AW5Mc1Nb9R0l2nWwFVXUFvVGOv21NmwG3tHkQS/u6rlvbZW3ba9/TRCMZ0Lv8Z5+qWlRVi+gdgM/mkiBafc+ld+kPTLyP3F93O+Dftqq+Qu+ynQXAH09zk5Ptn5IkaQgMAQ9fxwA7AG/PH776c6upFgJocwcOBt6f5LvAd4Bnt5ffQW8S76X0DsZmpB0EfojeJNgrW33/OEVdV1TVRQNeelBN6U3uPY3e5TW30BtpOD1918w0+wHXt/e5DDi2TdD9CrBrm5R78HTeU1V9HTgOuDjJ4+mdYX9dW/f1wF9OYzUnA0cmmQecSG8k5+vAbX19LgRe2Wp7Lr0AsGeS77VLr/560IrbpOIn0gssa2v+EXB3kme2phOTrGq38da2aV/bqvzha0zXzgm4jt5Z94+29on2kXOBt7VldgA+keR7wLeB91TVHdP4fKbaPyVJ0hCkqua6BkmSJEkPIUcCJEmSpI5xUp30MJTkSB74tZsAl1fVlL9ILEmS5OVAkiRJUsd4OZAkSZLUMYYASZIkqWMMAZIkSVLHGAIkSZKkjjEESJIkSR3z/9g5VCrpXBDUAAAAAElFTkSuQmCC\n",
  2730.       "text/plain": [
  2731.        "<Figure size 936x648 with 3 Axes>"
  2732.       ]
  2733.      },
  2734.      "metadata": {
  2735.       "needs_background": "light"
  2736.      },
  2737.      "output_type": "display_data"
  2738.     }
  2739.    ],
  2740.    "source": [
  2741.     "plt.figure(figsize=(13,9))\n",
  2742.     "plt.subplot(221)\n",
  2743.     "plt.boxplot(train_data['AvgHumidity'])\n",
  2744.     "plt.xlabel('AvgHumidity')\n",
  2745.     "plt.subplot(222)\n",
  2746.     "plt.boxplot(train_data['Inn 1 Team 1 Max Strike Rate_ALLBatsmen'])\n",
  2747.     "plt.xlabel('Inn 1 Team 1 Max Strike Rate_ALLBatsmen')\n",
  2748.     "plt.subplot(223)\n",
  2749.     "plt.boxplot(train_data['Inn 2 Team 2 Max Strike Rate_ALLBatsmen'])\n",
  2750.     "plt.xlabel('Inn 2 Team 2 Max Strike Rate_ALLBatsmen')\n",
  2751.     "plt.show()"
  2752.    ]
  2753.   },
  2754.   {
  2755.    "cell_type": "markdown",
  2756.    "metadata": {},
  2757.    "source": [
  2758.     "### 3.2 Categorical Variables"
  2759.    ]
  2760.   },
  2761.   {
  2762.    "cell_type": "code",
  2763.    "execution_count": 271,
  2764.    "metadata": {},
  2765.    "outputs": [
  2766.     {
  2767.      "data": {
  2768.       "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAEKCAYAAAAFPw0GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xm8VWXZ//HPV9BAMVAhH+1RSURRUVAGxRGHfEotTTFTSnGItNK0zCzLx5zSMK0cfooTamSGOGuCGTgAKqMcUNScHs1Z1ATRBK7fH+vestju6QCHwz7n+369zuus4V73fd3r8MfFte+1tiICMzMzM7N6slpzB2BmZmZm1lhOYs3MzMys7jiJNTMzM7O64yTWzMzMzOqOk1gzMzMzqztOYs3MzMys7jiJNTMzM7O64yTWzMzMzOqOk1gzMzMzqzttmzsAs+XRuXPn6Nq1a3OHYWZmZivI1KlT346ILtXaOYm1uta1a1emTJnS3GGYmZnZCiLppVraOYm1urbwrbm89f/+1NxhmJlZE+ly/LebOwRbRXlNrJmZmZnVHSexZmZmZlZ3nMSamZmZWd1xEmtmZmZmdafJklhJ83Lb+0p6VtLGTTVec5A0QtKgGtueLmlG+lmU2z6xEeNJ0l8lzZR0oqStJD0habqkbpIebkRf50g6qdb2ZmZmZquSJn87gaS9gEuAfSLi/2q8pm1ELGzayFauiDgXOBeyBD8iepdqV2XuXwT6RES31PaXwC0RcXY6v+sKDnulaol/dzMzM2saTbqcQNKuwFXAfhHxXDq2iaQHUjXxgUJ1NlU1L5I0DrhAUn9JE1OVcaKkLVK7IZJul3SXpBck/VDSj1O7RyWtm9p9V9LkVKkcLWnN3Dh/TH0+X6ikSlpN0uWSZku6W9K9uXNnpL5mSRouSSXmWrVNhfv0J0m/S3M/T9KOkialOU2Q1D01HQtsmCq4ZwA/BI6T9HdJbSW9l+vzF5Ia0vzPrTL+cbl7NUpS+1xcl0kaJ+k5SbtJul7SHEnXpDZtJb0naZikaZLGSNpB0oPp/u6ba3eRpMfT3/7YdHzvFP9fgOmS1pb0txTLLNVY6TYzM7PWpSmT2M8BdwAHRsSc3PFLgRsiYltgJPDH3LnNgb0j4ifAHGC3iNgOOAM4L9euJ3A40J+suvlhajcJOCK1uTUi+kVEL+Ap4Jjc9RsAuwD7A+enYwcBXYFtgGOBAfmYU189gfbpumK1tKmkG7BXRJya4t0lzels4JzU5uvA0xHROyLOAq4GhkXE3vmOJH0N+CrQP83/d1XGHpW7V88BQ3LnOkbEHsCpwF3ABcBWQB9JPQttgLERsT3wH+BMYC/gEOCs1GYo8GZE9Af6AT/QkuUlOwKnRsQ2wL7AixHRK93L+4uDlTRU0hRJU96Z9+8qUzMzM7OWqCmT2E+AiSydPEKWHP45bd9IlkwWjIqIRWm7IzBK0izgYmDrXLtxEfFBRLwFvE+WXAE0kCWiAD0lPSypARhcdP3tEbE4Ip4E1k/HdknjL46I14FxufZ7SHos9bVnUV+NaVPJqIhYnLY7AbemuV+4DH3tDVwbEQsAImJulfbb5u7Vt4rGy9/bVyPiyRTnkyy51wsi4v5cu/FpWUD+77EPcJSkGcBjaY6FCvOk3FKTmcBXJJ0vaeeIeL842IgYHhF9I6Lveh0+X2VqZmZm1hI1ZRK7GPgm0E/SLyq0i9z2/Nz22WTJak/ga0C73LmPi8b5OLddWOc7Avhhqu79usL1Kvq9FEntgMuBQamvq4r6qqlNDfJzPxcYk+Z+4DL0JZa+r9XcAByfYj+H0vcqf58L+4V7/Z+i46X+HgK+n6rIvSPiSxHxQDr36dwj4imgLzAbGFbl346ZmZm1Uk26JjYiPiT7WH2wpEJFdiJZtQ+yCukjZS7vCPwrbQ9ZhuHXBl6TtHoap5pHgIPT2tj1gYHpeCGhe1tSB6DUGs1a2jTG8s59LHBMbm3rulXarwW8nu7V4cswXi3GAN+X1DbFtEUhvjxJXwTmRcSNwEXA9k0Uj5mZmdWxJn87QUTMlfQV4CFJbwMnAtdK+inwFnBUmUt/C1wv6cfAP5Zh6F+RfWz9EtnH2mtXaT+abB3nLOCZdO37EfGepKtSHy8Ck4svrKVNI11Ado9OZellDTWJiLsl9QKmSPqEbEnAr4qatWVJxfQM4HHg/8jm39jKby2uBDYGZqRn3t4EDijRrhdwvqTFZBXe45ogFjMzM6tzimjMp84tm6QOETFP0npkSd3OaX1siyPpLuCSiBjb3LEsj96bbBr3n3ZW9YZmZlaXuhz/7eYOwVYySVMjom+1dk1eia0zd0vqBKwBnN0SE1hJbYAnyN6A8ECV5mZmZmarJCexORExsLljaGrp7Q89qzY0MzMzW4U5ibW61rbLuv6oyczMrBVq0rcTmJmZmZk1BSexZmZmZlZ3nMSamZmZWd3xmlirax+/+U+eu6TU62bNzMysKXQ74Y7mDgFwJdbMzMzM6pCTWDMzMzOrO05izczMzKzurPQkVtIiSTNyP6el4+MlVf2KsRL99Za07wqO8d70zV21tv+qpCmSnpI0R9KF6fhxko5I20MkbdjIOMZLelrSE5ImSNqicTNZfpLWlDRSUoOkWZIekdRhZcdhZmZmltccD3YtiIjeK7C/3kBf4N7iE5LaRsTCxnYYETUnxZJ6ApcC+0XEHEltgaGpnytyTYcAs4BXGxnO4IiYImkoMAz4eiOvb5QS9+xHwBsRsU06vwXwSROO3yZ9q5iZmZlZWavkcgJJ+0iaJGmapFGFyp+kfpImpsrk45I6AmcBh6aq7qGSzpQ0XNJY4AZJ7SRdlyqJ0yXtkfoaIulWSfdJelbSb3Pjvyipc9o+QtLMNOaNJcI9FTg3IuYARMTCiLg8XXumpFMkDSJLtEemOPeTdFtuvC9LurXKbXkI2Cy13yvNpUHStZI+J6l/oQ9JB0haIGmNNP/n0/Fuab5TJT0sqUc6PkLSRZLGARcUjbsB8K/CTkQ8HREfp+tuT33NTkk2ko4vupdDJF2Str+d/m4zJF0pqU06Pk/SWZIeAwZIOl/Sk+m+X1jlvpiZmVkr1BxJbPui5QSH5k+m5PGXwN4RsT0wBfixpDWAm4EfRUQvYG9gPnAGcHNE9I6Im1M3fYADIuJw4AcAqZJ4GHC9pHapXW/gUGAbskR4o6JYtgZOB/ZMY/6oxHx6AlMrTTgibknzGJyq0PcCW0rqkpocBVxXqQ/ga0BDin0EcGiaU1vgeGAasF1quytZ1bcfsAPwWDo+HDghIvoApwCX5/rfnOye/6Ro3GuBn6X/VJwjqXvu3NGpr77AiZLWA24BDsq1ORS4WdKWaXvndA8WAYNTm7WAWRGxA/Ak8A1g64jYFjinyn0xMzOzVmhVXE6wI7AVMEESwBrAJGAL4LWImAwQEf8GSG2K3RkRC9L2LsAl6Zo5kl4iS9gAHoiI91M/TwKbAC/n+tkTuCUi3k7Xz23cVEuLiEhV3W9Lug4YABxRpvlISQuAF4ETyO7DCxHxTDp/PfCDiPi9pH+mZLE/cBGwG9AGeDhVs3cCRuXu2edy44wq9TF+RMyQtCmwD9l/HCZLGhART5Elrt9ITTcCukfEo5Kel7Qj8GyKdwLZfyb6pOsB2gNvpmsXAaPT9r+Bj4CrJd0D3F0cU6r6DgXYcJ32ZW6bmZmZtWSr4pcdCLg/Ig5b6qC0LRA19jG/qL9yPs5tL+Kz90M1jDmbLDl7osbYCq4D7iJL2EZVWLs7OCKmfBpQVu0s52Hgq2RrVv9OVrFtQ1Z1XQ14r8J/IOaXOU5EzANuBW6VtBjYV9L6ZEntgIj4UNJ4oFDhvhn4JjAHuC0l7QKuj4iflxjio0ICHRELJfUH9gK+BfyQ7D8T+XiGk1WV2WbjTrX+mzAzM7MWZFVcE/sosLOkwvrPNSVtTpYQbSipXzq+trKHqD4A1q7Q30Okj61TPxsDT9cYywPANwuJo6R1S7QZBvwi9Y2k1ST9uES7peKMiFfJHvL6JVmyWas5QNfC/QG+AzyYth8CTgImRcRbwHpAD2B2qly/IOmQFKck9ao2mKSdJa2Tttcgq5K/BHQE3k0JbA+yCnrBrcCBZMs3Cks8HgAGSfpC6mtdSZuUGK8D0DEi7k1zWZEPAZqZmVkLsSqsiT0/fzIlX0OAmyTNJEtqe0TEf8jWVF4i6QngfrLK3zhgq1Lra5PLgTaSGsgSqiGFB5OqiYjZwLnAg2nMi0q0mUmWbN0k6SmytagblOhuBHBFirPwGfhI4OWIeLKWeNJ4H5GtoR2V5rQYKLwF4TFgfbJkFmAmMDMiCtXKwcAxaS6zgVq+r7Ub2fwbgOlka3tHA/cBbdPf6Gyyv1MhxnfJ1rZuEhGPp2NPkiXsY9M191P6Pq0N3J3aPAicXEOMZmZm1spoSX5jK5ukS4HpEXFNc8dSr7bZuFPc/tPdmzsMMzOzVqPbCXc0af+SpkZE1e8OWBXXxLYKkqaSrUMtfhuAmZmZmVXhJLaZpFdTmZmZmdkyWBUf7DIzMzMzq8iVWKtrn/vCZk2+NsfMzMxWPa7EmpmZmVndcRJrZmZmZnXHSayZmZmZ1R2vibW69v7bz3L3tV9t7jDMzFqE/Y/+W3OHYFYzV2LNzMzMrO44iTUzMzOzuuMk1szMzMzqTl0lsZLmNbL9QEl3N1U8TUXSi5IaJD0haayk/6rSfoSkQVXa3CbpwNz+05J+mdsfLemgCtd3lXR4jbF3rtbOzMzMbHnUVRK7okhaZR5ok9SmzKk9IqIXMAX4xQoYaiKwUxpzPWAeMCB3fkBqU05XoGoSuzxWpb+LmZmZrdrqMolNFdbxkm6RNEfSSElK576Sjj0CHJS75kxJwyWNBW5IlcWHJU1LPzvV0PcZkiZLmpX6KhzvJ2mmpEmShkmalY5XGmOcpD8DDVWm+xCwWbru00q0pEGSRuTa7Z3GekbS/iX6mUBKYtPvu4EuynwJWBARr5eLGTgf2FXSDEknS2oj6cJUMZ4p6YTcWCekaxsk9UjxriXp2nT/pks6IB0fImmUpLuAsZI2kPRQGmeWpF2r3B8zMzNrheq58rUdsDXwKlmCtrOkKcBVwJ7AP4Gbi67pA+wSEQskrQl8OSI+ktQduAnoW65v4BHg0og4C0DSjcD+wF3AdcDQiJgo6fzceG9WGKM/0DMiXqgyz/2pnuhCVindHegGjJO0WUR8lDs/FegpaQ2yJPZBYFNgyzTfCVViPg04JSL2T/M/HvgSsF1ELJS0bm6styNie0nfB04BjgVOB/4REUdL6gQ8Lunvqf0AYNuImCvpJ8CYiDg3VanXrGHuZmZm1srUZSU2eTwiXomIxcAMsiSuB/BCRDwbEQH8qeiaOyNiQdpeHbhKUgMwCtiqSt8Ae0h6LF2zJ7B1SsjWjojCR/F/zvVTbYxKCew4STOAzwO/qXwrAPhrRCyOiGeB58nuxaci4mNgNrA9sCPwGDCJLKHdiSVLCSrFnLc3cEVELEz9z82duzX9nsqSe7cPcFqa03igHbBxOnd/7vrJwFGSzgS2iYgPigeWNFTSFElT3p/3n7I3xMzMzFqueq7EfpzbXsSSuUSFa+bntk8G3gB6kSXz+arlZ/qW1A64HOgbES+nJKsdoArjVRpjfskrltgjIt4uOpafW7sK50rtQ5ao7kaWdL8r6VHgh2SV2CtqiDlPZcaAJfcv/3cRcHBEPL1UJ9IO5O5FRDwkaTdgP+BGScMi4oalJhYxHBgO0L1rx0p/bzMzM2uh6rkSW8oc4EuSuqX9wyq07Qi8lqqt3wHKPWBVUEga35bUARgEEBHvAh9I2jGd/9ZyjFHNG5K2lLQa8I2ic4dIWi3NfVPg6c9ezgTge8ATaX8mWVV2Y7IqbaWYPwDWzvU1FjhO6WGsouUEpYwhWytbWEe8XalGkjYB3oyIq4BryCrHZmZmZktpUUlsWgM6FLgnPdj1UoXmlwNHpmrk5lSpjEbEe2TrbRuA28k+9i44BhguaRJZxfH9ZRmjBqeRPZD1D+C1onNPk61z/RtwXNF62IKJZAnupDSnhWRrYKekpLVSzDOBhcpe+3UycDXwf8BMSU9Q/c0FZ5MtVZiZHnw7u0y7gcAMSdOBg4E/VOnXzMzMWiFlS0dteUjqEBHz0vZpwAYR8aNmDqtV6N61Y1x8xk7VG5qZWVX7H/235g7BDElTI6JvtXb1vCZ2VbKfpJ+T3c+XgCHNG46ZmZlZy+YkdgWIiJv57Ou8zMzMzKyJtKg1sWZmZmbWOrgSa3WtY+fuXsNlZmbWCrkSa2ZmZmZ1x0msmZmZmdUdJ7FmZmZmVne8Jtbq2htzn+XiP/9Pc4dhZmYtwMmHj2nuEKwRXIk1MzMzs7rjJNbMzMzM6o6TWDMzMzOrOy0iiZW0SNIMSU9ImiZppxqumZd+d5U0awXFMVDS3cvZx3hJT6f5zJA0qJHX/yK3XdPcJJ0p6V+5Mc9Px6+WtFWVa0eUijGNfXhjYjczMzOrVUt5sGtBRPQGkPQ/wG+A3Zs3pOokCVBELC46NTgipjTymoJfAOctQzgXR8SF+QMRcewy9FPQFTgc+HOtF0hqExGLlmNMMzMzayVaRCW2yOeBdws7kn4qabKkmZJ+XenCVD18OFVzP63opgrreEm3SJojaWRKJpH0lXTsEeCgXF9nSjoltz8r9d9V0lOSLgemARtVm1CpayQdJqkh9XtBanc+0D5VU0emy9tIukrSbEljJbWv7TZ+WhXum7aPkfRMOnaVpEtzTXeTNFHS87mq7PnArimWkyW1kTQs97f4Xu7ejpP0Z6BB0lqS7klV9VmSDq01XjMzM2s9WkoSW0jc5gBXA2cDSNoH6A70B3oDfSTtVqGfN4EvR8T2wKHAH3PntgNOArYCNgV2ltQOuAr4GrAr8F81xrsFcENEbBcRL5U4PzL30f56xdcAnwAXAHumefWTdGBEnEaqSkfE4HRdd+CyiNgaeA84uExMJ+fGXOqdVZI2BH4F7Ah8GehRdO0GwC7A/mTJK8BpwMMplouBY4D3I6If0A/4rqQvpbb9gdMjYivgK8CrEdErInoC95WJ18zMzFqxlpLEFhK3HmRJ0A2pUrpP+plOVsHsQZbUlbM6cJWkBmAUWcJa8HhEvJI+xp9B9nF5D+CFiHg2IgL4U43xvhQRj1Y4PzjNp3dEvFPimn7A+Ih4KyIWAiOBcsn5CxExI21PTXGXcnFuzOIX5fUHHoyIuRHxCdm9ybs9IhZHxJPA+mX63wc4QtIM4DFgPZb8LR6PiBfSdgOwt6QLJO0aEe8XdyRpqKQpkqbM/+A/ZYYzMzOzlqylrIn9VERMktQZ6AII+E1EXFnj5ScDbwC9yBL8j3LnPs5tL2LJvYsyfS1k6f8ktMttz68xnrz8NWrEdcVx17ycoBHj5cco11bACcUJsqSB5OYWEc9I6gPsC/xG0tiIOCt/TUQMB4YDbLRpx3L338zMzFqwllKJ/ZSkHkAb4B1gDHC0pA7p3BclfaHC5R2B11K19Tupn0rmAF+S1C3tH5Y79yKwfRp3e+BLrDiPAbtL6iypTRr3wXTuE0mrr8CxAB5P460jqS3llyTkfQCsndsfAxxfiE3S5pLWKr4oLV34MCL+BFxIuodmZmZmeS2lEts+fUwNWcXvyPSU+1hJWwKT0nNY84Bvk619LeVyYLSkQ4BxVKmYRsRHkoYC90h6G3gE6JlOj2bJx+eTgWeWeXafHfc1ST9PMQq4NyLuSKeHAzMlTQNOX0Hj/UvSeWTJ86vAk8BnPuYvMhNYKOkJYATwB7KlDNPSUo+3gANLXLcNMEzSYrK1v8eviDmYmZlZy6JsKadZZZI6RMS8VIm9Dbg2Im5r7rg22rRj/PicHZs7DDMzawFOPrz4kRBrDpKmRkTfau1a3HICazJnpqryLOAF4PZmjsfMzMxasZaynMCaWEScUr2VmZmZ2crhJNbq2vrrdvfHP2ZmZq2QlxOYmZmZWd1xEmtmZmZmdcdJrJmZmZnVHa+Jtbr27Hsv8dU7jmvuMMzMLOdvB1zR3CFYK+BKrJmZmZnVHSexZmZmZlZ3nMSamZmZWd1xEmtmZmZmdcdJbI0khaQbc/ttJb0l6e4V1H8nSd/P7Q9sbN+SRkgalLbHS+qbtu+V1KlE+w6SrpT0nKTZkh6StIOkrpJmNXLsT8czMzMza2pOYms3H+gpqX3a/zLwr8Z0IKnS2yA6Ad+vcH6ZRcS+EfFeiVNXA3OB7hGxNTAE6NwUMVQiqc3KHtPMzMzqm5PYxvkbsF/aPgy4qXBCUn9JEyVNT7+3SMeHSBol6S5gbKp+PiBpmqQGSQekLs4HukmaIWlYOtZB0i2S5kgaKUmpzzMkTZY0S9LwwvFyJL0oqXPRsW7ADsAvI2IxQEQ8HxH3pCZtJF2VKrRjC8m7pN6SHpU0U9JtktYp6nc1SddLOift7yNpUprvKEkdcjGdIekR4BBJJ0p6MvX7lxr/HmZmZtZKOYltnL8A35LUDtgWeCx3bg6wW0RsB5wBnJc7NwA4MiL2BD4CvhER2wN7AL9LSehpwHMR0Tsifpqu2w44CdgK2BTYOR2/NCL6RURPoD2w/zLMZWtgRkQsKnO+O3BZqtC+Bxycjt8A/CwitgUagP/NXdMWGAk8ExG/TInzL4G903ynAD/Otf8oInaJiL+k+W+X+q344ldJQyVNkTTlP//+qDFzNjMzsxbCX3bQCBExU1JXsirsvUWnOwLXS+oOBLB67tz9ETE3bQs4T9JuwGLgi8D6ZYZ8PCJeAZA0A+gKPALsIelUYE1gXWA2cNdyTe6zXoiIGWl7KtBVUkegU0Q8mI5fD4zKXXMl8NeIODft70iWgE9IxeI1gEm59jfntmcCIyXdDtxeKbCIGA4MB+i4WZdo7MTMzMys/rkS23h3AheSW0qQnA2MS9XRrwHtcufm57YHA12APhHRG3ijqG3ex7ntRUDbVAW+HBgUEdsAV1W4vpLZQC9J5f4NfGbsGvqcSJZgF+IRWQLfO/1sFRHH5Nrn78t+wGVAH2BqlfXDZmZm1sotUxIr6YgVHUgduRY4KyIaio53ZMmDXkMqXN8ReDMiPpG0B7BJOv4BsHYN4xcSxLfT+tJBNUVdJCKeI/t4/9e5tbbdc2t0S13zPvCupF3Toe8AD+aaXENWoR6VktBHgZ0lbZb6X1PS5sX9pkR6o4gYB5xK9pBbh2WZl5mZmbUOy1qJPWeFRlFHIuKViPhDiVO/BX4jaQJQ6Wn7kUBfSVPIqrJzUr/vkH3sPiv3YFep8d8jq742kH3sPnnZZgLAscB/Af+U1JD6fbXKNUcCwyTNBHoDZxXFdxEwDbgReIcsob8ptX8U6FGizzbAn1IM04GLy7xNwczMzAwARZReUihpWrlrgC0jYlk+wjZboTpu1iV2+t3B1RuamdlK87cDrmjuEKyOSZoaEVXfPV9p3eF/A/sC7xb3zdIfIZuZmZmZrVSVkth7gfYRMaX4RPrI3MzMzMysWZRdTmBWD/r27RtTpnzm/1lmZmZWp2pdTuBXbJmZmZlZ3XESa2ZmZmZ1x0msmZmZmdWdmr8VSdKa+fYR8e8micisEZ599y32G31lc4dhZrbKu+fg7zV3CGYrVNUkVtKxZF+pughYTPaKrQA2btrQzMzMzMxKq6US+zOgV0S82dTBmJmZmZnVopY1sc8DXjpgZmZmZquMWpLY04AJki6TdFHhp6kDW9EknS5ptqSZkmZI2iEdv1rSVmn7RUmdJXWVNKtEH0MkXboSYh0o6e4Sx9eUNFJSg6RZkh6R1CGdm7eCY3hR0sNFx2aUui9mZmZmK1stywmuACYADWRrYuuOpAHA/sD2EfGxpM7AGgARcWyzBgdIahMRi2po+iPgjYjYJl23BfBJE4a2tqSNIuJlSVs24TgASGobEQubehwzMzOrf7VUYhdHxIkRcVVEXFP4afLIVqwNgLcj4mOAiHg7Il4FkDReUtlvhZC0qaTpkvqlQxtJuk/S05L+N9fux6k6OkvSSbnjt0uamqrAQ3PH50k6S9JjwABJX5E0R9IjwEEV5vGvwk5EPF2YU65fSRqW4miQdGg6frmkr6ft2yRdm7aPkXROmfH+Chyatg8DbsqN007SdWmM6ZL2SMcfk7R1rt14SX0krSXpWkmTU/sD0vkhkkZJugsYK2kDSQ8Vqr6Sdi0Tm5mZmbVitSSxD0g6WlIXSZ8v/DR5ZCvWWLLk85mUzO1ey0Wp0jkaOCoiJqfD/YHBQG/gEEl9JfUBjgJ2AHYEvitpu9T+6IjoA/QFTpS0Xjq+FjArInYApgBXAV8DdgX+q0xI1wI/kzRJ0jmSupdoc1CKrRewNzBM0gbAQ6lvgC8CW6XtXYCHiztJbmFJQv014K7cuR8ApKrwYcD1ktoBfwG+CZDG3TAipgKnA/+IiH7AHimutVJfA4AjI2JP4HBgTEQU5jCjTGxmZmbWitWSxB4J/BqYBsxOP3W1LjIi5gF9gKHAW8DNkoZUuawLcAfw7YjIJ1L3R8Q7EbEAuJUsCdwFuC0i5qexbmVJwniipCeAR4GNgELiuYgsQQboAbwQEc9GRAB/KjOPGcCmwDBgXWByiY/5dwFuiohFEfEG8CDQjyxR3TWt/30SeCMlmQOAiWXuwVzgXUnfAp4CPiwa58YU1xzgJWBzsurtIanNN4FRaXsf4DRJM4DxQDuWvKbt/oiYm7YnA0dJOhPYJiI+KA5K0lBJUyRN+c+/V+hSYDMzM6sTVdfERsRGKyOQppbWnI4HxktqIEvOR1S45H3gZWBnssT9066KuyZ7d+5nSBpIVg0dEBEfShpPlrwBfFS0Dra433LzKCTJt0paDOxLlmB+OmyZ6/4laR3gK2RV2XXJksx5pRLFnJuBy4AhRccrjfOOpG3JliJ8L9f+4Ih4eqlOsgfs5ueuf0jSbsB+wI2ShkXEDUVjDAeGA3TstklN983MzMxalpq+dlZSD0kHSTq88NPUga1IkrYo+ui9N1nlsJL/AAcCRxTN98uS1pXUPp2fQJYUHqjs7QFrAd8gq3x2BN5NCWwPsqUGpcwBviSpW9o/rMw8dk6JKJLWIFsSUDw46udAAAAd6UlEQVSPh4BDJbWR1AXYDXg8nZsEnJTaPAycQvmlBAW3Ab8FxpQYZ3CKZXOyqmohQf0LcCrQMSIa0rExwAmSlK7ZjhIkbQK8GRFXAdcA21eJz8zMzFqhWr6x65dkHwX3IEtE/gd4BPhz04a2QnUALpHUCVgI/JNsaUFFETFf0v7A/ZIK1cJHyD5G3wz4c0RMAZA0giXJ4tURMV3Sk8BxkmaSJXiPlhnno/TQ1z2S3k5j9CzRtBvw/1IiuBpwD0uWJBTcRrZE4Amy6u6pEfF6OvcwsE9E/FPSS2TV2IpJbKrSXpDmmD91OXBFqmovBIbkHjK7BfgD2Te9FZwN/B6YmeJ/keyNEcUGAj+V9AkwDziiUnxmZmbWOilbglmhQZak9AamRUSvtI7yyoj4+soI0KySjt02iV1++4vmDsPMbJV3z8Hfq97IbBUgaWpElH1zVEEtywkWpLWbCyWtDbxO9nCRmZmZmVmzqOXLDqanj+GvJXsV1L/J3lRgZmZmZtYsank7QeHzh8skjQE+HxFOYs3MzMys2dRSiSW9J7RbRJwraSNJfdIL7M2aVfd1unidl5mZWStUdU2spEvJvmHp2+nQfOCKpgzKzMzMzKySWiqxO0XE9pKmA0TE3PSOUjMzMzOzZlHL2wk+kbQa6RulJK0HLG7SqMzMzMzMKihbiZXUNiIWkn3l6Gigi6Rfk31V6a9XUnxmFf3z3ff4+i13NHcYZraKu3PQAc0dgpmtYJWWEzwObB8RN0iaCuwNCDgkImatlOjMzMzMzEqolMR++h2jETEbmN304ZiZmZmZVVcpie0i6cflTkbERU0Qj5mZmZlZVZUe7GoDdADWLvPT5CRdLOmk3P4YSVfn9n8n6ceSBkq6u0wfV0vaKm3/osZxD5H0lKRxkvpK+mOV9pXGf1FS56JjP5L0+9z+lZL+nts/oYYxa5pLlT5GSBq0vP2YmZmZrWyVKrGvRcRZKy2S0iYChwC/T29I6Ax8Pnd+J+AkoH25DiLi2NzuL4Dzahj3GOD7ETEu7U9pTNA1mAgMzu33BlaT1CYiFpHN6/YqfdQ6l0/l+l9l5B4gNDMzM6tZpUqsKpxbWSaQJXQAWwOzgA8krSPpc8CWwPR0voOkWyTNkTRSkgAkjU/V1POB9pJmSBqZzn1b0uPp2JWS2kg6A9gFuELSsHyVVdJakq6VNFnSdEmfedxV0nqSxqbzV1L6Pk4HNpfUXlJH4ENgBrBNOr8TWaKLpNslTZU0W9LQdKymuaTj8ySdJekxYEC1G67MMEmzJDVIOjQdX03S5SmOuyXdW6jiSto33fdHJP2x2v2SNETSKEl3AWMlbSDpoRT7LEm7VovTzMzMWrdKSexeKy2KMiLiVWChpI3JErtJQCEZ6wvMjIj/pObbkVVltwI2BXYu6us0YEFE9I6IwZK2BA4Fdo6I3sAiYHCqPk9J2z8tCul04B8R0Y/sW8yGSVqrqM3/Ao9ExHbAncDGJea1kCxp7QfsmOb0KLCTpA0BRcTLqfnREdEnzfdESevVOpd0/VrArIjYISIeKX+3P3UQWWW4F9kbKYZJ2iAd70qWaB9LSogltQOuBL4aEbsAXWq8XwOAIyNiT+BwYEyKvVe6N2ZmZmZllV1OEBFzV2YgFRSqsTsBFwFfTNvvk6qVyeMR8QqApBlkCVelpG0voA8wORVt2wNvVollH+Drkk5J++34bJK6G1nCR0TcI+ndKvNqT5acP0u2ROCtonmdKOkbaXsjoDvwTiPmsojsPb+12gW4KS07eEPSg2TJ9i7AqIhYDLwuqbDUogfwfES8kPZvAoam7Ur36/7cv7HJwLWSVgduj4iKSWyqSA8FaN+5S6WmZmZm1kLV8rWzzW0iWbK3DdlygpeBnwD/Bq7Ntfs4t72I6nMTcH1E/LwRsQg4OCKeXuqgtH5Ru6ihr4nA98gSu8vIktet0u8Jqd+BZNXQARHxoaTxqX2puMrN5aNGroMtt4yksccL50rdrx2A+YX9iHhI0m7AfsCNkoZFxA3lOo2I4cBwgE7dNqvlXpuZmVkLU8vXzja3CcD+wNyIWJSqd53IPo6e1Mi+PknVPoAHgEGSvgAgaV1Jm1S5fgxwQm697XYl2jxE+ihf0leBdcr0NZFsKUGXiHgzIoIsgT2AJZXYjsC7KYHtkdqvqLmU8xBwaFof3IWssvw4WVX74LQ2dn1gYGo/B9hUUte0f2iur1ruFynWNyPiKuAaYPtljN3MzMxaiXpIYhvI3krwaNGx9yPi7Ub2NRyYKWlkRDwJ/JLswaKZwP3ABlWuPxtYPfUxK+0X+zWwm6RpZB+n/1+pjiLiXbKkNf8lEpOALwBPpP37gLYpvrNZ+h4s71wKrpT0SvqZBNwGzEwx/AM4NSJeJ1uS8ApZNfxKsnW870fEAuD7wH2SHgHeIFvqAbXdL8gS4hmSpgMHA3+oMXYzMzNrpZQVAM2qk9QhIuZJWo+sOrtzRLyeOy6ypRHPRsTFKyOmTt02i90u+N3KGMrM6tidgz7zMhkzW0VJmhoRfau1q4c1sbbquFtSJ2AN4OxUoQX4rqQj0/HpZJVaMzMzsybjJNZqFhEDyxy/GFgplVczMzMzqI81sWZmZmZmS3El1uraZut08lo3MzOzVsiVWDMzMzOrO05izczMzKzuOIk1MzMzs7rjNbFW155/dwGHjJ7V3GGYWQsw6uCezR2CmTWCK7FmZmZmVnecxJqZmZlZ3XESa2ZmZmZ1p8UlsZJOlzRb0kxJMyTt0Mjrj5N0RFPFV2K8XpJm5PYPk/ShpNXT/jaSZlbpY4ikDZcjhqPSvZoh6T+SGtL2+cvQV1tJ7y1rLGZmZma1aFEPdkkaAOwPbB8RH0vqDKzRiOvbRsQVTRbgknHaRMSitNsAbCJp7Yj4ANgJmANsBzye9idU6XIIMAt4tRExtI2IhQARcR1wXTr+IrBHRLxd84RWEEkCFBGLV/bYZmZmVl9aWiV2A+DtiPgYICLejohXASSdIWmypFmShqeECUnjJZ0n6UHgR5LOlHRKOvfddM0TkkZLWjMdHyHpCkkPS3pG0v7p+BBJlxaCkXS3pIFpe56ksyQ9BgwotEkJ22SgUDHuA1xGlrySfk8sNwdJg4C+wMhUPW0vqY+kByVNlTRG0gal5lrLDZW0o6RJkqZLmiCpezp+rKRbUv/PSvpNiWu7SHpM0lfS/mmSHk9V8jPSsc3SfK4ApgEbSboxVYNnSTqxljjNzMysdWlpSexYsiToGUmXS9o9d+7SiOgXET2B9mQV24JOEbF7RPyuqL9b0zW9gKeAY3LnugK7A/sBV0hqVyW2tYBZEbFDRDxSdG4isJOktYDFwHiWTmILldjPzCEibgGmAIMjojewELgEGBQRfYBrgXNrmGs5TwG7RMR2wNnAOblzvYBBwLbAt/NLGlLifC/w84i4T9K+wMZkyXrvNN/CHLcCrklj/BfQOSK2SfO8ocY4zczMrBVpUcsJImKepD7ArsAewM2STouIEcAekk4F1gTWBWYDd6VLby7TZU9J5wCdgA7AmNy5v6Yq6rOSngd6VAlvETC6zLkJwE+Ah4HJEfFcqlB2ATpExPOpXaU5FGwB9ATuT8XmNsBrufPl5lpOJ+AGSd1KnPt7WgKBpDlkSeqbZEs4/g58L5ew7wN8FZie9jsAm6f2z0XE5HT8n8AWkv5AlgSPLR5U0lBgKMCanTdo5HTMzMysJWhRSSxAWms6HhgvqQE4UtJfgMuBvhHxsqQzgXzldH6Z7kYAB0bEE5KGAAPzQxUPTVYFzVe382N8lFsHW+xRoB+wCzApHXsF+BZLlhK0qzKHAgGzI2JAiXNQfq7lnAuMiYjLJW0G3Jc793FuexFL/j19Qpas7gMUklgB50TENUsFm/X5aUwR8Y6kbckS3hOBg0kJa67NcGA4wLrdti7+O5iZmVkr0KKWE0jaorBmM+kNvMSSZO9tSR3IPgKvxdrAa8reFDC46NwhklZLFcpNgaeBF4He6fhGQP9aBknVzJfJHtAqJLGTgJNISWyVOXyQYiXF0SU95Iak1SVtXUscZXQE/pW2h9R4TaS2vQrri8mq2MekJRNI+u/04N1SUvVZETEK+F9g+2UP3czMzFqqllaJ7QBcIqkTWVX0n8DQiHhP0lVkbwJ4kexBqkoK1b1fAY+RJcINLEkUIUsWHwTWB46LiI8kTQBeSG1nkT2oVKsJwAER8XLanwScR0piq8xhBNm63AVkD40NAv4oqSPZ3/j3ZEsPlsUFwLVpGcO4Wi+KiIWSvgncI+mDiLhSUg/g0bTM4QPg8BKXbgRco6xRAD9bxrjNzMysBVOEP43Nk3QJMC29dqpcmxHA3emhKmtG63bbOvb6bWOX+ZqZfdaog3s2dwhmBkiaGhF9q7VrUcsJlpeks8menr+zuWMxMzMzs/Ja2nKC5RIRvyJbQlCt3ZCmj8bMzMzMynEl1szMzMzqjiuxVtc2Xae917GZmZm1Qq7EmpmZmVndcRJrZmZmZnXHywmsrr377kL+Ovrt5g6jWX3z4M98Z4SZmVmL50qsmZmZmdUdJ7FmZmZmVnecxJqZmZlZ3XESa2ZmZmZ1x0nsKk7SNySFpB65YxtKuqUJxzxJ0pplzo2X9LSkGelnUDo+r6niMTMzMyvmJHbVdxjwCPCtwoGIeDUiBhU3lLTcb5uQ1AY4CSiZxCaDI6J3+llhyXQa28zMzKwqJ7GrMEkdgJ2BY8glsZK6SpqVtodIGiXpLmCspIGSHpJ0m6QnJV0habXU9jBJDZJmSbog1988SWdJegw4HdgQGCdp3DLEfKOkA3L7IyV9XVIbScMkTZY0U9L30vmBksZJ+jPQIGktSfdIeiLFeeiy3DszMzNr2fye2FXbgcB9EfGMpLmSto+IaSXaDQC2jYi5kgYC/YGtgJeA+4CDJE0ELgD6AO+SJbwHRsTtwFrArIg4A0DS0cAeEVHuBawjJS1I23tFxDu5c1cDJwN3SOoI7AQcSZaIvx8R/SR9DpggaWy6pj/QMyJekHQw8GpE7Jdi6Vg8uKShwFCAzp3/u9L9MzMzsxbKldhV22HAX9L2X9J+KfdHxNzc/uMR8XxELAJuAnYB+gHjI+KtiFgIjAR2S+0XAaMbEVd+OUE+gSUiHgQ2k/SFFO/oNN4+wBGSZgCPAesB3XPxvpC2G4C9JV0gadeIeL948IgYHhF9I6Lv5z+/XiPCNjMzs5bCldhVlKT1gD2BnpICaAOEpFNLNJ9ftB8l9lVhuI9Swrui3AgMJlsCcXQ6JuCEiBiTb5gqx5/Gn6rOfYB9gd9IGhsRZ63A2MzMzKwFcCV21TUIuCEiNomIrhGxEfACWVW1mv6SvpTWwh5K9mDYY8DukjqnB6gOAx4sc/0HwNrLEfsIsofDiIjZ6dgY4HhJqwNI2lzSWsUXStoQ+DAi/gRcCGy/HHGYmZlZC+VK7KrrMOD8omOjgcPJ1rZWMilduw3wEHBbRCyW9HNgHFlV9N6IuKPM9cOBv0l6LSL2aGzgEfGGpKeA23OHrwa6AtMkCXiLbM1vsW2AYZIWA58Axzd2fDMzM2v5FFH8ybPVs/Tx/CkRsX8zxrAm2drW7UutaV2RunXrHb/57d+bcohV3jcP7tzcIZiZma0wkqZGRN9q7bycwFYoSXsDc4BLmjqBNTMzs9bLywlamIgYD4xvxvH/DmzcXOObmZlZ6+Ak1uraOuu09cfpZmZmrZCXE5iZmZlZ3XESa2ZmZmZ1x0msmZmZmdUdr4m1uvbRW58w5/I3mjuMJtPj++s3dwhmZmarJFdizczMzKzuOIk1MzMzs7rjJNbMzMzM6o7XxNY5SYvIvuK14MCIeLG1x2JmZmYtm5PY+rcgIno39iJJbSNi4aoQi5mZmVljeTlBCySpnaTrJDVImi5pj3R8iKRRku4CxkoaKOnu3HWXShqStl+UdJ6kSZKmSNpe0hhJz0k6rhGxdJX0sKRp6WendHygpPGSbpE0R9JISUrnzpf0pKSZki5ckffGzMzMWgZXYutfe0kz0vYLEfEN4AcAEbGNpB5kCevmqc0AYNuImCtpYJW+X46IAZIuBkYAOwPtgNnAFTXG8ibw5Yj4SFJ34Cagb2qzHbA18CowAdhZ0pPAN4AeERGSOtV+K8zMzKy1cBJb/0p9hL8LcAlARMyR9BJQSGLvj4i5NfZ9Z/rdAHSIiA+ADyR9JKlTRLxXQyyrA5dK6g0sysUB8HhEvAKQkt+uwKPAR8DVku4B7qaIpKHAUIAN1/3vGqdiZmZmLYmXE7RMqnBufm57IUv/G2hX1Pbj9HtxbruwX+t/gE4G3gB6kVVg1yjRP2QJbmGdbn9gNHAgcF9xhxExPCL6RkTfdTqsW2MYZmZm1pI4iW2ZHgIGA6RlBBsDT5do9xKwlaTPSeoI7NUEsXQEXouIxcB3gDaVGkvqAHSMiHuBkwA/KGZmZmaf4eUELdPlwBWSGsiqrUMi4uP03NSnIuJlSX8FZgLPAtObKJbRkg4BxrF0JbiUtYE7JLUjqyif3AQxmZmZWZ1TRDR3DGbLrOcmveKWn41t7jCaTI/vr9/cIZiZma1UkqZGRN9q7bycwMzMzMzqjpNYMzMzM6s7TmLNzMzMrO74wS6ra+26rO51o2ZmZq2QK7FmZmZmVnecxJqZmZlZ3XESa2ZmZmZ1x2tira598sZ83vj9480dRrNa/6T+zR2CmZnZSudKrJmZmZnVHSexZmZmZlZ3nMSamZmZWd1plUmspHlF+0MkXZq2t5A0XtIMSU9JGp6OD5T0vqTpkuZIurBM3wMl3V10bISkQWn7aklbVYnv0/ZV2i1Kcc6SdJekTtWuqdDXEEkbVojnhTTWNEkDlnUcMzMzsxWhVSaxVfwRuDgiekfElsAluXMPR8R2wHbA/pJ2bmznEXFsRDy5gmJdkOLsCcwFfrAcfQ0BSiaxyU8jojdwGnDlcoxTkSQ/bGhmZmZVOYn9rA2AVwo7EdFQ3CAiFgAzgC82tvNU5e2bto+R9Ew6dlWhGpzsJmmipOdrqcoCk/LxSPqppMmSZkr6dTrWNVWXr5I0W9JYSe1T/32Bkana2r7COA8Bm6X+vpvGeELSaElrSlo7VW1XT20+L+lFSatL6ibpPklTJT0sqUdqM0LSRZLGARdI2j3FMSNVvteu/Q6bmZlZa9Bak9j2uSRpBnBW7tzFwD8k/U3SyaU+ope0DtCdLKErZdei/r9eoo8NgV8BOwJfBnoUNdkA2AXYHzi/0mQktQH2Au5M+/uk+PoDvYE+knZLzbsDl0XE1sB7wMERcQswBRicKrsLKgz3NaCQ2N8aEf0iohfwFHBMRHwAjAf2S22+BYyOiE+A4cAJEdEHOAW4PNfv5sDeEfGTdO4HqfK7K1ApHjMzM2uFWmsSW/gYvndKlM4onIiI64AtgVHAQOBRSZ9Lp3eVNBN4Hbg7Il4v0//DRf3fWaJNf+DBiJibErxRRedvj4jFaenB+mXGaZ+S5HeAdYH70/F90s90YBpZgtw9nXshImak7alA1zJ9FxuWxhoKHJOO9UwV1QZgMLB1On41cFTaPgq4TlIHYCdgVOrnSrJEvWBURCxK2xOAiySdCHSKiIX5QCQNlTRF0pS589+rMXwzMzNrSVprEltRRLwaEddGxAHAQqBnOvVwRGwLbAMcL6n3cgyjKuc/rqHtgpQkbwKswZI1sQJ+k0ukN4uIa0r0u4jav/Dip6mvL0fErHRsBPDDiNgG+DXQDiAiJgBdJe0OtEntVwPeyyf3ac1xwfzCRkScD/z/9u4/ZK+yjuP4+8OcZCro5o/K34V/qJBKQwyFdIhMkyakYqySNPon0pFaVkQ/wMJ/KoxArJZT1JLVVAJpa81+49LmUlPLSko3XFLq7A9D/fbHuUZPT5Otdd/32bmf9wvGfc51ruec7/NlXM/3vu7rnPuDwD50byL+Y5a6qm6sqkVVtWjBvrt9L5skSRowi9hZkiyZsZ7zDcBC4OmZfarqd8AXgY//H5faALwjyYHtZqZ37+6Jqup54HLgqhb7D4BL2+wnSQ5LcshOTrMN+F/Xnu4PbGnXXDbr2M3A7cC3WowvAH9KcmGLKUlO3NFJk7ylqh6qquvoljnMXmohSZLmOIvY/3Y28HCSTXTF4NWvsWzgBrqbr47ZnYtU1dPAF4D7gB8CvwWe372Qoao2ApuAi6tqDXAb8Mv2Uf8qdl6g3gTcsAs3ds30abr41wKPzTp2K3AgXSG73TLgspbbR4Clr3He5e2xYZvo1sPes4vxSJKkOSJV1XcMc1aS/arqxTYTuxpYUVWr+45rFNoTD5ZW1fvGeZ0Tjziu1ly5cpyX2OMduvyUvkOQJGlkkjxQVYt21s9ncvbrs0nOoltLuga4s+d4RiLJV4FzgHP7jkWSJE0ni9geVdVVfccwDlX1kb5jkCRJ0801sZIkSRocZ2I1aPMP3dc1oZIkzUHOxEqSJGlwfDqBBi3JNuDxvuOYQw4Cnu07iDnEfE+W+Z4s8z1ZQ8r3UVV18M46uZxAQ/f4rjyGQ6OR5H7zPTnme7LM92SZ78maxny7nECSJEmDYxErSZKkwbGI1dDd2HcAc4z5nizzPVnme7LM92RNXb69sUuSJEmD40ysJEmSBsciVoOVZEmSx5M8keSavuOZNklWJNma5OEZbQuSrE3y+/Z6YJ8xTpMkRyRZn+TRJI8kuaK1m/MxSPK6JBuSbGr5/lxrPybJfS3f30myd9+xTpMk85JsTPL9tm++xyTJk0keSvJgkvtb21SNJxaxGqQk84CvAecAxwPvSXJ8v1FNnZuAJbPargHWVdWxwLq2r9F4Gbiyqo4DTgU+3P5Pm/PxeAlYXFUnAicBS5KcClwHfLnl++/AZT3GOI2uAB6dsW++x+vMqjppxqO1pmo8sYjVUJ0CPFFVf6yqfwLfBpb2HNNUqaqfAH+b1bwUWNm2VwLnTzSoKVZVW6rq1217G90f+sMw52NRnRfb7vz2r4DFwKrWbr5HKMnhwDuBb7T9YL4nbarGE4tYDdVhwF9m7D/V2jReh1bVFuiKLuCQnuOZSkmOBk4G7sOcj037aPtBYCuwFvgD8FxVvdy6OK6M1leAjwGvtv2FmO9xKmBNkgeSfKi1TdV44jd2aaiygzYftaHBS7If8F1geVW90E1WaRyq6hXgpCQHAKuB43bUbbJRTack5wFbq+qBJGdsb95BV/M9OqdV1eYkhwBrkzzWd0Cj5kyshuop4IgZ+4cDm3uKZS55JskbAdrr1p7jmSpJ5tMVsLdW1fdaszkfs6p6DriXbi3yAUm2T/A4rozOacC7kjxJt/xrMd3MrPkek6ra3F630r1JO4UpG08sYjVUvwKObXe27g1cDNzdc0xzwd3AJW37EuCuHmOZKm194DeBR6vqSzMOmfMxSHJwm4ElyT7AWXTrkNcDF7Ru5ntEquoTVXV4VR1NN17/qKqWYb7HIsm+Sfbfvg2cDTzMlI0nftmBBivJuXTv5OcBK6rq2p5DmipJbgfOAA4CngE+A9wJ3AEcCfwZuLCqZt/8pd2Q5HTgp8BD/HvN4Cfp1sWa8xFL8la6G1vm0U3o3FFVn0/yZrqZwgXARuC9VfVSf5FOn7ac4KqqOs98j0fL6+q2uxdwW1Vdm2QhUzSeWMRKkiRpcFxOIEmSpMGxiJUkSdLgWMRKkiRpcCxiJUmSNDgWsZIkSRoci1hJ0lRJsjzJ6/uOQ9J4+YgtSdJUad8Ktaiqnu07Fknj40ysJGnikrw/yW+SbEpyS5KjkqxrbeuSHNn63ZTkghk/92J7PSPJvUlWJXksya3pXA68CVifZH0/v52kSdhr510kSRqdJCcAnwJOq6pnkyyg+/asm6tqZZJLgeuB83dyqpOBE4DNwM/b+a5P8lHgTGdipenmTKwkadIWA6u2F5ntay/fDtzWjt8CnL4L59lQVU9V1avAg8DRY4hV0h7KIlaSNGkBdnZDxvbjL9P+ViUJsPeMPi/N2H4FP12U5hSLWEnSpK0DLkqyEKAtJ/gFcHE7vgz4Wdt+Enhb214KzN+F828D9h9VsJL2TL5rlSRNVFU9kuRa4MdJXgE2ApcDK5JcDfwV+EDr/nXgriQb6Irff+zCJW4E7kmyparOHP1vIGlP4CO2JEmSNDguJ5AkSdLgWMRKkiRpcCxiJUmSNDgWsZIkSRoci1hJkiQNjkWsJEmSBsciVpIkSYNjEStJkqTB+RfRapOwLTdvHwAAAABJRU5ErkJggg==\n",
  2769.       "text/plain": [
  2770.        "<Figure size 648x288 with 1 Axes>"
  2771.       ]
  2772.      },
  2773.      "metadata": {
  2774.       "needs_background": "light"
  2775.      },
  2776.      "output_type": "display_data"
  2777.     }
  2778.    ],
  2779.    "source": [
  2780.     "plt.figure(figsize=(9,4))\n",
  2781.     "sns.countplot(y='Team 1', data=train_data)\n",
  2782.     "plt.show()"
  2783.    ]
  2784.   },
  2785.   {
  2786.    "cell_type": "code",
  2787.    "execution_count": 272,
  2788.    "metadata": {},
  2789.    "outputs": [
  2790.     {
  2791.      "data": {
  2792.       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAEKCAYAAADXQ8UbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGlJJREFUeJzt3Xm0ZWV55/HvLxQoU1lAFUMELYcKDiiDpY1CK4NRVAQHbLU1QSEBE6NgTBRjL41J26ud4tgOKAJBxAGpdogYahHQdgBTxYwFgohYggLKjAoFT/9xNngL7nDqVp2z97nn+1nrrnP2Pvvu97nrrF3rqXe/+3lSVUiSJHXNH7UdgCRJ0mRMUiRJUieZpEiSpE4ySZEkSZ1kkiJJkjrJJEWSJHWSSYokSeokkxRJktRJJimSJKmT5rUdQD8WLlxYixcvbjsMSZK0AaxcufLGqlo003EjkaQsXryYFStWtB2GJEnaAJL8rJ/jRiJJWXPDb7jhE59ba9+iv3p1S9FIkqRhGPqalCQPTfLDJBcmuTTJu4YdgyRJ6r42ZlJ+D+xXVbcn2Rj4bpLTq+qcFmKRJEkdNfQkpaoKuL3Z3Lj5qWHHIUmSuq2VR5CTbJTkAuB6YHlVndtGHJIkqbtaSVKq6p6q2g3YEXhakl0eeEySI5KsSLLi17ffOvwgJUlSq1ot5lZVNwNnAwdM8tmxVbW0qpZus8X8occmSZLa1cbTPYuSLGjebwo8G7hs2HFIkqRua+Ppnh2AE5NsRC9J+lJVfaOFOCRJUoe18XTPRcDuwx5XkiSNFhsMSpKkThqJsvjzFm1tGXxJksaMMymSJKmTRmIm5e4bVnPdx9+6Qc+5w1+/Z4OeT5IkbVjOpEiSpE5qLUlpSuOfn8THjyVJ0oO0OZNyFLCqxfElSVKHtdVgcEfgBcBn2hhfkiR1X1szKR8C3gLc29L4kiSp49ro3XMgcH1VrZzhuAldkH87pOgkSVJXtDGTshdwUJKrgS8A+yX53AMPWrsL8qbDjlGSJLVs6ElKVb2tqnasqsXAK4D/qCrLyUqSpLVYJ0WSJHVSqxVnq+ps4Ow2Y5AkSd00EmXxN160o2XsJUkaM97ukSRJnWSSIkmSOmkkbvfcccOV/OenXth2GNIG89Qjv952CJLUec6kSJKkTmplJqUp5HYbcA+wpqqWthGHJEnqrjZv9+xbVTe2OL4kSeowb/dIkqROaitJKeCMJCuTHDHZARMbDN58+11DDk+SJLWtrds9e1XVtUm2BZYnuayqvjPxgKo6FjgW4PGPXFBtBClJktrTykxKVV3bvF4PLAOe1kYckiSpu4aepCTZPMmW970HngNcMuw4JElSt7Vxu2c7YFmS+8b/fFV9q4U4JElShw09Samqq4Bdhz2uJEkaLSNRFn/zRY+1jLgkSWPGOimSJKmTRmIm5eYbr+Crn31e22FIkjQWDj7s9LZDAJxJkSRJHdVKkpJkQZJTk1yWZFWSp7cRhyRJ6q62bvd8GPhWVR2SZBNgs5bikCRJHTX0JCXJfOCZwGsAquouwOY8kiRpLW3c7nk0cANwfJLzk3ymqTwrSZJ0vzaSlHnAHsAnqmp34A7gmAceNLEL8q12QZYkaey0kaSsBlZX1bnN9qn0kpa1VNWxVbW0qpbO32KToQYoSZLaN/Qkpap+Cfw8yc7Nrv2BHw07DkmS1G1tPd3zBuDk5smeq4DXthSHJEnqqFaSlKq6AFjaxtiSJGk0jERZ/AULl3SmRK8kSRoOy+JLkqROMkmRJEmdNBK3e2749RV86qTnth2GJGnMHfln/952CGPFmRRJktRJQ09Skuyc5IIJP7cmOXrYcUiSpG4b+u2eqroc2A0gyUbAL4Blw45DkiR1W9u3e/YHflJVP2s5DkmS1DFtJymvAE5pOQZJktRBrSUpTUn8g4AvT/H5/V2Qb7/NLsiSJI2bNmdSngecV1W/muzDiV2Qt9jSLsiSJI2bNpOUV+KtHkmSNIVWkpQkmwF/CpzWxviSJKn72uqCfCewTRtjS5Kk0TASZfEXbbPEUsSSJI2Zth9BliRJmpRJiiRJ6qSRuN2z+qYreOupB7QdhiSNlfcc8q22Q9CYa+vpnjcluTTJJUlOSfLQNuKQJEnd1UYX5IcDbwSWVtUuwEb0yuNLkiTdr601KfOATZPMAzYDrm0pDkmS1FFTrklJcjFQU31eVU+ezYBV9Ysk7weuAX4LnFFVZ8zmXJIkae6abuHsgc3r65vXk5rXVwF3znbAJFsBBwOPAm4Gvpzk1VX1uQccdwRwBMD8hS5ZkSRp3Ex5u6eqflZVPwP2qqq3VNXFzc8xwHPXY8xnAz+tqhuq6m56pfGfMcn49zcY3HS+DQYlSRo3/axJ2TzJ3vdtJHkGsPl6jHkNsGeSzZIE2B9YtR7nkyRJc1A/dVIOBz6b5GH01qjcAhw22wGr6twkpwLnAWuA84FjZ3s+SZI0N82YpFTVSmDXJPOBVNUt6ztoVb0TeOf6nkeSJM1dM97uSbJdkuOAL1bVLUmekOTwIcQmSZLGWKqmfMq4d0ByOnA88Paq2rWpbXJ+VT1pGAECLF26tFasWDGs4SRJ0gAlWVlVS2c6rp+Fswur6kvAvQBVtQa4Zz3jkyRJmlY/C2fvSLINTWG3JHvSWzw7NFfcvJrn/983D3NIDdg3X/SBtkOQJHVcP0nK3wJfAx6T5HvAIuCQgUYlSZLGXj9P95yX5FnAzkCAy5sibLOW5CjgL5vzfbqqPrQ+55MkSXNPP0/3bAYcAxxdVZcAi5McOMOvTXe+XeglKE8DdgUOTLJktueTJElzUz8LZ48H7gKe3myvBv7neoz5eOCcqrqzWYT7beDF63E+SZI0B/WTpDymqt4L3A1QVb+ld5tmti4Bnplkm2aW5vnATutxPkmSNAf1s3D2riSb8oenex4D/H62A1bVqiTvAZYDtwMX0iuPv5aJXZAfumjL2Q4nSZJGVD8zKe8EvgXslORk4EzgLeszaFUdV1V7VNUzgd8AV0xyzP1dkDeZv9n6DCdJkkZQP0/3LE9yHrAnvds8R1XVjeszaJJtq+r6JI8AXsIf1rtIkiQB/d3uAXgWsDe9Wz4bA8vWc9yvNAXi7gZeX1U3ref5JEnSHDNjkpLk48BjgVOaXUcmeXZVvX62g1bVf53t70qSpPHQz0zKs4BdqulEmORE4OKBRvUASxbsaBl1SZLGTD8LZy8HHjFheyfgosGEI0mS1NPPTMo2wKokP2y2nwr8IMnXAKrqoEEFJ0mSxlc/Sco7Bh7FDK64+XpecNpH2w5jTvm3l7yh7RAkSZpWP48gfxugeRrnmcA1VbVy0IFJkqTxNuWalCTfaJoBkmQHeuXsDwNOSnL0TCdO8tkk1ye5ZMK+rZMsT3JF87rVBvgbJEnSHDTdwtlHNV2PAV4LLK+qFwL/hV6yMpMTgAMesO8Y4MyqWkKvcu0x6xauJEkaF9MlKXdPeL8/8E2AqroNuHemE1fVd+iVvJ/oYODE5v2JwIv6jlSSJI2V6dak/DzJG4DVwB70+vfQNBvceJbjbVdV1wFU1XVJtp3qwLUaDC70rpAkSeNmupmUw4EnAq8BXl5VNzf79wSOH3BcazcYfNgWgx5OkiR1zJQzKVV1PfC6SfafBZw1y/F+lWSHZhZlB+D6WZ5HkiTNcVMmKUm+Tq+h4KRmWcTta8ChwP9uXr86i3NIkqQxMN2alPc3ry8Btgc+12y/Erh6phMnOQXYB1iYZDXwTnrJyZeSHA5cA7xsVlFLkqQ5b7rbPfcVcfvnqnrmhI++nuQ7M524ql45xUf7r1uIkiRpHPVTFn9RkkdX1VUASR4FLBpsWGtbsmBby7hLkjRm+klS3gScneSqZnsxcOTAIpIkSaK/3j3fSrIEeFyz67Kq+v1gw1rblTf9hgNPPXkoY33jkFcNZRxJkjS9fmZSAJ5CbwZlHrBrEqrqXwcWlSRJGnvTFXMDIMlJ9J702Rt4avOztI/fm6zB4MuSXJrk3iQznkOSJI2vfmZSlgJPqKopa6ZM4QTgY8DEGZdL6D3S/Kl1PJckSRozM86k0Esstl/XE0/WYLCqVlXV5et6LkmSNH76mUlZCPwoyQ+B+xfMzrLirCRJUl/6SVL+cdBBTGZiF+RNF27TRgiSJKlF/TyC/O1hBDLJuMcCxwIseMyj13U9jCRJGnHTNRj8blXtneQ21m40GKCqav7Ao5MkSWNrut49ezevW87mxFM0GPwN8FF6ZfX/LckFVfXc2ZxfkiTNbdPNpHwI+B7wvaq6dl1PPE2DwWXrei5JkjR+pluTciXwYuB9SQC+Ty9p+T5wYVXdO/jweh671daWq5ckacxMd7vnY/SKsZFkB2Av4Bn0Gg5uC7gmRZIkDcy0T/ekN4XyJHrJyV7AE+jNsJw0+NAkSdI4m25NynJ6syUXAOcA/6uqVg0rsImuvOkWDj719L6O/eohzxtwNJIkaRimK4t/Fb1Hj5c0P49NsnAoUUmSpLE3ZZJSVUdW1Z7Ai4CzgacAn0uyMsmJM514ii7I70tyWZKLkixLsmAD/A2SJGkO6qfB4O+BO4HfNu93BPbo4/dOAA54wL7lwC5V9WTgx8Db+o5UkiSNlSmTlCQfTHIucB3wT8CWwKeAnavqSTOdeIouyGdU1Zpm8xx6CY8kSdKDTPd0z0+Bk4Hzq+qeAYx9GPDFqT5cu8HgtgMYXpIkddl0dVI+ApBkj6aY20S3AD+bMCuyTpK8HVhDLwmaavwJDQaX2GBQkqQxM2MXZODj9NagXESvueAuzfttkryuqs5YlwGTHAocCOxfVSYfkiRpUv0snL0a2L2qllbVU4DdgUuAZwPvXZfBkhwAvBU4qKruXMdYJUnSGOknSXlcVV1630ZV/Yhe0nLVdL/UdEH+AbBzktVJDqdXZn9LYHmSC5J8cj1ilyRJc1g/t3suT/IJ4AvN9suBHyd5CHD3VL80RRfk49Y9REmSNI4y07KQJJsCfw3sTW9NynfprVP5HbBZVd0+6CCXLl1aK1asGPQwkiRpCJKsrKqlMx3Xz0zKAcDHquoDk3w28ARFkiSNp37WpBxE7/bOSUlekKSfxEaSJGm9zJhwVNVrk2wMPA/478DHkyyvqr8YeHSNn9x0J4d85by+jj31pf1U7JckSV3Xz0wKVXU3cDq9xbPn0Ws6OK0pGgz+c9Nc8IIkZyT549kGLkmS5rYZk5QkByQ5AfgJcAi9KrDb93HuE3hwg8H3VdWTq2o34BvAO9YpWkmSNDb6mUl5DbAMWFJVhwK3AR+e6ZemaDB464TNzQErzkqSpEn1syblFUl2A/4pycvpNR48bbYDJnk38Of0+v/sO9vzSJKkuW3KmZQkf5LkHUlW0asUu5peXZV9q+qjsx2wqt5eVTvRay74N9OMf0SSFUlW/P7Wm2Y7nCRJGlHT3e65DNgfeGFV7d0kJvdswLE/D7x0qg+r6timX9DSh8zfagMOK0mSRsF0ScpLgV8CZyX5dJL96VWcnbUkSyZsHkQvEZIkSXqQKdekVNUyYFmSzek9cvwmYLumj8+yqjpjuhM3DQb3ARYmWQ28E3h+kp2Be4GfAa/bIH+FJEmac/pZOHsHvfUjJyfZGngZcAwwbZJig0FJkrQ+Zmww2AU2GJQkae7ot8FgXxVnJUmShs0kRZIkddJIdDT+5c13855l1621760v3qGlaCRJ0jA4kyJJkjppYEnKZF2QJ3z2d0kqycJBjS9JkkbbIGdSTuDBXZBJshPwp8A1AxxbkiSNuIElKZN1QW58EHgLdkCWJEnTGOqalCQHAb+oqguHOa4kSRo9Q3u6J8lmwNuB5/R5/BHAEQALFj18gJFJkqQuGuZMymOARwEXJrka2BE4L8n2kx08sQvy5vO3GWKYkiSpC4Y2k1JVFwPb3rfdJCpLq+rGYcUgSZJGxyAfQT4F+AGwc5LVSQ4f1FiSJGnuGdhMyhRdkCd+vnhQY0uSpNE3EmXxt1+wsWXwJUkaM5bFlyRJnWSSIkmSOmkkbvfcctMaTv9ifw8BPe/ltgOSJGkucCZFkiR10lC7ICf5xyS/SHJB8/P8QY0vSZJG29C7IAMfrKrdmp9vDnB8SZI0wtrogixJkjSjNtak/E2Si5rbQVtNdVCSI5KsSLLi1lt/Pcz4JElSBww7SfkEvUaDuwHXAR+Y6sCJDQbn22BQkqSxM9Qkpap+VVX3VNW9wKeBpw1zfEmSNDqGmqQkmVjb/sXAJVMdK0mSxtvAirk1XZD3ARYmWQ28E9gnyW5AAVcDRw5qfEmSNNqG3QX5uEGNJ0mS5paRKIv/sK3mWe5ekqQxY1l8SZLUSSMxk/LbG+7m0k/+aq19T3zddi1FI0mShsGZFEmS1EnDbjC4W5JzmuaCK5JYJ0WSJE1q2A0G3wu8q6p2A97RbEuSJD3IsBsMFjC/ef8w4NpBjS9JkkbbsBfOHg38e5L300uQnjHk8SVJ0ogY9sLZvwLeVFU7AW9imuJuE7sg33T7AydkJEnSXDfsJOVQ4LTm/ZeZpsHgxC7IW22x9VCCkyRJ3THsJOVa4FnN+/2AK4Y8viRJGhHDbjD4l8CHk8wDfgccMajxJUnSaBt2g0GApwxqTEmSNHeMRFn8TRdtbBl8SZLGjGXxJUlSJ5mkSJKkThqJ2z13/+p3/PIDl/V17PZvftyAo5EkScPgTIokSeqkYXdB3jXJD5JcnOTrSeZPdw5JkjS+ht0F+TPAMVX1JGAZ8PcDHF+SJI2wYXdB3hn4TvN+OfDSQY0vSZJG27DXpFwCHNS8fxmw01QHTmww+Os7bhpKcJIkqTuGnaQcBrw+yUpgS+CuqQ6c2GBwm823GlqAkiSpG4b6CHJVXQY8ByDJnwAvGOb4kiRpdAx1JiXJts3rHwH/A/jkMMeXJEmjY5CPIJ8C/ADYOcnqJIcDr0zyY+Ay4Frg+EGNL0mSRlsbXZA/PKgxJUnS3DESZfE33u6hlruXJGnMWBZfkiR1kkmKJEnqpJG43bPm+tu4/qNnrbVv2zfs21I0kiRpGAb5dM9OSc5KsirJpUmOava/L8llSS5KsizJgkHFIEmSRtcgb/esAd5cVY8H9qRXafYJ9Hr27FJVTwZ+DLxtgDFIkqQRNcgGg9dV1XnN+9uAVcDDq+qMqlrTHHYOsOOgYpAkSaNrKAtnkywGdgfOfcBHhwGnDyMGSZI0WgaepCTZAvgKcHRV3Tph/9vp3RI6eYrf+0MX5NtvGXSYkiSpYwaapCTZmF6CcnJVnTZh/6HAgcCrqqom+921uiBv8bBBhilJkjpoYI8gJwlwHLCqqv5lwv4DgLcCz6qqOwc1viRJGm2DrJOyF/BnwMVJLmj2/QPwEeAhwPJeHsM5VfW6AcYhSZJG0CAbDH4XyCQffXNQY0qSpLljJCrOztt2SyvMSpI0ZuzdI0mSOilTPFzTKUluAy5vOw7NaCFwY9tBqC9+V6PB72k0+D2tu0dW1aKZDhqJ2z3A5VW1tO0gNL0kK/yeRoPf1WjwexoNfk+D4+0eSZLUSSYpkiSpk0YlSTm27QDUF7+n0eF3NRr8nkaD39OAjMTCWUmSNH5GZSZFkiSNmU4nKUkOSHJ5kiuTHNN2PPqDJDslOSvJqiSXJjmq2b91kuVJrmhet2o7VkGSjZKcn+QbzfajkpzbfE9fTLJJ2zGOuyQLkpya5LLmunq611P3JHlT82/eJUlOSfJQr6fB6WySkmQj4P8AzwOeALwyyRPajUoTrAHeXFWPB/YEXt98P8cAZ1bVEuDMZlvtOwpYNWH7PcAHm+/pJuDwVqLSRB8GvlVVjwN2pfd9eT11SJKHA28EllbVLsBGwCvwehqYziYpwNOAK6vqqqq6C/gCcHDLMalRVddV1XnN+9vo/YP6cHrf0YnNYScCL2onQt0nyY7AC4DPNNsB9gNObQ7xe2pZkvnAM+l1jqeq7qqqm/F66qJ5wKZJ5gGbAdfh9TQwXU5SHg78fML26mafOibJYmB34Fxgu6q6DnqJDLBte5Gp8SHgLcC9zfY2wM1VtabZ9tpq36OBG4Djm9tyn0myOV5PnVJVvwDeD1xDLzm5BViJ19PAdDlJmayDso8idUySLYCvAEdX1a1tx6O1JTkQuL6qVk7cPcmhXlvtmgfsAXyiqnYH7sBbO53TrAk6GHgU8MfA5vSWJDyQ19MG0uUkZTWw04TtHYFrW4pFk0iyMb0E5eSqOq3Z/askOzSf7wBc31Z8AmAv4KAkV9O7ZbofvZmVBc10NXhtdcFqYHVVndtsn0ovafF66pZnAz+tqhuq6m7gNOAZeD0NTJeTlP8EljSrpjehtzjpay3HpEazruE4YFVV/cuEj74GHNq8PxT46rBj0x9U1duqaseqWkzvGvqPqnoVcBZwSHOY31PLquqXwM+T7Nzs2h/4EV5PXXMNsGeSzZp/A+/7nryeBqTTxdySPJ/e//o2Aj5bVe9uOSQ1kuwN/D/gYv6w1uEf6K1L+RLwCHoX9Muq6jetBKm1JNkH+LuqOjDJo+nNrGwNnA+8uqp+32Z84y7JbvQWN28CXAW8lt5/JL2eOiTJu4CX03vC8XzgL+itQfF6GoBOJymSJGl8dfl2jyRJGmMmKZIkqZNMUiRJUieZpEiSpE4ySZEkSZ1kkiJp5CQ5OslmbcchabB8BFnSyGkq6C6tqhvbjkXS4DiTImkgkvx5kouSXJjkpCSPTHJms+/MJI9ojjshySETfu/25nWfJGcnOTXJZUlOTs8b6fVNOSvJWe38dZKGYd7Mh0jSuknyRODtwF5VdWOSrem1sP/XqjoxyWHAR5i5pf3uwBPp9UL5XnO+jyT5W2BfZ1Kkuc2ZFEmDsB9w6n1JRFPK/enA55vPTwL27uM8P6yq1VV1L3ABsHgAsUrqKJMUSYMQZm5Xf9/na2j+LWqatm0y4ZiJ/U/uwdlfaayYpEgahDOB/5ZkG4Dmds/36XViBngV8N3m/dXAU5r3BwMb93H+24AtN1SwkrrJ/5VI2uCq6tIk7wa+neQeep1h3wh8NsnfAzfQ6/IL8Gngq0l+SC+5uaOPIY4FTk9yXVXtu+H/Akld4CPIkiSpk7zdI0mSOskkRZIkdZJJiiRJ6iSTFEmS1EkmKZIkqZNMUiRJUieZpEiSpE4ySZEkSZ30/wE2uIanCTOXUwAAAABJRU5ErkJggg==\n",
  2793.       "text/plain": [
  2794.        "<Figure size 648x288 with 1 Axes>"
  2795.       ]
  2796.      },
  2797.      "metadata": {
  2798.       "needs_background": "light"
  2799.      },
  2800.      "output_type": "display_data"
  2801.     }
  2802.    ],
  2803.    "source": [
  2804.     "plt.figure(figsize=(9,4))\n",
  2805.     "sns.countplot(y='AvgWindSpeed', data=train_data)\n",
  2806.     "plt.show()"
  2807.    ]
  2808.   },
  2809.   {
  2810.    "cell_type": "markdown",
  2811.    "metadata": {},
  2812.    "source": [
  2813.     "## 4. Bivariate Analysis:"
  2814.    ]
  2815.   },
  2816.   {
  2817.    "cell_type": "markdown",
  2818.    "metadata": {},
  2819.    "source": [
  2820.     "### 4.1 Continuous-Continuous Variables"
  2821.    ]
  2822.   },
  2823.   {
  2824.    "cell_type": "code",
  2825.    "execution_count": 273,
  2826.    "metadata": {},
  2827.    "outputs": [
  2828.     {
  2829.      "data": {
  2830.       "text/html": [
  2831.        "<div>\n",
  2832.        "<style scoped>\n",
  2833.        "    .dataframe tbody tr th:only-of-type {\n",
  2834.        "        vertical-align: middle;\n",
  2835.        "    }\n",
  2836.        "\n",
  2837.        "    .dataframe tbody tr th {\n",
  2838.        "        vertical-align: top;\n",
  2839.        "    }\n",
  2840.        "\n",
  2841.        "    .dataframe thead th {\n",
  2842.        "        text-align: right;\n",
  2843.        "    }\n",
  2844.        "</style>\n",
  2845.        "<table border=\"1\" class=\"dataframe\">\n",
  2846.        "  <thead>\n",
  2847.        "    <tr style=\"text-align: right;\">\n",
  2848.        "      <th></th>\n",
  2849.        "      <th>DayOfWeek</th>\n",
  2850.        "      <th>AvgWindSpeed</th>\n",
  2851.        "      <th>AvgHumidity</th>\n",
  2852.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  2853.        "      <th>Inn 1 Team 1 NOP R<25, SR>125</th>\n",
  2854.        "      <th>Inn 1 Team 1 Total 4s</th>\n",
  2855.        "      <th>Inn 1 Team 1 Total 6s</th>\n",
  2856.        "      <th>Inn 1 Team 1 Max Strike Rate_ALLBatsmen</th>\n",
  2857.        "      <th>Inn 1 Team 2 NoP fast bowlers</th>\n",
  2858.        "      <th>Inn 1 Team 2 NoP Spinners</th>\n",
  2859.        "      <th>...</th>\n",
  2860.        "      <th>Inn 2 Team 2 NOP R<25, SR>125</th>\n",
  2861.        "      <th>Inn 2 Team 2 Total 4s</th>\n",
  2862.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  2863.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  2864.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  2865.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  2866.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  2867.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  2868.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  2869.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  2870.        "    </tr>\n",
  2871.        "  </thead>\n",
  2872.        "  <tbody>\n",
  2873.        "    <tr>\n",
  2874.        "      <th>DayOfWeek</th>\n",
  2875.        "      <td>1.000000</td>\n",
  2876.        "      <td>0.006570</td>\n",
  2877.        "      <td>-0.054770</td>\n",
  2878.        "      <td>0.000275</td>\n",
  2879.        "      <td>-0.003855</td>\n",
  2880.        "      <td>-0.062329</td>\n",
  2881.        "      <td>-0.039985</td>\n",
  2882.        "      <td>-0.097170</td>\n",
  2883.        "      <td>-0.017455</td>\n",
  2884.        "      <td>0.121605</td>\n",
  2885.        "      <td>...</td>\n",
  2886.        "      <td>-0.098304</td>\n",
  2887.        "      <td>0.040173</td>\n",
  2888.        "      <td>0.012040</td>\n",
  2889.        "      <td>0.068158</td>\n",
  2890.        "      <td>-0.013463</td>\n",
  2891.        "      <td>0.126194</td>\n",
  2892.        "      <td>-0.035186</td>\n",
  2893.        "      <td>-0.063250</td>\n",
  2894.        "      <td>0.019833</td>\n",
  2895.        "      <td>-0.107076</td>\n",
  2896.        "    </tr>\n",
  2897.        "    <tr>\n",
  2898.        "      <th>AvgWindSpeed</th>\n",
  2899.        "      <td>0.006570</td>\n",
  2900.        "      <td>1.000000</td>\n",
  2901.        "      <td>-0.432911</td>\n",
  2902.        "      <td>0.001787</td>\n",
  2903.        "      <td>-0.082540</td>\n",
  2904.        "      <td>0.005887</td>\n",
  2905.        "      <td>-0.046758</td>\n",
  2906.        "      <td>-0.006207</td>\n",
  2907.        "      <td>0.031999</td>\n",
  2908.        "      <td>-0.126879</td>\n",
  2909.        "      <td>...</td>\n",
  2910.        "      <td>-0.071657</td>\n",
  2911.        "      <td>-0.124438</td>\n",
  2912.        "      <td>-0.005578</td>\n",
  2913.        "      <td>-0.041836</td>\n",
  2914.        "      <td>0.006913</td>\n",
  2915.        "      <td>-0.106839</td>\n",
  2916.        "      <td>0.045695</td>\n",
  2917.        "      <td>-0.086037</td>\n",
  2918.        "      <td>0.088573</td>\n",
  2919.        "      <td>0.009108</td>\n",
  2920.        "    </tr>\n",
  2921.        "    <tr>\n",
  2922.        "      <th>AvgHumidity</th>\n",
  2923.        "      <td>-0.054770</td>\n",
  2924.        "      <td>-0.432911</td>\n",
  2925.        "      <td>1.000000</td>\n",
  2926.        "      <td>-0.081753</td>\n",
  2927.        "      <td>-0.093937</td>\n",
  2928.        "      <td>-0.218124</td>\n",
  2929.        "      <td>-0.066796</td>\n",
  2930.        "      <td>-0.151057</td>\n",
  2931.        "      <td>-0.109890</td>\n",
  2932.        "      <td>0.103570</td>\n",
  2933.        "      <td>...</td>\n",
  2934.        "      <td>0.007245</td>\n",
  2935.        "      <td>-0.066339</td>\n",
  2936.        "      <td>-0.158611</td>\n",
  2937.        "      <td>-0.031976</td>\n",
  2938.        "      <td>-0.125614</td>\n",
  2939.        "      <td>0.075294</td>\n",
  2940.        "      <td>-0.076673</td>\n",
  2941.        "      <td>0.097053</td>\n",
  2942.        "      <td>-0.042595</td>\n",
  2943.        "      <td>-0.014270</td>\n",
  2944.        "    </tr>\n",
  2945.        "    <tr>\n",
  2946.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  2947.        "      <td>0.000275</td>\n",
  2948.        "      <td>0.001787</td>\n",
  2949.        "      <td>-0.081753</td>\n",
  2950.        "      <td>1.000000</td>\n",
  2951.        "      <td>-0.027067</td>\n",
  2952.        "      <td>0.557363</td>\n",
  2953.        "      <td>0.569978</td>\n",
  2954.        "      <td>0.289513</td>\n",
  2955.        "      <td>0.196281</td>\n",
  2956.        "      <td>0.067094</td>\n",
  2957.        "      <td>...</td>\n",
  2958.        "      <td>0.262138</td>\n",
  2959.        "      <td>0.286533</td>\n",
  2960.        "      <td>0.380452</td>\n",
  2961.        "      <td>0.295449</td>\n",
  2962.        "      <td>0.139664</td>\n",
  2963.        "      <td>0.102031</td>\n",
  2964.        "      <td>0.384275</td>\n",
  2965.        "      <td>0.207546</td>\n",
  2966.        "      <td>0.005916</td>\n",
  2967.        "      <td>0.365082</td>\n",
  2968.        "    </tr>\n",
  2969.        "    <tr>\n",
  2970.        "      <th>Inn 1 Team 1 NOP R<25, SR>125</th>\n",
  2971.        "      <td>-0.003855</td>\n",
  2972.        "      <td>-0.082540</td>\n",
  2973.        "      <td>-0.093937</td>\n",
  2974.        "      <td>-0.027067</td>\n",
  2975.        "      <td>1.000000</td>\n",
  2976.        "      <td>0.172281</td>\n",
  2977.        "      <td>0.160631</td>\n",
  2978.        "      <td>0.315771</td>\n",
  2979.        "      <td>0.059764</td>\n",
  2980.        "      <td>0.127670</td>\n",
  2981.        "      <td>...</td>\n",
  2982.        "      <td>0.131804</td>\n",
  2983.        "      <td>0.122481</td>\n",
  2984.        "      <td>0.246626</td>\n",
  2985.        "      <td>0.165402</td>\n",
  2986.        "      <td>0.107571</td>\n",
  2987.        "      <td>0.081547</td>\n",
  2988.        "      <td>0.102045</td>\n",
  2989.        "      <td>0.064221</td>\n",
  2990.        "      <td>-0.013489</td>\n",
  2991.        "      <td>0.124055</td>\n",
  2992.        "    </tr>\n",
  2993.        "    <tr>\n",
  2994.        "      <th>Inn 1 Team 1 Total 4s</th>\n",
  2995.        "      <td>-0.062329</td>\n",
  2996.        "      <td>0.005887</td>\n",
  2997.        "      <td>-0.218124</td>\n",
  2998.        "      <td>0.557363</td>\n",
  2999.        "      <td>0.172281</td>\n",
  3000.        "      <td>1.000000</td>\n",
  3001.        "      <td>0.324726</td>\n",
  3002.        "      <td>0.362544</td>\n",
  3003.        "      <td>0.369592</td>\n",
  3004.        "      <td>0.046404</td>\n",
  3005.        "      <td>...</td>\n",
  3006.        "      <td>0.331018</td>\n",
  3007.        "      <td>0.487876</td>\n",
  3008.        "      <td>0.409796</td>\n",
  3009.        "      <td>0.345807</td>\n",
  3010.        "      <td>0.317329</td>\n",
  3011.        "      <td>0.106047</td>\n",
  3012.        "      <td>0.392111</td>\n",
  3013.        "      <td>0.177932</td>\n",
  3014.        "      <td>0.148548</td>\n",
  3015.        "      <td>0.326568</td>\n",
  3016.        "    </tr>\n",
  3017.        "    <tr>\n",
  3018.        "      <th>Inn 1 Team 1 Total 6s</th>\n",
  3019.        "      <td>-0.039985</td>\n",
  3020.        "      <td>-0.046758</td>\n",
  3021.        "      <td>-0.066796</td>\n",
  3022.        "      <td>0.569978</td>\n",
  3023.        "      <td>0.160631</td>\n",
  3024.        "      <td>0.324726</td>\n",
  3025.        "      <td>1.000000</td>\n",
  3026.        "      <td>0.451683</td>\n",
  3027.        "      <td>0.153610</td>\n",
  3028.        "      <td>0.136966</td>\n",
  3029.        "      <td>...</td>\n",
  3030.        "      <td>0.326233</td>\n",
  3031.        "      <td>0.252199</td>\n",
  3032.        "      <td>0.481053</td>\n",
  3033.        "      <td>0.323435</td>\n",
  3034.        "      <td>0.170208</td>\n",
  3035.        "      <td>0.029400</td>\n",
  3036.        "      <td>0.370564</td>\n",
  3037.        "      <td>0.227501</td>\n",
  3038.        "      <td>-0.030781</td>\n",
  3039.        "      <td>0.387725</td>\n",
  3040.        "    </tr>\n",
  3041.        "    <tr>\n",
  3042.        "      <th>Inn 1 Team 1 Max Strike Rate_ALLBatsmen</th>\n",
  3043.        "      <td>-0.097170</td>\n",
  3044.        "      <td>-0.006207</td>\n",
  3045.        "      <td>-0.151057</td>\n",
  3046.        "      <td>0.289513</td>\n",
  3047.        "      <td>0.315771</td>\n",
  3048.        "      <td>0.362544</td>\n",
  3049.        "      <td>0.451683</td>\n",
  3050.        "      <td>1.000000</td>\n",
  3051.        "      <td>0.253472</td>\n",
  3052.        "      <td>0.101793</td>\n",
  3053.        "      <td>...</td>\n",
  3054.        "      <td>0.231103</td>\n",
  3055.        "      <td>0.268043</td>\n",
  3056.        "      <td>0.331854</td>\n",
  3057.        "      <td>0.257099</td>\n",
  3058.        "      <td>0.252695</td>\n",
  3059.        "      <td>0.011742</td>\n",
  3060.        "      <td>0.293498</td>\n",
  3061.        "      <td>0.122148</td>\n",
  3062.        "      <td>0.016467</td>\n",
  3063.        "      <td>0.216820</td>\n",
  3064.        "    </tr>\n",
  3065.        "    <tr>\n",
  3066.        "      <th>Inn 1 Team 2 NoP fast bowlers</th>\n",
  3067.        "      <td>-0.017455</td>\n",
  3068.        "      <td>0.031999</td>\n",
  3069.        "      <td>-0.109890</td>\n",
  3070.        "      <td>0.196281</td>\n",
  3071.        "      <td>0.059764</td>\n",
  3072.        "      <td>0.369592</td>\n",
  3073.        "      <td>0.153610</td>\n",
  3074.        "      <td>0.253472</td>\n",
  3075.        "      <td>1.000000</td>\n",
  3076.        "      <td>-0.404158</td>\n",
  3077.        "      <td>...</td>\n",
  3078.        "      <td>0.121343</td>\n",
  3079.        "      <td>0.289882</td>\n",
  3080.        "      <td>0.169497</td>\n",
  3081.        "      <td>0.263009</td>\n",
  3082.        "      <td>0.355490</td>\n",
  3083.        "      <td>0.052934</td>\n",
  3084.        "      <td>0.208378</td>\n",
  3085.        "      <td>0.080528</td>\n",
  3086.        "      <td>0.242980</td>\n",
  3087.        "      <td>0.090775</td>\n",
  3088.        "    </tr>\n",
  3089.        "    <tr>\n",
  3090.        "      <th>Inn 1 Team 2 NoP Spinners</th>\n",
  3091.        "      <td>0.121605</td>\n",
  3092.        "      <td>-0.126879</td>\n",
  3093.        "      <td>0.103570</td>\n",
  3094.        "      <td>0.067094</td>\n",
  3095.        "      <td>0.127670</td>\n",
  3096.        "      <td>0.046404</td>\n",
  3097.        "      <td>0.136966</td>\n",
  3098.        "      <td>0.101793</td>\n",
  3099.        "      <td>-0.404158</td>\n",
  3100.        "      <td>1.000000</td>\n",
  3101.        "      <td>...</td>\n",
  3102.        "      <td>0.074461</td>\n",
  3103.        "      <td>0.088232</td>\n",
  3104.        "      <td>0.146363</td>\n",
  3105.        "      <td>0.168113</td>\n",
  3106.        "      <td>0.074930</td>\n",
  3107.        "      <td>0.271400</td>\n",
  3108.        "      <td>0.050216</td>\n",
  3109.        "      <td>0.121832</td>\n",
  3110.        "      <td>-0.002422</td>\n",
  3111.        "      <td>0.062736</td>\n",
  3112.        "    </tr>\n",
  3113.        "    <tr>\n",
  3114.        "      <th>Inn 1 Team 2 wickets taken_catches_runout</th>\n",
  3115.        "      <td>0.089845</td>\n",
  3116.        "      <td>-0.067991</td>\n",
  3117.        "      <td>0.041704</td>\n",
  3118.        "      <td>-0.090929</td>\n",
  3119.        "      <td>0.286304</td>\n",
  3120.        "      <td>-0.094074</td>\n",
  3121.        "      <td>-0.084993</td>\n",
  3122.        "      <td>0.033392</td>\n",
  3123.        "      <td>0.201752</td>\n",
  3124.        "      <td>0.051603</td>\n",
  3125.        "      <td>...</td>\n",
  3126.        "      <td>-0.049250</td>\n",
  3127.        "      <td>0.018962</td>\n",
  3128.        "      <td>0.045296</td>\n",
  3129.        "      <td>0.069792</td>\n",
  3130.        "      <td>0.190803</td>\n",
  3131.        "      <td>0.103813</td>\n",
  3132.        "      <td>-0.046018</td>\n",
  3133.        "      <td>-0.044393</td>\n",
  3134.        "      <td>0.145519</td>\n",
  3135.        "      <td>-0.127405</td>\n",
  3136.        "    </tr>\n",
  3137.        "    <tr>\n",
  3138.        "      <th>Inn1 Team 2 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  3139.        "      <td>0.085253</td>\n",
  3140.        "      <td>0.077526</td>\n",
  3141.        "      <td>-0.150730</td>\n",
  3142.        "      <td>-0.338452</td>\n",
  3143.        "      <td>0.051589</td>\n",
  3144.        "      <td>-0.160736</td>\n",
  3145.        "      <td>-0.318899</td>\n",
  3146.        "      <td>-0.033672</td>\n",
  3147.        "      <td>0.139486</td>\n",
  3148.        "      <td>-0.027483</td>\n",
  3149.        "      <td>...</td>\n",
  3150.        "      <td>-0.097969</td>\n",
  3151.        "      <td>-0.020577</td>\n",
  3152.        "      <td>-0.203386</td>\n",
  3153.        "      <td>-0.036640</td>\n",
  3154.        "      <td>0.157553</td>\n",
  3155.        "      <td>-0.073528</td>\n",
  3156.        "      <td>-0.150670</td>\n",
  3157.        "      <td>-0.049367</td>\n",
  3158.        "      <td>0.060416</td>\n",
  3159.        "      <td>-0.198553</td>\n",
  3160.        "    </tr>\n",
  3161.        "    <tr>\n",
  3162.        "      <th>Inn 1 Team 2 Extras conceded in_wides_No Balls</th>\n",
  3163.        "      <td>0.026258</td>\n",
  3164.        "      <td>0.055039</td>\n",
  3165.        "      <td>-0.042146</td>\n",
  3166.        "      <td>0.073031</td>\n",
  3167.        "      <td>-0.000502</td>\n",
  3168.        "      <td>0.172214</td>\n",
  3169.        "      <td>0.083791</td>\n",
  3170.        "      <td>0.140323</td>\n",
  3171.        "      <td>0.195105</td>\n",
  3172.        "      <td>0.071469</td>\n",
  3173.        "      <td>...</td>\n",
  3174.        "      <td>0.073799</td>\n",
  3175.        "      <td>0.182326</td>\n",
  3176.        "      <td>0.217114</td>\n",
  3177.        "      <td>0.135521</td>\n",
  3178.        "      <td>0.185254</td>\n",
  3179.        "      <td>0.029191</td>\n",
  3180.        "      <td>0.070230</td>\n",
  3181.        "      <td>0.046109</td>\n",
  3182.        "      <td>0.193029</td>\n",
  3183.        "      <td>-0.002472</td>\n",
  3184.        "    </tr>\n",
  3185.        "    <tr>\n",
  3186.        "      <th>Inn 2 Team 2 NOP R>25,SR>125</th>\n",
  3187.        "      <td>0.098442</td>\n",
  3188.        "      <td>-0.007117</td>\n",
  3189.        "      <td>-0.220708</td>\n",
  3190.        "      <td>0.377688</td>\n",
  3191.        "      <td>0.156986</td>\n",
  3192.        "      <td>0.371475</td>\n",
  3193.        "      <td>0.381539</td>\n",
  3194.        "      <td>0.291806</td>\n",
  3195.        "      <td>0.152478</td>\n",
  3196.        "      <td>0.064060</td>\n",
  3197.        "      <td>...</td>\n",
  3198.        "      <td>0.009474</td>\n",
  3199.        "      <td>0.490216</td>\n",
  3200.        "      <td>0.611973</td>\n",
  3201.        "      <td>0.382301</td>\n",
  3202.        "      <td>0.214265</td>\n",
  3203.        "      <td>0.021190</td>\n",
  3204.        "      <td>0.068317</td>\n",
  3205.        "      <td>-0.184564</td>\n",
  3206.        "      <td>-0.041520</td>\n",
  3207.        "      <td>-0.092912</td>\n",
  3208.        "    </tr>\n",
  3209.        "    <tr>\n",
  3210.        "      <th>Inn 2 Team 2 NOP R<25, SR>125</th>\n",
  3211.        "      <td>-0.098304</td>\n",
  3212.        "      <td>-0.071657</td>\n",
  3213.        "      <td>0.007245</td>\n",
  3214.        "      <td>0.262138</td>\n",
  3215.        "      <td>0.131804</td>\n",
  3216.        "      <td>0.331018</td>\n",
  3217.        "      <td>0.326233</td>\n",
  3218.        "      <td>0.231103</td>\n",
  3219.        "      <td>0.121343</td>\n",
  3220.        "      <td>0.074461</td>\n",
  3221.        "      <td>...</td>\n",
  3222.        "      <td>1.000000</td>\n",
  3223.        "      <td>0.224863</td>\n",
  3224.        "      <td>0.199398</td>\n",
  3225.        "      <td>0.355058</td>\n",
  3226.        "      <td>0.058635</td>\n",
  3227.        "      <td>0.079639</td>\n",
  3228.        "      <td>0.398480</td>\n",
  3229.        "      <td>0.308534</td>\n",
  3230.        "      <td>-0.032800</td>\n",
  3231.        "      <td>0.305465</td>\n",
  3232.        "    </tr>\n",
  3233.        "    <tr>\n",
  3234.        "      <th>Inn 2 Team 2 Total 4s</th>\n",
  3235.        "      <td>0.040173</td>\n",
  3236.        "      <td>-0.124438</td>\n",
  3237.        "      <td>-0.066339</td>\n",
  3238.        "      <td>0.286533</td>\n",
  3239.        "      <td>0.122481</td>\n",
  3240.        "      <td>0.487876</td>\n",
  3241.        "      <td>0.252199</td>\n",
  3242.        "      <td>0.268043</td>\n",
  3243.        "      <td>0.289882</td>\n",
  3244.        "      <td>0.088232</td>\n",
  3245.        "      <td>...</td>\n",
  3246.        "      <td>0.224863</td>\n",
  3247.        "      <td>1.000000</td>\n",
  3248.        "      <td>0.266584</td>\n",
  3249.        "      <td>0.476050</td>\n",
  3250.        "      <td>0.302849</td>\n",
  3251.        "      <td>0.148157</td>\n",
  3252.        "      <td>-0.025026</td>\n",
  3253.        "      <td>-0.068548</td>\n",
  3254.        "      <td>0.060870</td>\n",
  3255.        "      <td>-0.145390</td>\n",
  3256.        "    </tr>\n",
  3257.        "    <tr>\n",
  3258.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  3259.        "      <td>0.012040</td>\n",
  3260.        "      <td>-0.005578</td>\n",
  3261.        "      <td>-0.158611</td>\n",
  3262.        "      <td>0.380452</td>\n",
  3263.        "      <td>0.246626</td>\n",
  3264.        "      <td>0.409796</td>\n",
  3265.        "      <td>0.481053</td>\n",
  3266.        "      <td>0.331854</td>\n",
  3267.        "      <td>0.169497</td>\n",
  3268.        "      <td>0.146363</td>\n",
  3269.        "      <td>...</td>\n",
  3270.        "      <td>0.199398</td>\n",
  3271.        "      <td>0.266584</td>\n",
  3272.        "      <td>1.000000</td>\n",
  3273.        "      <td>0.463410</td>\n",
  3274.        "      <td>0.204528</td>\n",
  3275.        "      <td>0.072018</td>\n",
  3276.        "      <td>0.086858</td>\n",
  3277.        "      <td>-0.092395</td>\n",
  3278.        "      <td>0.034675</td>\n",
  3279.        "      <td>-0.058181</td>\n",
  3280.        "    </tr>\n",
  3281.        "    <tr>\n",
  3282.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  3283.        "      <td>0.068158</td>\n",
  3284.        "      <td>-0.041836</td>\n",
  3285.        "      <td>-0.031976</td>\n",
  3286.        "      <td>0.295449</td>\n",
  3287.        "      <td>0.165402</td>\n",
  3288.        "      <td>0.345807</td>\n",
  3289.        "      <td>0.323435</td>\n",
  3290.        "      <td>0.257099</td>\n",
  3291.        "      <td>0.263009</td>\n",
  3292.        "      <td>0.168113</td>\n",
  3293.        "      <td>...</td>\n",
  3294.        "      <td>0.355058</td>\n",
  3295.        "      <td>0.476050</td>\n",
  3296.        "      <td>0.463410</td>\n",
  3297.        "      <td>1.000000</td>\n",
  3298.        "      <td>0.165378</td>\n",
  3299.        "      <td>0.172949</td>\n",
  3300.        "      <td>0.168232</td>\n",
  3301.        "      <td>0.034031</td>\n",
  3302.        "      <td>0.079442</td>\n",
  3303.        "      <td>-0.047209</td>\n",
  3304.        "    </tr>\n",
  3305.        "    <tr>\n",
  3306.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  3307.        "      <td>-0.013463</td>\n",
  3308.        "      <td>0.006913</td>\n",
  3309.        "      <td>-0.125614</td>\n",
  3310.        "      <td>0.139664</td>\n",
  3311.        "      <td>0.107571</td>\n",
  3312.        "      <td>0.317329</td>\n",
  3313.        "      <td>0.170208</td>\n",
  3314.        "      <td>0.252695</td>\n",
  3315.        "      <td>0.355490</td>\n",
  3316.        "      <td>0.074930</td>\n",
  3317.        "      <td>...</td>\n",
  3318.        "      <td>0.058635</td>\n",
  3319.        "      <td>0.302849</td>\n",
  3320.        "      <td>0.204528</td>\n",
  3321.        "      <td>0.165378</td>\n",
  3322.        "      <td>1.000000</td>\n",
  3323.        "      <td>-0.367085</td>\n",
  3324.        "      <td>0.124852</td>\n",
  3325.        "      <td>0.039211</td>\n",
  3326.        "      <td>0.147322</td>\n",
  3327.        "      <td>0.034196</td>\n",
  3328.        "    </tr>\n",
  3329.        "    <tr>\n",
  3330.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  3331.        "      <td>0.126194</td>\n",
  3332.        "      <td>-0.106839</td>\n",
  3333.        "      <td>0.075294</td>\n",
  3334.        "      <td>0.102031</td>\n",
  3335.        "      <td>0.081547</td>\n",
  3336.        "      <td>0.106047</td>\n",
  3337.        "      <td>0.029400</td>\n",
  3338.        "      <td>0.011742</td>\n",
  3339.        "      <td>0.052934</td>\n",
  3340.        "      <td>0.271400</td>\n",
  3341.        "      <td>...</td>\n",
  3342.        "      <td>0.079639</td>\n",
  3343.        "      <td>0.148157</td>\n",
  3344.        "      <td>0.072018</td>\n",
  3345.        "      <td>0.172949</td>\n",
  3346.        "      <td>-0.367085</td>\n",
  3347.        "      <td>1.000000</td>\n",
  3348.        "      <td>0.100099</td>\n",
  3349.        "      <td>0.048104</td>\n",
  3350.        "      <td>0.059835</td>\n",
  3351.        "      <td>0.056112</td>\n",
  3352.        "    </tr>\n",
  3353.        "    <tr>\n",
  3354.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  3355.        "      <td>-0.035186</td>\n",
  3356.        "      <td>0.045695</td>\n",
  3357.        "      <td>-0.076673</td>\n",
  3358.        "      <td>0.384275</td>\n",
  3359.        "      <td>0.102045</td>\n",
  3360.        "      <td>0.392111</td>\n",
  3361.        "      <td>0.370564</td>\n",
  3362.        "      <td>0.293498</td>\n",
  3363.        "      <td>0.208378</td>\n",
  3364.        "      <td>0.050216</td>\n",
  3365.        "      <td>...</td>\n",
  3366.        "      <td>0.398480</td>\n",
  3367.        "      <td>-0.025026</td>\n",
  3368.        "      <td>0.086858</td>\n",
  3369.        "      <td>0.168232</td>\n",
  3370.        "      <td>0.124852</td>\n",
  3371.        "      <td>0.100099</td>\n",
  3372.        "      <td>1.000000</td>\n",
  3373.        "      <td>0.243691</td>\n",
  3374.        "      <td>0.044451</td>\n",
  3375.        "      <td>0.686327</td>\n",
  3376.        "    </tr>\n",
  3377.        "    <tr>\n",
  3378.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  3379.        "      <td>-0.063250</td>\n",
  3380.        "      <td>-0.086037</td>\n",
  3381.        "      <td>0.097053</td>\n",
  3382.        "      <td>0.207546</td>\n",
  3383.        "      <td>0.064221</td>\n",
  3384.        "      <td>0.177932</td>\n",
  3385.        "      <td>0.227501</td>\n",
  3386.        "      <td>0.122148</td>\n",
  3387.        "      <td>0.080528</td>\n",
  3388.        "      <td>0.121832</td>\n",
  3389.        "      <td>...</td>\n",
  3390.        "      <td>0.308534</td>\n",
  3391.        "      <td>-0.068548</td>\n",
  3392.        "      <td>-0.092395</td>\n",
  3393.        "      <td>0.034031</td>\n",
  3394.        "      <td>0.039211</td>\n",
  3395.        "      <td>0.048104</td>\n",
  3396.        "      <td>0.243691</td>\n",
  3397.        "      <td>1.000000</td>\n",
  3398.        "      <td>-0.034991</td>\n",
  3399.        "      <td>0.532549</td>\n",
  3400.        "    </tr>\n",
  3401.        "    <tr>\n",
  3402.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  3403.        "      <td>0.019833</td>\n",
  3404.        "      <td>0.088573</td>\n",
  3405.        "      <td>-0.042595</td>\n",
  3406.        "      <td>0.005916</td>\n",
  3407.        "      <td>-0.013489</td>\n",
  3408.        "      <td>0.148548</td>\n",
  3409.        "      <td>-0.030781</td>\n",
  3410.        "      <td>0.016467</td>\n",
  3411.        "      <td>0.242980</td>\n",
  3412.        "      <td>-0.002422</td>\n",
  3413.        "      <td>...</td>\n",
  3414.        "      <td>-0.032800</td>\n",
  3415.        "      <td>0.060870</td>\n",
  3416.        "      <td>0.034675</td>\n",
  3417.        "      <td>0.079442</td>\n",
  3418.        "      <td>0.147322</td>\n",
  3419.        "      <td>0.059835</td>\n",
  3420.        "      <td>0.044451</td>\n",
  3421.        "      <td>-0.034991</td>\n",
  3422.        "      <td>1.000000</td>\n",
  3423.        "      <td>-0.083222</td>\n",
  3424.        "    </tr>\n",
  3425.        "    <tr>\n",
  3426.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  3427.        "      <td>-0.107076</td>\n",
  3428.        "      <td>0.009108</td>\n",
  3429.        "      <td>-0.014270</td>\n",
  3430.        "      <td>0.365082</td>\n",
  3431.        "      <td>0.124055</td>\n",
  3432.        "      <td>0.326568</td>\n",
  3433.        "      <td>0.387725</td>\n",
  3434.        "      <td>0.216820</td>\n",
  3435.        "      <td>0.090775</td>\n",
  3436.        "      <td>0.062736</td>\n",
  3437.        "      <td>...</td>\n",
  3438.        "      <td>0.305465</td>\n",
  3439.        "      <td>-0.145390</td>\n",
  3440.        "      <td>-0.058181</td>\n",
  3441.        "      <td>-0.047209</td>\n",
  3442.        "      <td>0.034196</td>\n",
  3443.        "      <td>0.056112</td>\n",
  3444.        "      <td>0.686327</td>\n",
  3445.        "      <td>0.532549</td>\n",
  3446.        "      <td>-0.083222</td>\n",
  3447.        "      <td>1.000000</td>\n",
  3448.        "    </tr>\n",
  3449.        "  </tbody>\n",
  3450.        "</table>\n",
  3451.        "<p>24 rows × 24 columns</p>\n",
  3452.        "</div>"
  3453.       ],
  3454.       "text/plain": [
  3455.        "                                                    DayOfWeek  AvgWindSpeed  \\\n",
  3456.        "DayOfWeek                                            1.000000      0.006570   \n",
  3457.        "AvgWindSpeed                                         0.006570      1.000000   \n",
  3458.        "AvgHumidity                                         -0.054770     -0.432911   \n",
  3459.        "Inn 1 Team 1 NOP R>25,SR>125                         0.000275      0.001787   \n",
  3460.        "Inn 1 Team 1 NOP R<25, SR>125                       -0.003855     -0.082540   \n",
  3461.        "Inn 1 Team 1 Total 4s                               -0.062329      0.005887   \n",
  3462.        "Inn 1 Team 1 Total 6s                               -0.039985     -0.046758   \n",
  3463.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen             -0.097170     -0.006207   \n",
  3464.        "Inn 1 Team 2 NoP fast bowlers                       -0.017455      0.031999   \n",
  3465.        "Inn 1 Team 2 NoP Spinners                            0.121605     -0.126879   \n",
  3466.        "Inn 1 Team 2 wickets taken_catches_runout            0.089845     -0.067991   \n",
  3467.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...   0.085253      0.077526   \n",
  3468.        "Inn 1 Team 2 Extras conceded in_wides_No Balls       0.026258      0.055039   \n",
  3469.        "Inn 2 Team 2 NOP R>25,SR>125                         0.098442     -0.007117   \n",
  3470.        "Inn 2 Team 2 NOP R<25, SR>125                       -0.098304     -0.071657   \n",
  3471.        "Inn 2 Team 2 Total 4s                                0.040173     -0.124438   \n",
  3472.        "Inn 2 Team 2 Total 6s                                0.012040     -0.005578   \n",
  3473.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen              0.068158     -0.041836   \n",
  3474.        "Inn 2 Team 1 NoP fast bowlers                       -0.013463      0.006913   \n",
  3475.        "Inn 2 Team 1 NoP Spinners                            0.126194     -0.106839   \n",
  3476.        "Inn 2 Team 1 wickets taken_catches_runout           -0.035186      0.045695   \n",
  3477.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...  -0.063250     -0.086037   \n",
  3478.        "Inn 2 Team 1 Extras conceded in_wides_No Balls       0.019833      0.088573   \n",
  3479.        "Winner (team 1=1, team 2=0)                         -0.107076      0.009108   \n",
  3480.        "\n",
  3481.        "                                                    AvgHumidity  \\\n",
  3482.        "DayOfWeek                                             -0.054770   \n",
  3483.        "AvgWindSpeed                                          -0.432911   \n",
  3484.        "AvgHumidity                                            1.000000   \n",
  3485.        "Inn 1 Team 1 NOP R>25,SR>125                          -0.081753   \n",
  3486.        "Inn 1 Team 1 NOP R<25, SR>125                         -0.093937   \n",
  3487.        "Inn 1 Team 1 Total 4s                                 -0.218124   \n",
  3488.        "Inn 1 Team 1 Total 6s                                 -0.066796   \n",
  3489.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen               -0.151057   \n",
  3490.        "Inn 1 Team 2 NoP fast bowlers                         -0.109890   \n",
  3491.        "Inn 1 Team 2 NoP Spinners                              0.103570   \n",
  3492.        "Inn 1 Team 2 wickets taken_catches_runout              0.041704   \n",
  3493.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...    -0.150730   \n",
  3494.        "Inn 1 Team 2 Extras conceded in_wides_No Balls        -0.042146   \n",
  3495.        "Inn 2 Team 2 NOP R>25,SR>125                          -0.220708   \n",
  3496.        "Inn 2 Team 2 NOP R<25, SR>125                          0.007245   \n",
  3497.        "Inn 2 Team 2 Total 4s                                 -0.066339   \n",
  3498.        "Inn 2 Team 2 Total 6s                                 -0.158611   \n",
  3499.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen               -0.031976   \n",
  3500.        "Inn 2 Team 1 NoP fast bowlers                         -0.125614   \n",
  3501.        "Inn 2 Team 1 NoP Spinners                              0.075294   \n",
  3502.        "Inn 2 Team 1 wickets taken_catches_runout             -0.076673   \n",
  3503.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...     0.097053   \n",
  3504.        "Inn 2 Team 1 Extras conceded in_wides_No Balls        -0.042595   \n",
  3505.        "Winner (team 1=1, team 2=0)                           -0.014270   \n",
  3506.        "\n",
  3507.        "                                                    Inn 1 Team 1 NOP R>25,SR>125  \\\n",
  3508.        "DayOfWeek                                                               0.000275   \n",
  3509.        "AvgWindSpeed                                                            0.001787   \n",
  3510.        "AvgHumidity                                                            -0.081753   \n",
  3511.        "Inn 1 Team 1 NOP R>25,SR>125                                            1.000000   \n",
  3512.        "Inn 1 Team 1 NOP R<25, SR>125                                          -0.027067   \n",
  3513.        "Inn 1 Team 1 Total 4s                                                   0.557363   \n",
  3514.        "Inn 1 Team 1 Total 6s                                                   0.569978   \n",
  3515.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                 0.289513   \n",
  3516.        "Inn 1 Team 2 NoP fast bowlers                                           0.196281   \n",
  3517.        "Inn 1 Team 2 NoP Spinners                                               0.067094   \n",
  3518.        "Inn 1 Team 2 wickets taken_catches_runout                              -0.090929   \n",
  3519.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                     -0.338452   \n",
  3520.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                          0.073031   \n",
  3521.        "Inn 2 Team 2 NOP R>25,SR>125                                            0.377688   \n",
  3522.        "Inn 2 Team 2 NOP R<25, SR>125                                           0.262138   \n",
  3523.        "Inn 2 Team 2 Total 4s                                                   0.286533   \n",
  3524.        "Inn 2 Team 2 Total 6s                                                   0.380452   \n",
  3525.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                 0.295449   \n",
  3526.        "Inn 2 Team 1 NoP fast bowlers                                           0.139664   \n",
  3527.        "Inn 2 Team 1 NoP Spinners                                               0.102031   \n",
  3528.        "Inn 2 Team 1 wickets taken_catches_runout                               0.384275   \n",
  3529.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                      0.207546   \n",
  3530.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                          0.005916   \n",
  3531.        "Winner (team 1=1, team 2=0)                                             0.365082   \n",
  3532.        "\n",
  3533.        "                                                    Inn 1 Team 1 NOP R<25, SR>125  \\\n",
  3534.        "DayOfWeek                                                               -0.003855   \n",
  3535.        "AvgWindSpeed                                                            -0.082540   \n",
  3536.        "AvgHumidity                                                             -0.093937   \n",
  3537.        "Inn 1 Team 1 NOP R>25,SR>125                                            -0.027067   \n",
  3538.        "Inn 1 Team 1 NOP R<25, SR>125                                            1.000000   \n",
  3539.        "Inn 1 Team 1 Total 4s                                                    0.172281   \n",
  3540.        "Inn 1 Team 1 Total 6s                                                    0.160631   \n",
  3541.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                  0.315771   \n",
  3542.        "Inn 1 Team 2 NoP fast bowlers                                            0.059764   \n",
  3543.        "Inn 1 Team 2 NoP Spinners                                                0.127670   \n",
  3544.        "Inn 1 Team 2 wickets taken_catches_runout                                0.286304   \n",
  3545.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                       0.051589   \n",
  3546.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                          -0.000502   \n",
  3547.        "Inn 2 Team 2 NOP R>25,SR>125                                             0.156986   \n",
  3548.        "Inn 2 Team 2 NOP R<25, SR>125                                            0.131804   \n",
  3549.        "Inn 2 Team 2 Total 4s                                                    0.122481   \n",
  3550.        "Inn 2 Team 2 Total 6s                                                    0.246626   \n",
  3551.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                  0.165402   \n",
  3552.        "Inn 2 Team 1 NoP fast bowlers                                            0.107571   \n",
  3553.        "Inn 2 Team 1 NoP Spinners                                                0.081547   \n",
  3554.        "Inn 2 Team 1 wickets taken_catches_runout                                0.102045   \n",
  3555.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                       0.064221   \n",
  3556.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                          -0.013489   \n",
  3557.        "Winner (team 1=1, team 2=0)                                              0.124055   \n",
  3558.        "\n",
  3559.        "                                                    Inn 1 Team 1 Total 4s  \\\n",
  3560.        "DayOfWeek                                                       -0.062329   \n",
  3561.        "AvgWindSpeed                                                     0.005887   \n",
  3562.        "AvgHumidity                                                     -0.218124   \n",
  3563.        "Inn 1 Team 1 NOP R>25,SR>125                                     0.557363   \n",
  3564.        "Inn 1 Team 1 NOP R<25, SR>125                                    0.172281   \n",
  3565.        "Inn 1 Team 1 Total 4s                                            1.000000   \n",
  3566.        "Inn 1 Team 1 Total 6s                                            0.324726   \n",
  3567.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                          0.362544   \n",
  3568.        "Inn 1 Team 2 NoP fast bowlers                                    0.369592   \n",
  3569.        "Inn 1 Team 2 NoP Spinners                                        0.046404   \n",
  3570.        "Inn 1 Team 2 wickets taken_catches_runout                       -0.094074   \n",
  3571.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...              -0.160736   \n",
  3572.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                   0.172214   \n",
  3573.        "Inn 2 Team 2 NOP R>25,SR>125                                     0.371475   \n",
  3574.        "Inn 2 Team 2 NOP R<25, SR>125                                    0.331018   \n",
  3575.        "Inn 2 Team 2 Total 4s                                            0.487876   \n",
  3576.        "Inn 2 Team 2 Total 6s                                            0.409796   \n",
  3577.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                          0.345807   \n",
  3578.        "Inn 2 Team 1 NoP fast bowlers                                    0.317329   \n",
  3579.        "Inn 2 Team 1 NoP Spinners                                        0.106047   \n",
  3580.        "Inn 2 Team 1 wickets taken_catches_runout                        0.392111   \n",
  3581.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...               0.177932   \n",
  3582.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                   0.148548   \n",
  3583.        "Winner (team 1=1, team 2=0)                                      0.326568   \n",
  3584.        "\n",
  3585.        "                                                    Inn 1 Team 1 Total 6s  \\\n",
  3586.        "DayOfWeek                                                       -0.039985   \n",
  3587.        "AvgWindSpeed                                                    -0.046758   \n",
  3588.        "AvgHumidity                                                     -0.066796   \n",
  3589.        "Inn 1 Team 1 NOP R>25,SR>125                                     0.569978   \n",
  3590.        "Inn 1 Team 1 NOP R<25, SR>125                                    0.160631   \n",
  3591.        "Inn 1 Team 1 Total 4s                                            0.324726   \n",
  3592.        "Inn 1 Team 1 Total 6s                                            1.000000   \n",
  3593.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                          0.451683   \n",
  3594.        "Inn 1 Team 2 NoP fast bowlers                                    0.153610   \n",
  3595.        "Inn 1 Team 2 NoP Spinners                                        0.136966   \n",
  3596.        "Inn 1 Team 2 wickets taken_catches_runout                       -0.084993   \n",
  3597.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...              -0.318899   \n",
  3598.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                   0.083791   \n",
  3599.        "Inn 2 Team 2 NOP R>25,SR>125                                     0.381539   \n",
  3600.        "Inn 2 Team 2 NOP R<25, SR>125                                    0.326233   \n",
  3601.        "Inn 2 Team 2 Total 4s                                            0.252199   \n",
  3602.        "Inn 2 Team 2 Total 6s                                            0.481053   \n",
  3603.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                          0.323435   \n",
  3604.        "Inn 2 Team 1 NoP fast bowlers                                    0.170208   \n",
  3605.        "Inn 2 Team 1 NoP Spinners                                        0.029400   \n",
  3606.        "Inn 2 Team 1 wickets taken_catches_runout                        0.370564   \n",
  3607.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...               0.227501   \n",
  3608.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                  -0.030781   \n",
  3609.        "Winner (team 1=1, team 2=0)                                      0.387725   \n",
  3610.        "\n",
  3611.        "                                                    Inn 1 Team 1 Max Strike Rate_ALLBatsmen  \\\n",
  3612.        "DayOfWeek                                                                         -0.097170   \n",
  3613.        "AvgWindSpeed                                                                      -0.006207   \n",
  3614.        "AvgHumidity                                                                       -0.151057   \n",
  3615.        "Inn 1 Team 1 NOP R>25,SR>125                                                       0.289513   \n",
  3616.        "Inn 1 Team 1 NOP R<25, SR>125                                                      0.315771   \n",
  3617.        "Inn 1 Team 1 Total 4s                                                              0.362544   \n",
  3618.        "Inn 1 Team 1 Total 6s                                                              0.451683   \n",
  3619.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                            1.000000   \n",
  3620.        "Inn 1 Team 2 NoP fast bowlers                                                      0.253472   \n",
  3621.        "Inn 1 Team 2 NoP Spinners                                                          0.101793   \n",
  3622.        "Inn 1 Team 2 wickets taken_catches_runout                                          0.033392   \n",
  3623.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                                -0.033672   \n",
  3624.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                                     0.140323   \n",
  3625.        "Inn 2 Team 2 NOP R>25,SR>125                                                       0.291806   \n",
  3626.        "Inn 2 Team 2 NOP R<25, SR>125                                                      0.231103   \n",
  3627.        "Inn 2 Team 2 Total 4s                                                              0.268043   \n",
  3628.        "Inn 2 Team 2 Total 6s                                                              0.331854   \n",
  3629.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                            0.257099   \n",
  3630.        "Inn 2 Team 1 NoP fast bowlers                                                      0.252695   \n",
  3631.        "Inn 2 Team 1 NoP Spinners                                                          0.011742   \n",
  3632.        "Inn 2 Team 1 wickets taken_catches_runout                                          0.293498   \n",
  3633.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                                 0.122148   \n",
  3634.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                                     0.016467   \n",
  3635.        "Winner (team 1=1, team 2=0)                                                        0.216820   \n",
  3636.        "\n",
  3637.        "                                                    Inn 1 Team 2 NoP fast bowlers  \\\n",
  3638.        "DayOfWeek                                                               -0.017455   \n",
  3639.        "AvgWindSpeed                                                             0.031999   \n",
  3640.        "AvgHumidity                                                             -0.109890   \n",
  3641.        "Inn 1 Team 1 NOP R>25,SR>125                                             0.196281   \n",
  3642.        "Inn 1 Team 1 NOP R<25, SR>125                                            0.059764   \n",
  3643.        "Inn 1 Team 1 Total 4s                                                    0.369592   \n",
  3644.        "Inn 1 Team 1 Total 6s                                                    0.153610   \n",
  3645.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                  0.253472   \n",
  3646.        "Inn 1 Team 2 NoP fast bowlers                                            1.000000   \n",
  3647.        "Inn 1 Team 2 NoP Spinners                                               -0.404158   \n",
  3648.        "Inn 1 Team 2 wickets taken_catches_runout                                0.201752   \n",
  3649.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                       0.139486   \n",
  3650.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                           0.195105   \n",
  3651.        "Inn 2 Team 2 NOP R>25,SR>125                                             0.152478   \n",
  3652.        "Inn 2 Team 2 NOP R<25, SR>125                                            0.121343   \n",
  3653.        "Inn 2 Team 2 Total 4s                                                    0.289882   \n",
  3654.        "Inn 2 Team 2 Total 6s                                                    0.169497   \n",
  3655.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                  0.263009   \n",
  3656.        "Inn 2 Team 1 NoP fast bowlers                                            0.355490   \n",
  3657.        "Inn 2 Team 1 NoP Spinners                                                0.052934   \n",
  3658.        "Inn 2 Team 1 wickets taken_catches_runout                                0.208378   \n",
  3659.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                       0.080528   \n",
  3660.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                           0.242980   \n",
  3661.        "Winner (team 1=1, team 2=0)                                              0.090775   \n",
  3662.        "\n",
  3663.        "                                                    Inn 1 Team 2 NoP Spinners  \\\n",
  3664.        "DayOfWeek                                                            0.121605   \n",
  3665.        "AvgWindSpeed                                                        -0.126879   \n",
  3666.        "AvgHumidity                                                          0.103570   \n",
  3667.        "Inn 1 Team 1 NOP R>25,SR>125                                         0.067094   \n",
  3668.        "Inn 1 Team 1 NOP R<25, SR>125                                        0.127670   \n",
  3669.        "Inn 1 Team 1 Total 4s                                                0.046404   \n",
  3670.        "Inn 1 Team 1 Total 6s                                                0.136966   \n",
  3671.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                              0.101793   \n",
  3672.        "Inn 1 Team 2 NoP fast bowlers                                       -0.404158   \n",
  3673.        "Inn 1 Team 2 NoP Spinners                                            1.000000   \n",
  3674.        "Inn 1 Team 2 wickets taken_catches_runout                            0.051603   \n",
  3675.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                  -0.027483   \n",
  3676.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                       0.071469   \n",
  3677.        "Inn 2 Team 2 NOP R>25,SR>125                                         0.064060   \n",
  3678.        "Inn 2 Team 2 NOP R<25, SR>125                                        0.074461   \n",
  3679.        "Inn 2 Team 2 Total 4s                                                0.088232   \n",
  3680.        "Inn 2 Team 2 Total 6s                                                0.146363   \n",
  3681.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                              0.168113   \n",
  3682.        "Inn 2 Team 1 NoP fast bowlers                                        0.074930   \n",
  3683.        "Inn 2 Team 1 NoP Spinners                                            0.271400   \n",
  3684.        "Inn 2 Team 1 wickets taken_catches_runout                            0.050216   \n",
  3685.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                   0.121832   \n",
  3686.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                      -0.002422   \n",
  3687.        "Winner (team 1=1, team 2=0)                                          0.062736   \n",
  3688.        "\n",
  3689.        "                                                    ...  \\\n",
  3690.        "DayOfWeek                                           ...   \n",
  3691.        "AvgWindSpeed                                        ...   \n",
  3692.        "AvgHumidity                                         ...   \n",
  3693.        "Inn 1 Team 1 NOP R>25,SR>125                        ...   \n",
  3694.        "Inn 1 Team 1 NOP R<25, SR>125                       ...   \n",
  3695.        "Inn 1 Team 1 Total 4s                               ...   \n",
  3696.        "Inn 1 Team 1 Total 6s                               ...   \n",
  3697.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen             ...   \n",
  3698.        "Inn 1 Team 2 NoP fast bowlers                       ...   \n",
  3699.        "Inn 1 Team 2 NoP Spinners                           ...   \n",
  3700.        "Inn 1 Team 2 wickets taken_catches_runout           ...   \n",
  3701.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...  ...   \n",
  3702.        "Inn 1 Team 2 Extras conceded in_wides_No Balls      ...   \n",
  3703.        "Inn 2 Team 2 NOP R>25,SR>125                        ...   \n",
  3704.        "Inn 2 Team 2 NOP R<25, SR>125                       ...   \n",
  3705.        "Inn 2 Team 2 Total 4s                               ...   \n",
  3706.        "Inn 2 Team 2 Total 6s                               ...   \n",
  3707.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen             ...   \n",
  3708.        "Inn 2 Team 1 NoP fast bowlers                       ...   \n",
  3709.        "Inn 2 Team 1 NoP Spinners                           ...   \n",
  3710.        "Inn 2 Team 1 wickets taken_catches_runout           ...   \n",
  3711.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...  ...   \n",
  3712.        "Inn 2 Team 1 Extras conceded in_wides_No Balls      ...   \n",
  3713.        "Winner (team 1=1, team 2=0)                         ...   \n",
  3714.        "\n",
  3715.        "                                                    Inn 2 Team 2 NOP R<25, SR>125  \\\n",
  3716.        "DayOfWeek                                                               -0.098304   \n",
  3717.        "AvgWindSpeed                                                            -0.071657   \n",
  3718.        "AvgHumidity                                                              0.007245   \n",
  3719.        "Inn 1 Team 1 NOP R>25,SR>125                                             0.262138   \n",
  3720.        "Inn 1 Team 1 NOP R<25, SR>125                                            0.131804   \n",
  3721.        "Inn 1 Team 1 Total 4s                                                    0.331018   \n",
  3722.        "Inn 1 Team 1 Total 6s                                                    0.326233   \n",
  3723.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                  0.231103   \n",
  3724.        "Inn 1 Team 2 NoP fast bowlers                                            0.121343   \n",
  3725.        "Inn 1 Team 2 NoP Spinners                                                0.074461   \n",
  3726.        "Inn 1 Team 2 wickets taken_catches_runout                               -0.049250   \n",
  3727.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                      -0.097969   \n",
  3728.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                           0.073799   \n",
  3729.        "Inn 2 Team 2 NOP R>25,SR>125                                             0.009474   \n",
  3730.        "Inn 2 Team 2 NOP R<25, SR>125                                            1.000000   \n",
  3731.        "Inn 2 Team 2 Total 4s                                                    0.224863   \n",
  3732.        "Inn 2 Team 2 Total 6s                                                    0.199398   \n",
  3733.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                  0.355058   \n",
  3734.        "Inn 2 Team 1 NoP fast bowlers                                            0.058635   \n",
  3735.        "Inn 2 Team 1 NoP Spinners                                                0.079639   \n",
  3736.        "Inn 2 Team 1 wickets taken_catches_runout                                0.398480   \n",
  3737.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                       0.308534   \n",
  3738.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                          -0.032800   \n",
  3739.        "Winner (team 1=1, team 2=0)                                              0.305465   \n",
  3740.        "\n",
  3741.        "                                                    Inn 2 Team 2 Total 4s  \\\n",
  3742.        "DayOfWeek                                                        0.040173   \n",
  3743.        "AvgWindSpeed                                                    -0.124438   \n",
  3744.        "AvgHumidity                                                     -0.066339   \n",
  3745.        "Inn 1 Team 1 NOP R>25,SR>125                                     0.286533   \n",
  3746.        "Inn 1 Team 1 NOP R<25, SR>125                                    0.122481   \n",
  3747.        "Inn 1 Team 1 Total 4s                                            0.487876   \n",
  3748.        "Inn 1 Team 1 Total 6s                                            0.252199   \n",
  3749.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                          0.268043   \n",
  3750.        "Inn 1 Team 2 NoP fast bowlers                                    0.289882   \n",
  3751.        "Inn 1 Team 2 NoP Spinners                                        0.088232   \n",
  3752.        "Inn 1 Team 2 wickets taken_catches_runout                        0.018962   \n",
  3753.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...              -0.020577   \n",
  3754.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                   0.182326   \n",
  3755.        "Inn 2 Team 2 NOP R>25,SR>125                                     0.490216   \n",
  3756.        "Inn 2 Team 2 NOP R<25, SR>125                                    0.224863   \n",
  3757.        "Inn 2 Team 2 Total 4s                                            1.000000   \n",
  3758.        "Inn 2 Team 2 Total 6s                                            0.266584   \n",
  3759.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                          0.476050   \n",
  3760.        "Inn 2 Team 1 NoP fast bowlers                                    0.302849   \n",
  3761.        "Inn 2 Team 1 NoP Spinners                                        0.148157   \n",
  3762.        "Inn 2 Team 1 wickets taken_catches_runout                       -0.025026   \n",
  3763.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...              -0.068548   \n",
  3764.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                   0.060870   \n",
  3765.        "Winner (team 1=1, team 2=0)                                     -0.145390   \n",
  3766.        "\n",
  3767.        "                                                    Inn 2 Team 2 Total 6s  \\\n",
  3768.        "DayOfWeek                                                        0.012040   \n",
  3769.        "AvgWindSpeed                                                    -0.005578   \n",
  3770.        "AvgHumidity                                                     -0.158611   \n",
  3771.        "Inn 1 Team 1 NOP R>25,SR>125                                     0.380452   \n",
  3772.        "Inn 1 Team 1 NOP R<25, SR>125                                    0.246626   \n",
  3773.        "Inn 1 Team 1 Total 4s                                            0.409796   \n",
  3774.        "Inn 1 Team 1 Total 6s                                            0.481053   \n",
  3775.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                          0.331854   \n",
  3776.        "Inn 1 Team 2 NoP fast bowlers                                    0.169497   \n",
  3777.        "Inn 1 Team 2 NoP Spinners                                        0.146363   \n",
  3778.        "Inn 1 Team 2 wickets taken_catches_runout                        0.045296   \n",
  3779.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...              -0.203386   \n",
  3780.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                   0.217114   \n",
  3781.        "Inn 2 Team 2 NOP R>25,SR>125                                     0.611973   \n",
  3782.        "Inn 2 Team 2 NOP R<25, SR>125                                    0.199398   \n",
  3783.        "Inn 2 Team 2 Total 4s                                            0.266584   \n",
  3784.        "Inn 2 Team 2 Total 6s                                            1.000000   \n",
  3785.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                          0.463410   \n",
  3786.        "Inn 2 Team 1 NoP fast bowlers                                    0.204528   \n",
  3787.        "Inn 2 Team 1 NoP Spinners                                        0.072018   \n",
  3788.        "Inn 2 Team 1 wickets taken_catches_runout                        0.086858   \n",
  3789.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...              -0.092395   \n",
  3790.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                   0.034675   \n",
  3791.        "Winner (team 1=1, team 2=0)                                     -0.058181   \n",
  3792.        "\n",
  3793.        "                                                    Inn 2 Team 2 Max Strike Rate_ALLBatsmen  \\\n",
  3794.        "DayOfWeek                                                                          0.068158   \n",
  3795.        "AvgWindSpeed                                                                      -0.041836   \n",
  3796.        "AvgHumidity                                                                       -0.031976   \n",
  3797.        "Inn 1 Team 1 NOP R>25,SR>125                                                       0.295449   \n",
  3798.        "Inn 1 Team 1 NOP R<25, SR>125                                                      0.165402   \n",
  3799.        "Inn 1 Team 1 Total 4s                                                              0.345807   \n",
  3800.        "Inn 1 Team 1 Total 6s                                                              0.323435   \n",
  3801.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                            0.257099   \n",
  3802.        "Inn 1 Team 2 NoP fast bowlers                                                      0.263009   \n",
  3803.        "Inn 1 Team 2 NoP Spinners                                                          0.168113   \n",
  3804.        "Inn 1 Team 2 wickets taken_catches_runout                                          0.069792   \n",
  3805.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                                -0.036640   \n",
  3806.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                                     0.135521   \n",
  3807.        "Inn 2 Team 2 NOP R>25,SR>125                                                       0.382301   \n",
  3808.        "Inn 2 Team 2 NOP R<25, SR>125                                                      0.355058   \n",
  3809.        "Inn 2 Team 2 Total 4s                                                              0.476050   \n",
  3810.        "Inn 2 Team 2 Total 6s                                                              0.463410   \n",
  3811.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                            1.000000   \n",
  3812.        "Inn 2 Team 1 NoP fast bowlers                                                      0.165378   \n",
  3813.        "Inn 2 Team 1 NoP Spinners                                                          0.172949   \n",
  3814.        "Inn 2 Team 1 wickets taken_catches_runout                                          0.168232   \n",
  3815.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                                 0.034031   \n",
  3816.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                                     0.079442   \n",
  3817.        "Winner (team 1=1, team 2=0)                                                       -0.047209   \n",
  3818.        "\n",
  3819.        "                                                    Inn 2 Team 1 NoP fast bowlers  \\\n",
  3820.        "DayOfWeek                                                               -0.013463   \n",
  3821.        "AvgWindSpeed                                                             0.006913   \n",
  3822.        "AvgHumidity                                                             -0.125614   \n",
  3823.        "Inn 1 Team 1 NOP R>25,SR>125                                             0.139664   \n",
  3824.        "Inn 1 Team 1 NOP R<25, SR>125                                            0.107571   \n",
  3825.        "Inn 1 Team 1 Total 4s                                                    0.317329   \n",
  3826.        "Inn 1 Team 1 Total 6s                                                    0.170208   \n",
  3827.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                  0.252695   \n",
  3828.        "Inn 1 Team 2 NoP fast bowlers                                            0.355490   \n",
  3829.        "Inn 1 Team 2 NoP Spinners                                                0.074930   \n",
  3830.        "Inn 1 Team 2 wickets taken_catches_runout                                0.190803   \n",
  3831.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                       0.157553   \n",
  3832.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                           0.185254   \n",
  3833.        "Inn 2 Team 2 NOP R>25,SR>125                                             0.214265   \n",
  3834.        "Inn 2 Team 2 NOP R<25, SR>125                                            0.058635   \n",
  3835.        "Inn 2 Team 2 Total 4s                                                    0.302849   \n",
  3836.        "Inn 2 Team 2 Total 6s                                                    0.204528   \n",
  3837.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                  0.165378   \n",
  3838.        "Inn 2 Team 1 NoP fast bowlers                                            1.000000   \n",
  3839.        "Inn 2 Team 1 NoP Spinners                                               -0.367085   \n",
  3840.        "Inn 2 Team 1 wickets taken_catches_runout                                0.124852   \n",
  3841.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                       0.039211   \n",
  3842.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                           0.147322   \n",
  3843.        "Winner (team 1=1, team 2=0)                                              0.034196   \n",
  3844.        "\n",
  3845.        "                                                    Inn 2 Team 1 NoP Spinners  \\\n",
  3846.        "DayOfWeek                                                            0.126194   \n",
  3847.        "AvgWindSpeed                                                        -0.106839   \n",
  3848.        "AvgHumidity                                                          0.075294   \n",
  3849.        "Inn 1 Team 1 NOP R>25,SR>125                                         0.102031   \n",
  3850.        "Inn 1 Team 1 NOP R<25, SR>125                                        0.081547   \n",
  3851.        "Inn 1 Team 1 Total 4s                                                0.106047   \n",
  3852.        "Inn 1 Team 1 Total 6s                                                0.029400   \n",
  3853.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                              0.011742   \n",
  3854.        "Inn 1 Team 2 NoP fast bowlers                                        0.052934   \n",
  3855.        "Inn 1 Team 2 NoP Spinners                                            0.271400   \n",
  3856.        "Inn 1 Team 2 wickets taken_catches_runout                            0.103813   \n",
  3857.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                  -0.073528   \n",
  3858.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                       0.029191   \n",
  3859.        "Inn 2 Team 2 NOP R>25,SR>125                                         0.021190   \n",
  3860.        "Inn 2 Team 2 NOP R<25, SR>125                                        0.079639   \n",
  3861.        "Inn 2 Team 2 Total 4s                                                0.148157   \n",
  3862.        "Inn 2 Team 2 Total 6s                                                0.072018   \n",
  3863.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                              0.172949   \n",
  3864.        "Inn 2 Team 1 NoP fast bowlers                                       -0.367085   \n",
  3865.        "Inn 2 Team 1 NoP Spinners                                            1.000000   \n",
  3866.        "Inn 2 Team 1 wickets taken_catches_runout                            0.100099   \n",
  3867.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                   0.048104   \n",
  3868.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                       0.059835   \n",
  3869.        "Winner (team 1=1, team 2=0)                                          0.056112   \n",
  3870.        "\n",
  3871.        "                                                    Inn 2 Team 1 wickets taken_catches_runout  \\\n",
  3872.        "DayOfWeek                                                                           -0.035186   \n",
  3873.        "AvgWindSpeed                                                                         0.045695   \n",
  3874.        "AvgHumidity                                                                         -0.076673   \n",
  3875.        "Inn 1 Team 1 NOP R>25,SR>125                                                         0.384275   \n",
  3876.        "Inn 1 Team 1 NOP R<25, SR>125                                                        0.102045   \n",
  3877.        "Inn 1 Team 1 Total 4s                                                                0.392111   \n",
  3878.        "Inn 1 Team 1 Total 6s                                                                0.370564   \n",
  3879.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                              0.293498   \n",
  3880.        "Inn 1 Team 2 NoP fast bowlers                                                        0.208378   \n",
  3881.        "Inn 1 Team 2 NoP Spinners                                                            0.050216   \n",
  3882.        "Inn 1 Team 2 wickets taken_catches_runout                                           -0.046018   \n",
  3883.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                                  -0.150670   \n",
  3884.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                                       0.070230   \n",
  3885.        "Inn 2 Team 2 NOP R>25,SR>125                                                         0.068317   \n",
  3886.        "Inn 2 Team 2 NOP R<25, SR>125                                                        0.398480   \n",
  3887.        "Inn 2 Team 2 Total 4s                                                               -0.025026   \n",
  3888.        "Inn 2 Team 2 Total 6s                                                                0.086858   \n",
  3889.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                              0.168232   \n",
  3890.        "Inn 2 Team 1 NoP fast bowlers                                                        0.124852   \n",
  3891.        "Inn 2 Team 1 NoP Spinners                                                            0.100099   \n",
  3892.        "Inn 2 Team 1 wickets taken_catches_runout                                            1.000000   \n",
  3893.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                                   0.243691   \n",
  3894.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                                       0.044451   \n",
  3895.        "Winner (team 1=1, team 2=0)                                                          0.686327   \n",
  3896.        "\n",
  3897.        "                                                    Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping  \\\n",
  3898.        "DayOfWeek                                                                                   -0.063250                  \n",
  3899.        "AvgWindSpeed                                                                                -0.086037                  \n",
  3900.        "AvgHumidity                                                                                  0.097053                  \n",
  3901.        "Inn 1 Team 1 NOP R>25,SR>125                                                                 0.207546                  \n",
  3902.        "Inn 1 Team 1 NOP R<25, SR>125                                                                0.064221                  \n",
  3903.        "Inn 1 Team 1 Total 4s                                                                        0.177932                  \n",
  3904.        "Inn 1 Team 1 Total 6s                                                                        0.227501                  \n",
  3905.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                                      0.122148                  \n",
  3906.        "Inn 1 Team 2 NoP fast bowlers                                                                0.080528                  \n",
  3907.        "Inn 1 Team 2 NoP Spinners                                                                    0.121832                  \n",
  3908.        "Inn 1 Team 2 wickets taken_catches_runout                                                   -0.044393                  \n",
  3909.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                                          -0.049367                  \n",
  3910.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                                               0.046109                  \n",
  3911.        "Inn 2 Team 2 NOP R>25,SR>125                                                                -0.184564                  \n",
  3912.        "Inn 2 Team 2 NOP R<25, SR>125                                                                0.308534                  \n",
  3913.        "Inn 2 Team 2 Total 4s                                                                       -0.068548                  \n",
  3914.        "Inn 2 Team 2 Total 6s                                                                       -0.092395                  \n",
  3915.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                                      0.034031                  \n",
  3916.        "Inn 2 Team 1 NoP fast bowlers                                                                0.039211                  \n",
  3917.        "Inn 2 Team 1 NoP Spinners                                                                    0.048104                  \n",
  3918.        "Inn 2 Team 1 wickets taken_catches_runout                                                    0.243691                  \n",
  3919.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                                           1.000000                  \n",
  3920.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                                              -0.034991                  \n",
  3921.        "Winner (team 1=1, team 2=0)                                                                  0.532549                  \n",
  3922.        "\n",
  3923.        "                                                    Inn 2 Team 1 Extras conceded in_wides_No Balls  \\\n",
  3924.        "DayOfWeek                                                                                 0.019833   \n",
  3925.        "AvgWindSpeed                                                                              0.088573   \n",
  3926.        "AvgHumidity                                                                              -0.042595   \n",
  3927.        "Inn 1 Team 1 NOP R>25,SR>125                                                              0.005916   \n",
  3928.        "Inn 1 Team 1 NOP R<25, SR>125                                                            -0.013489   \n",
  3929.        "Inn 1 Team 1 Total 4s                                                                     0.148548   \n",
  3930.        "Inn 1 Team 1 Total 6s                                                                    -0.030781   \n",
  3931.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                                   0.016467   \n",
  3932.        "Inn 1 Team 2 NoP fast bowlers                                                             0.242980   \n",
  3933.        "Inn 1 Team 2 NoP Spinners                                                                -0.002422   \n",
  3934.        "Inn 1 Team 2 wickets taken_catches_runout                                                 0.145519   \n",
  3935.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                                        0.060416   \n",
  3936.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                                            0.193029   \n",
  3937.        "Inn 2 Team 2 NOP R>25,SR>125                                                             -0.041520   \n",
  3938.        "Inn 2 Team 2 NOP R<25, SR>125                                                            -0.032800   \n",
  3939.        "Inn 2 Team 2 Total 4s                                                                     0.060870   \n",
  3940.        "Inn 2 Team 2 Total 6s                                                                     0.034675   \n",
  3941.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                                                   0.079442   \n",
  3942.        "Inn 2 Team 1 NoP fast bowlers                                                             0.147322   \n",
  3943.        "Inn 2 Team 1 NoP Spinners                                                                 0.059835   \n",
  3944.        "Inn 2 Team 1 wickets taken_catches_runout                                                 0.044451   \n",
  3945.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                                       -0.034991   \n",
  3946.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                                            1.000000   \n",
  3947.        "Winner (team 1=1, team 2=0)                                                              -0.083222   \n",
  3948.        "\n",
  3949.        "                                                    Winner (team 1=1, team 2=0)  \n",
  3950.        "DayOfWeek                                                             -0.107076  \n",
  3951.        "AvgWindSpeed                                                           0.009108  \n",
  3952.        "AvgHumidity                                                           -0.014270  \n",
  3953.        "Inn 1 Team 1 NOP R>25,SR>125                                           0.365082  \n",
  3954.        "Inn 1 Team 1 NOP R<25, SR>125                                          0.124055  \n",
  3955.        "Inn 1 Team 1 Total 4s                                                  0.326568  \n",
  3956.        "Inn 1 Team 1 Total 6s                                                  0.387725  \n",
  3957.        "Inn 1 Team 1 Max Strike Rate_ALLBatsmen                                0.216820  \n",
  3958.        "Inn 1 Team 2 NoP fast bowlers                                          0.090775  \n",
  3959.        "Inn 1 Team 2 NoP Spinners                                              0.062736  \n",
  3960.        "Inn 1 Team 2 wickets taken_catches_runout                             -0.127405  \n",
  3961.        "Inn1 Team 2 wickets taken_ bowled _lbw_caught b...                    -0.198553  \n",
  3962.        "Inn 1 Team 2 Extras conceded in_wides_No Balls                        -0.002472  \n",
  3963.        "Inn 2 Team 2 NOP R>25,SR>125                                          -0.092912  \n",
  3964.        "Inn 2 Team 2 NOP R<25, SR>125                                          0.305465  \n",
  3965.        "Inn 2 Team 2 Total 4s                                                 -0.145390  \n",
  3966.        "Inn 2 Team 2 Total 6s                                                 -0.058181  \n",
  3967.        "Inn 2 Team 2 Max Strike Rate_ALLBatsmen                               -0.047209  \n",
  3968.        "Inn 2 Team 1 NoP fast bowlers                                          0.034196  \n",
  3969.        "Inn 2 Team 1 NoP Spinners                                              0.056112  \n",
  3970.        "Inn 2 Team 1 wickets taken_catches_runout                              0.686327  \n",
  3971.        "Inn2 Team 1 wickets taken_ bowled _lbw_caught b...                     0.532549  \n",
  3972.        "Inn 2 Team 1 Extras conceded in_wides_No Balls                        -0.083222  \n",
  3973.        "Winner (team 1=1, team 2=0)                                            1.000000  \n",
  3974.        "\n",
  3975.        "[24 rows x 24 columns]"
  3976.       ]
  3977.      },
  3978.      "execution_count": 273,
  3979.      "metadata": {},
  3980.      "output_type": "execute_result"
  3981.     }
  3982.    ],
  3983.    "source": [
  3984.     "train_data.corr()"
  3985.    ]
  3986.   },
  3987.   {
  3988.    "cell_type": "markdown",
  3989.    "metadata": {},
  3990.    "source": [
  3991.     "# Observations :\n",
  3992.     "we can't able to remove any variables because correlation is low"
  3993.    ]
  3994.   },
  3995.   {
  3996.    "cell_type": "markdown",
  3997.    "metadata": {},
  3998.    "source": [
  3999.     "### 4.2 Categorical-continuous variables:"
  4000.    ]
  4001.   },
  4002.   {
  4003.    "cell_type": "code",
  4004.    "execution_count": 274,
  4005.    "metadata": {},
  4006.    "outputs": [
  4007.     {
  4008.      "data": {
  4009.       "text/plain": [
  4010.        "Winner (team 1=1, team 2=0)\n",
  4011.        "0    0.634863\n",
  4012.        "1    0.631379\n",
  4013.        "Name: AvgHumidity, dtype: float64"
  4014.       ]
  4015.      },
  4016.      "execution_count": 274,
  4017.      "metadata": {},
  4018.      "output_type": "execute_result"
  4019.     }
  4020.    ],
  4021.    "source": [
  4022.     "train_data.groupby('Winner (team 1=1, team 2=0)')['AvgHumidity'].mean()"
  4023.    ]
  4024.   },
  4025.   {
  4026.    "cell_type": "code",
  4027.    "execution_count": 275,
  4028.    "metadata": {},
  4029.    "outputs": [
  4030.     {
  4031.      "data": {
  4032.       "text/plain": [
  4033.        "Winner (team 1=1, team 2=0)\n",
  4034.        "0    185.347486\n",
  4035.        "1    217.026897\n",
  4036.        "Name: Inn 1 Team 1 Max Strike Rate_ALLBatsmen, dtype: float64"
  4037.       ]
  4038.      },
  4039.      "execution_count": 275,
  4040.      "metadata": {},
  4041.      "output_type": "execute_result"
  4042.     }
  4043.    ],
  4044.    "source": [
  4045.     "train_data.groupby('Winner (team 1=1, team 2=0)')['Inn 1 Team 1 Max Strike Rate_ALLBatsmen'].mean()"
  4046.    ]
  4047.   },
  4048.   {
  4049.    "cell_type": "code",
  4050.    "execution_count": 276,
  4051.    "metadata": {},
  4052.    "outputs": [
  4053.     {
  4054.      "data": {
  4055.       "text/plain": [
  4056.        "Winner (team 1=1, team 2=0)\n",
  4057.        "0    191.858907\n",
  4058.        "1    186.096690\n",
  4059.        "Name: Inn 2 Team 2 Max Strike Rate_ALLBatsmen, dtype: float64"
  4060.       ]
  4061.      },
  4062.      "execution_count": 276,
  4063.      "metadata": {},
  4064.      "output_type": "execute_result"
  4065.     }
  4066.    ],
  4067.    "source": [
  4068.     "train_data.groupby('Winner (team 1=1, team 2=0)')['Inn 2 Team 2 Max Strike Rate_ALLBatsmen'].mean()"
  4069.    ]
  4070.   },
  4071.   {
  4072.    "cell_type": "markdown",
  4073.    "metadata": {},
  4074.    "source": [
  4075.     "# Observations:\n",
  4076.     "From last three rows,I can observe that how closely these three continuous independent variables are related with target variable"
  4077.    ]
  4078.   },
  4079.   {
  4080.    "cell_type": "markdown",
  4081.    "metadata": {},
  4082.    "source": [
  4083.     "### 4.3 Categorical-Categorical Variables"
  4084.    ]
  4085.   },
  4086.   {
  4087.    "cell_type": "code",
  4088.    "execution_count": 277,
  4089.    "metadata": {},
  4090.    "outputs": [
  4091.     {
  4092.      "data": {
  4093.       "text/html": [
  4094.        "<div>\n",
  4095.        "<style scoped>\n",
  4096.        "    .dataframe tbody tr th:only-of-type {\n",
  4097.        "        vertical-align: middle;\n",
  4098.        "    }\n",
  4099.        "\n",
  4100.        "    .dataframe tbody tr th {\n",
  4101.        "        vertical-align: top;\n",
  4102.        "    }\n",
  4103.        "\n",
  4104.        "    .dataframe thead th {\n",
  4105.        "        text-align: right;\n",
  4106.        "    }\n",
  4107.        "</style>\n",
  4108.        "<table border=\"1\" class=\"dataframe\">\n",
  4109.        "  <thead>\n",
  4110.        "    <tr style=\"text-align: right;\">\n",
  4111.        "      <th>Team 1</th>\n",
  4112.        "      <th>Airport Flyers</th>\n",
  4113.        "      <th>Bellandur Froth Fighters</th>\n",
  4114.        "      <th>Electronic City Power Savers</th>\n",
  4115.        "      <th>Forum Fans</th>\n",
  4116.        "      <th>HSR High Rent Payers</th>\n",
  4117.        "      <th>Indranagar Pub Watchers</th>\n",
  4118.        "      <th>Koramangala Traffic Jammers</th>\n",
  4119.        "      <th>Marathalli Chokers</th>\n",
  4120.        "      <th>Sarjapur Water Tankers</th>\n",
  4121.        "      <th>Silkboard Slow Movers</th>\n",
  4122.        "      <th>Whitefield Water Loggers</th>\n",
  4123.        "    </tr>\n",
  4124.        "    <tr>\n",
  4125.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  4126.        "      <th></th>\n",
  4127.        "      <th></th>\n",
  4128.        "      <th></th>\n",
  4129.        "      <th></th>\n",
  4130.        "      <th></th>\n",
  4131.        "      <th></th>\n",
  4132.        "      <th></th>\n",
  4133.        "      <th></th>\n",
  4134.        "      <th></th>\n",
  4135.        "      <th></th>\n",
  4136.        "      <th></th>\n",
  4137.        "    </tr>\n",
  4138.        "  </thead>\n",
  4139.        "  <tbody>\n",
  4140.        "    <tr>\n",
  4141.        "      <th>0</th>\n",
  4142.        "      <td>5</td>\n",
  4143.        "      <td>26</td>\n",
  4144.        "      <td>24</td>\n",
  4145.        "      <td>6</td>\n",
  4146.        "      <td>4</td>\n",
  4147.        "      <td>22</td>\n",
  4148.        "      <td>24</td>\n",
  4149.        "      <td>17</td>\n",
  4150.        "      <td>17</td>\n",
  4151.        "      <td>22</td>\n",
  4152.        "      <td>16</td>\n",
  4153.        "    </tr>\n",
  4154.        "    <tr>\n",
  4155.        "      <th>1</th>\n",
  4156.        "      <td>2</td>\n",
  4157.        "      <td>18</td>\n",
  4158.        "      <td>28</td>\n",
  4159.        "      <td>0</td>\n",
  4160.        "      <td>3</td>\n",
  4161.        "      <td>15</td>\n",
  4162.        "      <td>17</td>\n",
  4163.        "      <td>22</td>\n",
  4164.        "      <td>13</td>\n",
  4165.        "      <td>14</td>\n",
  4166.        "      <td>13</td>\n",
  4167.        "    </tr>\n",
  4168.        "  </tbody>\n",
  4169.        "</table>\n",
  4170.        "</div>"
  4171.       ],
  4172.       "text/plain": [
  4173.        "Team 1                       Airport Flyers  Bellandur Froth Fighters  \\\n",
  4174.        "Winner (team 1=1, team 2=0)                                             \n",
  4175.        "0                                         5                        26   \n",
  4176.        "1                                         2                        18   \n",
  4177.        "\n",
  4178.        "Team 1                       Electronic City Power Savers  Forum Fans  \\\n",
  4179.        "Winner (team 1=1, team 2=0)                                             \n",
  4180.        "0                                                      24           6   \n",
  4181.        "1                                                      28           0   \n",
  4182.        "\n",
  4183.        "Team 1                       HSR High Rent Payers  Indranagar Pub Watchers  \\\n",
  4184.        "Winner (team 1=1, team 2=0)                                                  \n",
  4185.        "0                                               4                       22   \n",
  4186.        "1                                               3                       15   \n",
  4187.        "\n",
  4188.        "Team 1                       Koramangala Traffic Jammers  Marathalli Chokers   \\\n",
  4189.        "Winner (team 1=1, team 2=0)                                                     \n",
  4190.        "0                                                     24                   17   \n",
  4191.        "1                                                     17                   22   \n",
  4192.        "\n",
  4193.        "Team 1                       Sarjapur Water Tankers  Silkboard Slow Movers  \\\n",
  4194.        "Winner (team 1=1, team 2=0)                                                  \n",
  4195.        "0                                                17                     22   \n",
  4196.        "1                                                13                     14   \n",
  4197.        "\n",
  4198.        "Team 1                       Whitefield Water Loggers   \n",
  4199.        "Winner (team 1=1, team 2=0)                             \n",
  4200.        "0                                                   16  \n",
  4201.        "1                                                   13  "
  4202.       ]
  4203.      },
  4204.      "execution_count": 277,
  4205.      "metadata": {},
  4206.      "output_type": "execute_result"
  4207.     }
  4208.    ],
  4209.    "source": [
  4210.     "crosstab = pd.crosstab(index=train_data['Winner (team 1=1, team 2=0)'], columns=train_data['Team 1'])\n",
  4211.     "crosstab"
  4212.    ]
  4213.   },
  4214.   {
  4215.    "cell_type": "code",
  4216.    "execution_count": 278,
  4217.    "metadata": {},
  4218.    "outputs": [
  4219.     {
  4220.      "data": {
  4221.       "text/html": [
  4222.        "<div>\n",
  4223.        "<style scoped>\n",
  4224.        "    .dataframe tbody tr th:only-of-type {\n",
  4225.        "        vertical-align: middle;\n",
  4226.        "    }\n",
  4227.        "\n",
  4228.        "    .dataframe tbody tr th {\n",
  4229.        "        vertical-align: top;\n",
  4230.        "    }\n",
  4231.        "\n",
  4232.        "    .dataframe thead th {\n",
  4233.        "        text-align: right;\n",
  4234.        "    }\n",
  4235.        "</style>\n",
  4236.        "<table border=\"1\" class=\"dataframe\">\n",
  4237.        "  <thead>\n",
  4238.        "    <tr style=\"text-align: right;\">\n",
  4239.        "      <th>Team 2</th>\n",
  4240.        "      <th>Airport Flyers</th>\n",
  4241.        "      <th>Bellandur Froth Fighters</th>\n",
  4242.        "      <th>Electronic City Power Savers</th>\n",
  4243.        "      <th>Forum Fans</th>\n",
  4244.        "      <th>HSR High Rent Payers</th>\n",
  4245.        "      <th>Indranagar Pub Watchers</th>\n",
  4246.        "      <th>Koramangala Traffic Jammers</th>\n",
  4247.        "      <th>Marathalli Chokers</th>\n",
  4248.        "      <th>Sarjapur Water Tankers</th>\n",
  4249.        "      <th>Silkboard Slow Movers</th>\n",
  4250.        "      <th>Whitefield Water Loggers</th>\n",
  4251.        "    </tr>\n",
  4252.        "    <tr>\n",
  4253.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  4254.        "      <th></th>\n",
  4255.        "      <th></th>\n",
  4256.        "      <th></th>\n",
  4257.        "      <th></th>\n",
  4258.        "      <th></th>\n",
  4259.        "      <th></th>\n",
  4260.        "      <th></th>\n",
  4261.        "      <th></th>\n",
  4262.        "      <th></th>\n",
  4263.        "      <th></th>\n",
  4264.        "      <th></th>\n",
  4265.        "    </tr>\n",
  4266.        "  </thead>\n",
  4267.        "  <tbody>\n",
  4268.        "    <tr>\n",
  4269.        "      <th>0</th>\n",
  4270.        "      <td>4</td>\n",
  4271.        "      <td>11</td>\n",
  4272.        "      <td>21</td>\n",
  4273.        "      <td>5</td>\n",
  4274.        "      <td>1</td>\n",
  4275.        "      <td>22</td>\n",
  4276.        "      <td>21</td>\n",
  4277.        "      <td>22</td>\n",
  4278.        "      <td>27</td>\n",
  4279.        "      <td>21</td>\n",
  4280.        "      <td>28</td>\n",
  4281.        "    </tr>\n",
  4282.        "    <tr>\n",
  4283.        "      <th>1</th>\n",
  4284.        "      <td>3</td>\n",
  4285.        "      <td>21</td>\n",
  4286.        "      <td>9</td>\n",
  4287.        "      <td>3</td>\n",
  4288.        "      <td>8</td>\n",
  4289.        "      <td>15</td>\n",
  4290.        "      <td>13</td>\n",
  4291.        "      <td>16</td>\n",
  4292.        "      <td>19</td>\n",
  4293.        "      <td>16</td>\n",
  4294.        "      <td>22</td>\n",
  4295.        "    </tr>\n",
  4296.        "  </tbody>\n",
  4297.        "</table>\n",
  4298.        "</div>"
  4299.       ],
  4300.       "text/plain": [
  4301.        "Team 2                       Airport Flyers  Bellandur Froth Fighters  \\\n",
  4302.        "Winner (team 1=1, team 2=0)                                             \n",
  4303.        "0                                         4                        11   \n",
  4304.        "1                                         3                        21   \n",
  4305.        "\n",
  4306.        "Team 2                       Electronic City Power Savers  Forum Fans  \\\n",
  4307.        "Winner (team 1=1, team 2=0)                                             \n",
  4308.        "0                                                      21           5   \n",
  4309.        "1                                                       9           3   \n",
  4310.        "\n",
  4311.        "Team 2                       HSR High Rent Payers  Indranagar Pub Watchers  \\\n",
  4312.        "Winner (team 1=1, team 2=0)                                                  \n",
  4313.        "0                                               1                       22   \n",
  4314.        "1                                               8                       15   \n",
  4315.        "\n",
  4316.        "Team 2                       Koramangala Traffic Jammers  Marathalli Chokers   \\\n",
  4317.        "Winner (team 1=1, team 2=0)                                                     \n",
  4318.        "0                                                     21                   22   \n",
  4319.        "1                                                     13                   16   \n",
  4320.        "\n",
  4321.        "Team 2                       Sarjapur Water Tankers  Silkboard Slow Movers  \\\n",
  4322.        "Winner (team 1=1, team 2=0)                                                  \n",
  4323.        "0                                                27                     21   \n",
  4324.        "1                                                19                     16   \n",
  4325.        "\n",
  4326.        "Team 2                       Whitefield Water Loggers   \n",
  4327.        "Winner (team 1=1, team 2=0)                             \n",
  4328.        "0                                                   28  \n",
  4329.        "1                                                   22  "
  4330.       ]
  4331.      },
  4332.      "execution_count": 278,
  4333.      "metadata": {},
  4334.      "output_type": "execute_result"
  4335.     }
  4336.    ],
  4337.    "source": [
  4338.     "crosstab = pd.crosstab(index=train_data['Winner (team 1=1, team 2=0)'], columns=train_data['Team 2'])\n",
  4339.     "crosstab"
  4340.    ]
  4341.   },
  4342.   {
  4343.    "cell_type": "markdown",
  4344.    "metadata": {},
  4345.    "source": [
  4346.     "## 5. Missing Value Treatment :\n",
  4347.     "\n",
  4348.     "There is <b>no missing values</b> in train or test datasets so this step is <b>not required</b>"
  4349.    ]
  4350.   },
  4351.   {
  4352.    "cell_type": "markdown",
  4353.    "metadata": {},
  4354.    "source": [
  4355.     "## 6. Outlier Treatment:\n",
  4356.     "\n",
  4357.     "i am using formula to remove outliers from top and bottom of box plot<br/>\n",
  4358.     "<b>from top : Q3+1.5*(Q3-Q1)</b><br/>\n",
  4359.     "<b>from bottom : Q1-1.5*(Q3-Q1)</b>"
  4360.    ]
  4361.   },
  4362.   {
  4363.    "cell_type": "code",
  4364.    "execution_count": 279,
  4365.    "metadata": {},
  4366.    "outputs": [
  4367.     {
  4368.      "data": {
  4369.       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAEbCAYAAACiBIAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+8XXV95/vXmyQQKyIIsW0Iv6YN46EpF9sUp0OshKo32BmgoxeI2FvbCP1FemccqDDxWi+9sW3obR+2pXWAMI6OHGDsLcYKRQcP1ID0QRx+SHJuNA1QjqGSQtBClfzwc//YO7g5nMPZJ9nn7JOs1/Px2I+z13d99/p+Njyyvp/9Xd/1XakqJEmSJB3cDul3AJIkSZKmnom/JEmS1AAm/pIkSVIDmPhLkiRJDWDiL0mSJDWAib8kSZLUACb+mvGSPJfkX7zC/seSvHU6Y+po+64k72u/vyjJ5/sRhyQdrGZyH9BLSU5MUklmt7dvT/KL/Y5LBxcTf814VXV4VW0FSPLxJP93P+JI8uEk/228/VX1qap6+3TGJEkHu371AUnem2T9FB7/FX+wVNXZVfVfp6p9NZOJvzQDJJnV7xgkSQe+vVcMpLGY+KsvkvxSks92bG9JckvH9hNJTmu/ryQ/muQS4CLgt9qXfj/bccjTkjyc5FtJbk4yd5x2D0nywSSPJ3kqySeSvLa978wkI6PqP5bkrUmWAf8JuKDd9kNjHPslo0NJ3pDkC0meSbI5yfkd+z6e5M+T3JbkeWBpknck2ZTkn5J8I8llk/uvKkkHhunsA5Jc3D7+M0nWJZnfLn/J1Jp22V1J3pdkAPgY8NPttp4d53vMbx/zmXYbF3fse8nVic4+JskngeOBz7aP/1tjHPvFqaTt7V9OMpxkR5I7kpzQsa+S/EaSrwNfT8sftfu5b7X/2yx6pf8nagYTf/XL3cCb24n4DwNzgDMA0prLeTjwcOcHqupa4FPAmval33/bsft8YBlwEnAq8N5x2n1v+7UU2NvOn04UbFX9NfAR4OZ22//LK9VP8mrgC8CNwOuB5cCfJfmxjmrvBlYDrwHWA2uBX6mq1wCLgC9OFJckHaCmpQ9Ichbwu+39Pww8Dtw0UXBVNQz8KvDldltHjlN1EBgB5gPvAj6S5Ge7OP4vAH8P/Nv28de8Uv0k59EafPp3wDzgS+22O50HvAk4BXg78DPAycCRwAXA0xPFpYOfib/6oj1f85+A04C3AHcA30jyhvb2l6rqe5M45B9X1baqegb4bPu4Y7kI+MOq2lpVzwFXAhdOwaXRfwM8VlX/pap2V9X/BP6CVsew12eq6p6q+l5VfRfYBZyS5Iiq2tH+jCQddKaxD7gIuKGq/mdVvUDrnP/TSU7c3++Q5DhgCfCBqvpuVT0IXA/8wv4eewy/AvxuVQ1X1W5aA1GndY76t/c/U1XfodWfvAZ4A5D2556cgrh0gDHxVz/dDZxJa1TibuAuWif8t7S3J+MfOt7/M63RorHMpzXis9fjwGzgByfZ3kROAN6U5Nm9L1od0A911Hli1GfeCbwDeDzJ3Ul+uscxSdJMMh19wEvO+e0Bn6eBY/cl4FHmA89U1T91lD3eo2OPdgLw0Y7+5Bkgo9p6sU+pqi/Supp9DfDNJNcmOWIK4tIBxsRf/bT3pP/m9vu7mfikX/vZ5jZaJ9C9jgd2A98Engd+YO+OtG64nbePbT8B3F1VR3a8Dq+qXxvveFV1f1WdS2tq0K3ALUjSwWs6+oCXnPPb0zCPBr5B65wPHed9Xjo4M1Fb24DXJXlNR9nx7WPDqD5l1LG7OX6nJ2hNBe3sU15VVfeOd7yq+uOq+kngx2hN+bl8Eu3pIGXir366m9Zc+1dV1QitOYvLaJ2UHxjnM9+kNTd/Xw0C/yHJSUkO5/vz9ncDXwPmJvm5JHOADwKHjWr7xCTd/Lv5K+DkJL+QZE779VPtG8ZeJsmhaT0H4LVVtQv4NrBnP76nJM1009EH3Aj8UpLTkhxG65z/t1X1WFVtp5WkvyfJrCS/DPzIqLYWJDl0rANX1RPAvcDvJpmb5FRgBa37EAAeBN6R5HVJfgj49/vxXT4GXLn3PrEkr03yv41Xud3fvKndlz0PfBf7FGHirz6qqq8Bz9E62VNV3wa2AvdU1XgnqLW05sE/m+TWfWj2BuCTwN8Aj9I6Ga5st/8t4NdpzdHcOxrUucrPf2//fTrJK86/b1/6fTtwIa1RoX8Afp+X/pAY7ReAx5J8m9ZNZe+ZzBeTpAPJdPQBVXUn8H/SusfqSVqJ/YUdVS6mNRL+NK2R8c4R9C8CG4F/SPKP4zSxHDiR1nn+L4HfrqovtPd9EngIeAz4PHDzqM/+LvDB9nd5xVXcquovafUhN7X7iEeAs1/hI0cA1wE7aE0/ehr4g1dqQ82Qqv2dOSFJkiRppnPEX5IkSWoAE39JkiSpAUz8JUmSpAYw8ZckSZIaoNdPK+3aMcccUyeeeGK/mpekGe8rX/nKP1bVvIlrHtzsLyRpfJPpK/qW+J944ols2LChX81L0oyX5PGJax387C8kaXyT6Su6muqTZFmSzUm2JLlijP0nJLkzycNJ7kqyYDIBS5IkSZpaEyb+SWYB19B6UMQpwPIkp4yq9gfAJ6rqVOAqWg+lkCRJkjRDdDPifzqwpaq2VtVO4Cbg3FF1TgHubL8fGmO/JEmSpD7qJvE/FniiY3ukXdbpIeCd7fc/D7wmydGjD5TkkiQbkmzYvn37vsQrSZIkaR90k/hnjLIatX0Z8JYkDwBvAb4B7H7Zh6qurarFVbV43rzGL1QhSZIkTZtuVvUZAY7r2F4AbOusUFXbgH8HkORw4J1V9a1eBSlJkiRp/3Qz4n8/sDDJSUkOBS4E1nVWSHJMkr3HuhK4obdhSpIkSdofEyb+VbUbuBS4AxgGbqmqjUmuSnJOu9qZwOYkXwN+EFg9RfFKkiRJ2gddPcCrqm4DbhtV9qGO958GPt3b0CRJkiT1St+e3CtNtWSs+9J7q2r0fe6SJEkzk4m/DlqTTcqTmMhLkqSDVjc390qSJEk6wJn4S5IkSQ1g4i9JkiQ1gIm/JGlSkixLsjnJliRXjFPn/CSbkmxMcmNH+e8neaT9umD6opYkeXOvJKlrSWYB1wBvo/Vk9/uTrKuqTR11FtJ6mOMZVbUjyevb5T8H/ARwGnAYcHeS26vq29P9PSSpiRzxlyRNxunAlqraWlU7gZuAc0fVuRi4pqp2AFTVU+3yU4C7q2p3VT0PPAQsm6a4JanxTPwlSZNxLPBEx/ZIu6zTycDJSe5Jcl+Svcn9Q8DZSX4gyTHAUuC4KY9YkgQ41UeSNDljPRlv9AMwZgMLgTOBBcCXkiyqqs8n+SngXmA78GVg95iNJJcAlwAcf/zxvYlckhrOEX9J0mSM8NJR+gXAtjHqfKaqdlXVo8BmWj8EqKrVVXVaVb2N1o+Ir4/VSFVdW1WLq2rxvHnzev4lJKmJTPwlSZNxP7AwyUlJDgUuBNaNqnMrrWk8tKf0nAxsTTIrydHt8lOBU4HPT1vkktRwTvWRJHWtqnYnuRS4A5gF3FBVG5NcBWyoqnXtfW9PsgnYA1xeVU8nmUtr2g/At4H3VNWYU30kSb1n4i9JmpSqug24bVTZhzreF/D+9quzzndprewjSeoDp/pIkiRJDWDiL0mSJDWAib8kSZLUACb+kiRJUgOY+EuSJEkN0FXin2RZks1JtiS5Yoz9xycZSvJAkoeTvKP3oUqSJEnaVxMm/klmAdcAZ9Nahm15ktHLsX0QuKWq3kjrYS5/1utAJUmSJO27bkb8Twe2VNXWqtoJ3AScO6pOAUe037+Wlz++XZIkSVIfdZP4Hws80bE90i7r9GHgPUlGaD3UZeVYB0pySZINSTZs3759H8KVJEmStC+6SfwzRlmN2l4OfLyqFgDvAD6Z5GXHrqprq2pxVS2eN2/e5KOVJEmStE+6SfxHgOM6thfw8qk8K4BbAKrqy8Bc4JheBChJkiRp/3WT+N8PLExyUpJDad28u25Unb8HfhYgyQCtxN+5PJIkSdIMMWHiX1W7gUuBO4BhWqv3bExyVZJz2tX+I3BxkoeAQeC9VTV6OpAkSZKkPpndTaWquo3WTbudZR/qeL8JOKO3oUmSJEnqFZ/cK0mSJDWAib8kSZLUACb+kiRJUgOY+EuSJEkNYOIvSZIkNYCJvyRJktQAJv6SJElSA5j4S5IkSQ1g4i9JmpQky5JsTrIlyRXj1Dk/yaYkG5Pc2FG+pl02nOSPk2T6IpekZuvqyb2SJAEkmQVcA7wNGAHuT7Ku/QT3vXUWAlcCZ1TVjiSvb5f/a1pPeT+1XXU98Bbgrun7BpLUXI74S5Im43RgS1VtraqdwE3AuaPqXAxcU1U7AKrqqXZ5AXOBQ4HDgDnAN6clakmSib8kaVKOBZ7o2B5pl3U6GTg5yT1J7kuyDKCqvgwMAU+2X3dU1fBYjSS5JMmGJBu2b9/e8y8hSU1k4i9Jmoyx5uTXqO3ZwELgTGA5cH2SI5P8KDAALKD1Y+GsJD8zViNVdW1VLa6qxfPmzetZ8JLUZCb+kqTJGAGO69heAGwbo85nqmpXVT0KbKb1Q+Dngfuq6rmqeg64HfhX0xCzJAkTf0nS5NwPLExyUpJDgQuBdaPq3AosBUhyDK2pP1uBvwfekmR2kjm0buwdc6qPJKn3TPwlSV2rqt3ApcAdtJL2W6pqY5KrkpzTrnYH8HSSTbTm9F9eVU8Dnwb+Dvgq8BDwUFV9dtq/hCQ1lMt56oDwute9jh07dkx5O1O9pPhRRx3FM888M6VtSFOtqm4DbhtV9qGO9wW8v/3qrLMH+JXpiFGS9HIm/jog7Nixg1YucWDzWUWSJKlfnOojSZIkNUBXif9Ej2dP8kdJHmy/vpbk2d6HKkmSJGlfTTjVp5vHs1fVf+iovxJ44xTEKkmSJGkfdTPi383j2TstBwZ7EZwkSZKk3ugm8e/m8ewAJDkBOAn44jj7fQS7JEmS1AfdJP7dPJ59rwuBT7eXbHv5h3wEuyRJktQX3ST+3Tyefa8LcZqPJEmSNON0k/h383h2kvxL4Cjgy70NUZIkSdL+mjDx7/Lx7NC6qfemOhiesiRJkiQdZLp6cu9Ej2dvb3+4d2FJkiRJ6iWf3CtJkiQ1gIm/JEmS1AAm/pIkSVIDmPhLkiRJDWDiL0mSJDVAV6v6SP1Wv30EfPi1/Q5jv9VvH9HvECRJUkOZ+OuAkP/r2xwMj4hIggvfSpKkfnCqjyRJktQAJv6SJElSA5j4S5IkSQ1g4i9JkiQ1gIm/JGlSkixLsjnJliRXjFPn/CSbkmxMcmO7bGmSBzte301y3vRGL0nN5ao+kqSuJZkFXAO8DRgB7k+yrqo2ddRZCFwJnFFVO5K8HqCqhoDT2nVeB2wBPj/NX0GSGssRf0nSZJwObKmqrVW1E7gJOHdUnYuBa6pqB0BVPTXGcd4F3F5V/zyl0UqSXmTiL0majGOBJzq2R9plnU4GTk5yT5L7kiwb4zgXAoPjNZLkkiQbkmzYvn37fgctSTLxlyRNTsYoG/10vdnAQuBMYDlwfZIjXzxA8sPAjwN3jNdIVV1bVYuravG8efP2O2hJkom/JGlyRoDjOrYXANvGqPOZqtpVVY8Cm2n9ENjrfOAvq2rXlEYqSXoJE39J0mTcDyxMclKSQ2lN2Vk3qs6twFKAJMfQmvqztWP/cl5hmo8kaWqY+EuSulZVu4FLaU3TGQZuqaqNSa5Kck672h3A00k2AUPA5VX1NECSE2ldMbh7umOXpKbrajnP9o1ZHwVmAddX1e+NUed84MO05no+VFXv7mGckqQZoqpuA24bVfahjvcFvL/9Gv3Zx3j5zcCSpGkwYeK/P2s2S5IkSZoZupnq06s1myVJkiT1STeJf6/WbHZdZkmSJKlPukn893vN5hc/5LrMkiRJUl90k/j3Ys1mSZIkSX3UTeLfizWbJUmSJPXRhIn//q7ZLEmSJKn/ulrHf3/WbJYkSZLUf10l/tJMkIx1n/mB5aijjup3CJIkqaFM/HVAaF1UmlpJpqUdSZKkfujm5l5JkiRJBzgTf0mSJKkBTPwlSZKkBjDxlyRJkhrAxF+SJElqABN/SZIkqQFM/CVJkqQGMPGXJEmSGsDEX5IkSWoAE39JkiSpAUz8JUmSpAYw8ZckTUqSZUk2J9mS5Ipx6pyfZFOSjUlu7Cg/Psnnkwy39584XXFLUtPN7ncAkqQDR5JZwDXA24AR4P4k66pqU0edhcCVwBlVtSPJ6zsO8QlgdVV9IcnhwPemMXxJajRH/CVJk3E6sKWqtlbVTuAm4NxRdS4GrqmqHQBV9RRAklOA2VX1hXb5c1X1z9MXuiQ1m4m/JGkyjgWe6NgeaZd1Ohk4Ock9Se5Lsqyj/Nkk/2+SB5Jc3b6CIEmaBk71kSRNRsYoq1Hbs4GFwJnAAuBLSRa1y98MvBH4e+Bm4L3A2pc1klwCXAJw/PHH9yZyNcOHX9vvCHrjw9/qdwQ6CJn4S5ImYwQ4rmN7AbBtjDr3VdUu4NEkm2n9EBgBHqiqrQBJbgX+FWMk/lV1LXAtwOLFi0f/sJDGZ8IsjaurqT4TreCQ5L1Jtid5sP16X+9DlSTNAPcDC5OclORQ4EJg3ag6twJLAZIcQ2uKz9b2Z49KMq9d7yxgE5KkaTHhiH83Kzi03VxVl05BjJKkGaKqdie5FLgDmAXcUFUbk1wFbKiqde19b0+yCdgDXF5VTwMkuQy4M0mArwDX9eWLSFIDdTPV58UVHACS7F3BwVEaSWqgqroNuG1U2Yc63hfw/vZr9Ge/AJw61TFKkl6um6k+3azgAPDOJA8n+XSS48bYT5JLkmxIsmH79u37EK4kSZKkfdFN4t/NCg6fBU6sqlOB/wH817EOVFXXVtXiqlo8b968sapIkiRJmgLdJP4TruBQVU9X1QvtzeuAn+xNeJIkSZJ6oZvEf8IVHJL8cMfmOcBw70KUJEmStL8mvLm3yxUcfjPJOcBu4BlaD2SRJEmSNEN09QCvLlZwuBK4srehSZIkSeqVrh7gJUmSJOnAZuIvSZIkNYCJvyRJktQAJv6SJElSA5j4S5IkSQ1g4i9JkiQ1gIm/JEmS1AAm/pIkSVIDmPhLkiRJDWDiL0mSJDWAib8kSZLUACb+kiRJUgOY+EuSJEkNYOIvSZIkNYCJvyRJktQAJv6SJElSA5j4S5ImJcmyJJuTbElyxTh1zk+yKcnGJDd2lO9J8mD7tW76opYkze53AJKkA0eSWcA1wNuAEeD+JOuqalNHnYXAlcAZVbUjyes7DvGdqjptWoOWJAGO+EuSJud0YEtVba2qncBNwLmj6lwMXFNVOwCq6qlpjlGSNIauEv9uLuu2670rSSVZ3LsQJUkzyLHAEx3bI+2yTicDJye5J8l9SZZ17JubZEO7/LzxGklySbvehu3bt/cueklqsAmn+nRzWbdd7zXAbwJ/OxWBSpJmhIxRVqO2ZwMLgTOBBcCXkiyqqmeB46tqW5J/AXwxyVer6u9edsCqa4FrARYvXjz6+JKkfdDNiH83l3UBfgdYA3y3h/FJkmaWEeC4ju0FwLYx6nymqnZV1aPAZlo/BKiqbe2/W4G7gDdOdcCSpJZuEv8JL+smeSNwXFX91SsdyEu3knTAux9YmOSkJIcCFwKjV+e5FVgKkOQYWlN/tiY5KslhHeVnAJuQJE2LbhL/V7ysm+QQ4I+A/zjRgarq2qpaXFWL582b132UkqQZoap2A5cCdwDDwC1VtTHJVUnOaVe7A3g6ySZgCLi8qp4GBoANSR5ql//e6GmjkqSp081ynhNd1n0NsAi4KwnADwHrkpxTVRt6FagkaWaoqtuA20aVfajjfQHvb78669wL/Ph0xChJerluEv8XL+sC36B1Wffde3dW1beAY/ZuJ7kLuMykX/3W/iE6pZ9p5TeSJEkz34SJf1XtTrL3su4s4Ia9l3WBDVXlkxc1I5mUS5IkfV9XT+6d6LLuqPIz9z8sSZIkSb3kk3slSZKkBjDxlyRJkhrAxF+SJElqABN/Nd7g4CCLFi1i1qxZLFq0iMHBwX6HJEmS1HNd3dwrHawGBwdZtWoVa9euZcmSJaxfv54VK1YAsHz58j5HJ0mS1DuO+KvRVq9ezdq1a1m6dClz5sxh6dKlrF27ltWrV/c7NEmSpJ4y8VejDQ8Ps2TJkpeULVmyhOHh4T5FJEmSNDVM/NVoAwMDrF+//iVl69evZ2BgoE8RSZIkTQ3n+KvRVq1axQUXXMCrX/1qHn/8cU444QSef/55PvrRj/Y7NEmSpJ5yxF9qS9LvECRJkqaMib8abfXq1dx88808+uij7Nmzh0cffZSbb77Zm3slSdJBx8RfjebNvZIkqSlM/NVo3twrSZKawsRfjbZq1SpWrFjB0NAQu3btYmhoiBUrVrBq1ap+hyZJktRTruqjRlu+fDn33nsvZ599Ni+88AKHHXYYF198sU/tlSRJBx1H/NVog4ODfO5zn+P2229n586d3H777Xzuc59jcHCw36FJkiT1lIm/Gm316tWsXbuWpUuXMmfOHJYuXcratWtd1UeSJB10TPzVaK7qI0mSmsLEX43mqj6SJKkpukr8kyxLsjnJliRXjLH/V5N8NcmDSdYnOaX3oUq956o+0uRN1Ce065yfZFOSjUluHLXviCTfSPKn0xOxJAm6WNUnySzgGuBtwAhwf5J1VbWpo9qNVfWxdv1zgD8Elk1BvFJP7V29Z+XKlQwPDzMwMMDq1atd1UcaRzd9QpKFwJXAGVW1I8nrRx3md4C7pytmSVJLN8t5ng5sqaqtAEluAs4FXjzJV9W3O+q/GqheBilNpeXLl5voS92bsE8ALgauqaodAFX11N4dSX4S+EHgr4HF0xW0JKm7qT7HAk90bI+0y14iyW8k+TtgDfCbYx0oySVJNiTZsH379n2JV5LUX930CScDJye5J8l9SZYBJDkE+H+AyydqxP5Cknqvm8Q/Y5S9bES/qq6pqh8BPgB8cKwDVdW1VbW4qhbPmzdvcpFKkmaCbvqE2cBC4ExgOXB9kiOBXwduq6onmID9hST1XjdTfUaA4zq2FwDbXqH+TcCf709QkqQZq5s+YQS4r6p2AY8m2Uzrh8BPA29O8uvA4cChSZ6rqjFvEJYk9VY3I/73AwuTnJTkUOBCYF1nhfaNXHv9HPD13oUoTa3BwUEWLVrErFmzWLRokU/tlV7ZhH0CcCuwFCDJMbSm/mytqouq6viqOhG4DPiESb8kTZ8JR/yraneSS4E7gFnADVW1MclVwIaqWgdcmuStwC5gB/CLUxm01CuDg4OsWrWKtWvXsmTJEtavX8+KFSsAvOFXGkOXfcIdwNuTbAL2AJdX1dP9i1qSBJCq/izAs3jx4tqwYUNf2pb2WrRoEX/yJ3/C0qVLXywbGhpi5cqVPPLII32MTIIkX6mqxq98Y38hSeObTF/hk3vVaMPDwyxZsuQlZUuWLGF4eLhPEUmSJE0NE3812sDAAOvXr39J2fr16xkYGOhTRJIkSVPDxF+NtmrVKlasWMHQ0BC7du1iaGiIFStWsGrVqn6HJkmS1FPdLOcpHbT23sC7cuVKhoeHGRgYYPXq1d7YK0mSDjom/mq85cuXm+hLkqSDnlN9JEmSpAYw8ZckSZIawMRfkiRJagATf0mSJKkBTPwlSZKkBjDxlyRJkhrAxF+NNzg4yKJFi5g1axaLFi1icHCw3yFJkiT1nOv4q9EGBwdZtWoVa9euZcmSJaxfv54VK1YAuLa/JEk6qDjir0ZbvXo1a9euZenSpcyZM4elS5eydu1aVq9e3e/QJEmSesrEX402PDzMyMjIS6b6jIyMMDw83O/QJEmSesqpPmq0+fPn84EPfIBPfepTL071ueiii5g/f36/Q5MkSeopR/zVeFX1ituSJEkHAxN/Ndq2bdtYs2YNK1euZO7cuaxcuZI1a9awbdu2focmSZLUU071UaMNDAywYMECHnnkkRfLhoaGGBgY6GNUkiRJvddV4p9kGfBRYBZwfVX93qj97wfeB+wGtgO/XFWP9zhWqedWrVrFeeedx3e+8x127drFnDlzeNWrXsXHPvaxfocmSZLUUxNO9UkyC7gGOBs4BVie5JRR1R4AFlfVqcCngTW9DlSaCvfeey/PPfccRx99NIcccghHH300zz33HPfee2+/Q5MkSeqpbub4nw5sqaqtVbUTuAk4t7NCVQ1V1T+3N+8DFvQ2TGlqXHfddVx99dU8+eST7NmzhyeffJKrr76a6667rt+hSTNWkmVJNifZkuSKceqcn2RTko1JbmyXnZDkK0kebJf/6vRGLknN1k3ifyzwRMf2SLtsPCuA28fakeSSJBuSbNi+fXv3UUpT5IUXXmDz5s3MnTuXJMydO5fNmzfzwgsv9Ds0aUbq5ipwkoXAlcAZVfVjwL9v73oS+NdVdRrwJuCKJK6dK0nTpJvEP2OUjbneYZL3AIuBq8faX1XXVtXiqlo8b9687qOUpsghhxzC9ddfz0c+8hGef/55PvKRj3D99ddzyCEueCWNY8KrwMDFwDVVtQOgqp5q/91ZVXt/VR+GK8tJ0rTq5qQ7AhzXsb0AeNlah0neCqwCzuk4sUszWjLW79rxyyV1dRX4ZODkJPckua+9QAQASY5L8nD7GL9fVa6dK0nTpJvE/35gYZKTkhwKXAis66yQ5I3Af6aV9D/V+zClqbFnzx7OPPNMLrvsMl796ldz2WWXceaZZ7Jnz55+hybNVN1cBZ4NLATOBJYD1yc5EqCqnmgvBPGjwC8m+cExG3FqqCT13ISJf1XtBi4F7gCGgVuqamOSq5Kc0652NXA48N/bN22tG+dw0owye/ZsHnzwQe6880527tzJnXfeyYMPPsjs2T7iQhpHN1eBR4DPVNWuqnoU2Ezrh8CL2iP9G4E3j9WIU0Mlqfe6ym6q6jbgtlFlH+p4/9YexyVNiyOOOIJnn32WBx54gDe96U088MADPPvssxx55JH9Dk2aqV68Cgx8g9ZV4HePqnMrrZH+jyc5htbUn61JFgBPV9V3khwFnAH84fSFLknN5o1VarRnn32Ws84BXi5hAAAFrUlEQVQ66yVTfc466yyeffbZfocmzUhdXgW+A3g6ySZgCLi8qp4GBoC/TfIQcDfwB1X11en/FpLUTM5nUKPNnz+fRx55hDvvvJMlS5awfv163v3udzN/visMSuPp4ipwAe9vvzrrfAE4dTpilCS9nCP+arzRK/i4oo8kSToYmfir0bZt28Z5553H2WefzaGHHsrZZ5/Neeedx7ZtrjAoSZIOLib+arT58+dz6623cvvtt7Nz505uv/12br31Vqf6SJKkg46JvxqvNR15/G1JkqSDgYm/Gm3btm2sWbOGlStXMnfuXFauXMmaNWuc6iNJkg46ruqjRhsYGGDBggU88sgjL5YNDQ0xMDDQx6gkSZJ6zxF/NdqqVatYsWIFQ0ND7Nq1i6GhIVasWMGqVav6HZokSVJPOeKvRlu+fDkAK1euZHh4mIGBAVavXv1iuSRJ0sHCxF+Nt3z5chN9SZJ00HOqjyRJktQAJv6SJElSA5j4S5IkSQ1g4i9JkiQ1gIm/JEmS1ACpqv40nGwHHu9L49LYjgH+sd9BSB1OqKp5/Q6i3+wvNAPZX2gm6bqv6FviL800STZU1eJ+xyFJmtnsL3SgcqqPJEmS1AAm/pIkSVIDmPhL33dtvwOQJB0Q7C90QHKOvyRJktQAjvhLkiRJDWDiL0mSJDWAib8aL8kNSZ5K8ki/Y5EkzVz2FzrQmfhL8HFgWb+DkCTNeB/H/kIHMBN/NV5V/Q3wTL/jkCTNbPYXOtCZ+EuSJEkNYOIvSZIkNYCJvyRJktQAJv6SJElSA5j4q/GSDAJfBv5lkpEkK/odkyRp5rG/0IEuVdXvGCRJkiRNMUf8JUmSpAYw8ZckSZIawMRfkiRJagATf0mSJKkBTPwlSZKkBjDx14yT5OeTVJI37McxHktyTMf2mUn+qkfxnZPkinH2Pdf+Oz/Jp9vvT0vyjl60LUlqsa+QJs/EXzPRcmA9cGG/AxlLVa2rqt+boM62qnpXe/M0wJO5JPWWfYU0SSb+mlGSHA6cAaygfTJPcnPnKEiSjyd5Z5IfSHJLkofbdf42yeIu2vhwkss6th9JcmL79f8lub5d9qkkb01yT5KvJzm9Xf+9Sf60/f6kJF9Ocn+S3+k45ontYxwKXAVckOTBJBe0jzWvXe+QJFs6R5wkSa/MvkLaNyb+mmnOA/66qr4GPJPkJ4CbgAsA2ifHnwVuA34d2FFVpwK/A/zkqGMNtU+gDwLXd9n+jwIfBU4F3gC8G1gCXAb8pzHqfxT486r6KeAfRu+sqp3Ah4Cbq+q0qroZ+G/ARe0qbwUeqqp/7DI+SZJ9hbRPTPw10yyndfKm/Xc5cDtwVpLDgLOBv6mq79A6yd4EUFWPAA+POtbS9gn0NOB9Xbb/aFV9taq+B2wE7qzW462/Cpw4Rv0zgMH2+0922cYNwP/efv/LwH/p8nOSpBb7CmkfzO53ANJeSY4GzgIWJSlgFlDAbwF3Af8rrdGcvSfP7GNTu3npj965He9f6Hj/vY7t7zH+v5eaTONV9USSbyY5C3gT3x/RkSRNwL5C2neO+GsmeRfwiao6oapOrKrjgEf5/mjNLwFvBu5o118PnA+Q5BTgx7ts5zHgJ9qf+wngpP2I+R6+f2PZeCflfwJeM6rselqXcW+pqj370b4kNY19hbSPTPw1kywH/nJU2V/Qmjv5eeBngP/RngsJ8GfAvCQPAx+gdfn2W1208xfA69rzOX8N+Np+xPx/AL+R5H7gtePUGQJO2XvDVrtsHXA4XrqVpMmyr5D2UVpT0qQDT5JZwJyq+m6SHwHuBE7uONnPWO0VJf6oqt7c71gk6WBmXyF9n3P8dSD7AVqrMcyhNYfz1w6QE/kVtEaPnK8pSVPPvkJqc8RfkiRJagDn+EuSJEkNYOIvSZIkNYCJvyRJktQAJv6SJElSA5j4S5IkSQ3w/wNkiCQ1iDnYVAAAAABJRU5ErkJggg==\n",
  4370.       "text/plain": [
  4371.        "<Figure size 936x648 with 2 Axes>"
  4372.       ]
  4373.      },
  4374.      "metadata": {
  4375.       "needs_background": "light"
  4376.      },
  4377.      "output_type": "display_data"
  4378.     }
  4379.    ],
  4380.    "source": [
  4381.     "\n",
  4382.     "plt.figure(figsize=(13,9))\n",
  4383.     "plt.subplot(221)\n",
  4384.     "plt.title('with outliers')\n",
  4385.     "plt.boxplot(train_data['AvgHumidity'])\n",
  4386.     "plt.xlabel('AvgHumidity')\n",
  4387.     "train_data.loc[(train_data['AvgHumidity']<3.0),'AvgHumidity']=train_data['AvgHumidity'].median()\n",
  4388.     "plt.subplot(222)\n",
  4389.     "plt.title('without outliers')\n",
  4390.     "plt.boxplot(train_data['AvgHumidity'])\n",
  4391.     "plt.xlabel('AvgHumidity')\n",
  4392.     "plt.show()"
  4393.    ]
  4394.   },
  4395.   {
  4396.    "cell_type": "code",
  4397.    "execution_count": 280,
  4398.    "metadata": {},
  4399.    "outputs": [
  4400.     {
  4401.      "data": {
  4402.       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAEcCAYAAACfyLh5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXmV97//3pwGSCioEwkECxra0jqSKNFWsaSVqW2C3Yru1Eq0gRNi07Pyk2oKatsrvMlZof1jsQTYaKlaMUg8VWyqyNWBnV7ABOYXxkFqQcEw5ibATAb+/P5574EmYSSbJzDwzed6v61rXs9a97rXW95lM1j3fte57rVQVkiRJkvrHT/Q6AEmSJEmTyyRAkiRJ6jMmAZIkSVKfMQmQJEmS+oxJgCRJktRnTAIkSZKkPmMSoGklyQ+T/NQW1t+a5NWTGVPXsa9M8tY2/6YkX+5FHJK0s5rKbcB4SjIvSSXZpS3/S5ITeh2Xdi4mAZpWqmqPqvoeQJKPJXlfL+JI8t4knxhtfVVdXFW/NpkxSdLOrldtQJK3JBmcwP1vMXmpqqOr6qKJOr76k0mANMUkmdHrGCRJ09/wnQRpJCYB6rkkJyb5Ytfy2iSXdC3fnuSwNl9JfibJKcCbgDPa7eEvdu3ysCQ3JnkoyaeTzBrluD+R5I+T3Jbk3iQfT/Lstu7IJOs2q39rklcnOQp4N/CGduwbRtj3JleNkjw/yRVJ7k/y7SS/07XuY0k+nOSyJI8Ai5Ick+SWJA8nuSPJH27bT1WSpofJbAOSnNz2f3+SS5M8p5Vv0v2mlV2Z5K1JBoDzgZe1Yz04yvd4Ttvn/e0YJ3et2+SuRXcbk+TvgYOBL7b9nzHCvp/sbtqWT0oylOSBJJcneW7XukpyWpLvAt9NxwdbO/dQ+9nM39K/ifqDSYCmgquAX25/lB8A7Aq8HCCdvp97ADd2b1BVFwAXA+e028O/2bX6d4CjgOcBLwTeMspx39KmRcDwcf56a8FW1ZeA9wOfbsd+0ZbqJ9kduAL4JLAvsBj42ySHdlV7I7AceCYwCKwA/kdVPROYD3x1a3FJ0jQ1KW1AklcCf9bWHwDcBnxqa8FV1RBwKvD1dqw9R6m6ElgHPAd4HfD+JK8aw/7fDHwf+M22/3O2VD/Ja+lciPptYA7wr+3Y3V4LvBR4AfBrwK8APwvsCbwBuG9rcWnnZxKgnmv9Ox8GDgNeAVwO3JHk+W35X6vqx9uwyw9V1Z1VdT/wxbbfkbwJOLeqvldVPwTeBRw3AbdPfwO4tar+rqoer6rrgM/SaSSGfaGq/k9V/biqNgCPAS9I8qyqeqBtI0k7nUlsA94EXFhV11XVRjrn/Jclmbej3yHJQcBC4Myq2lBV1wMfBd68o/sewf8A/qyqhqrqcToXpQ7rvhvQ1t9fVf+XTnvyTOD5QNp2d01AXJpmTAI0VVwFHEnnasVVwJV0Tv6vaMvb4u6u+UfpXEUayXPoXAkadhuwC7DfNh5va54LvDTJg8MTncZo/646t2+2zX8HjgFuS3JVkpeNc0ySNJVMRhuwyTm/Xfy5DzhwewLezHOA+6vq4a6y28Zp35t7LnBeV3tyP5DNjvVkm1JVX6Vzl/tvgHuSXJDkWRMQl6YZkwBNFcMNwC+3+avYegNQO3jMO+mcTIcdDDwO3AM8AjxjeEU6g3XnbOexbweuqqo9u6Y9qur3RttfVf17VR1Lp/vQPwKXIEk7r8loAzY557eumnsDd9A550PXeZ9NL9Rs7Vh3ArOTPLOr7OC2b9isTdls32PZf7fb6XQX7W5TfrKq/m20/VXVh6rqF4BD6XQL+qNtOJ52UiYBmiquotM3/yerah2dPo5H0TlBf3OUbe6h05d/e60E/iDJ85LswVP9/B8HvgPMSvLfkuwK/DEwc7Njz0sylv9D/wT8bJI3J9m1Tb/YBps9TZLd0nnPwLOr6jHgB8ATO/A9JWmqm4w24JPAiUkOSzKTzjn/mqq6tarW0/mD/XeTzEhyEvDTmx1rbpLdRtpxVd0O/BvwZ0lmJXkhsITOuAWA64FjksxOsj9w+g58l/OBdw2PK0vy7CSvH61ya29e2tqyR4AN2KYIkwBNEVX1HeCHdE78VNUPgO8B/6eqRjtZraDTb/7BJP+4HYe9EPh74GvAf9I5MS5tx38I+H06fTqHrxJ1Py3oH9rnfUm22F+/3R7+NeA4OleL7gbOZtOkYnNvBm5N8gM6A9J+d1u+mCRNJ5PRBlTVV4A/oTMm6y46f+Qf11XlZDpXyO+jc8W8+8r6V4E1wN1J/muUQywG5tE5z38eeE9VXdHW/T1wA3Ar8GXg05tt+2fAH7fvssWnwVXV5+m0IZ9qbcTNwNFb2ORZwEeAB+h0UboP+IstHUP9IVU72qNCkiRJ0nTinQBJkiSpz5gESJIkSX3GJECSJEnqMyYBkiRJUp8xCZAkSZL6zC69DgBgn332qXnz5vU6DEmasq699tr/qqo5W6+5c7O9kKTRbUtbMSWSgHnz5rF69epehyFJU1aS23odw1RgeyFJo9uWtsLuQJIkSVKfMQmQJEmS+oxJgCRJktRnTAIkSZKkPjOmJCDJnkk+k+RbSYaSvCzJ7CRXJPlu+9yr1U2SDyVZm+TGJIdP7FeQJEmStC3GeifgPOBLVfV84EXAEPBO4CtVdQjwlbYMcDRwSJtOAT48rhFLE2jp0qXMmjWLJMyaNYulS5f2OiRJkqRxt9UkIMmzgF8BVgBU1Y+q6kHgWOCiVu0i4LVt/ljg49VxNbBnkgPGPXJpnC1dupTzzz+f97///TzyyCO8//3v5/zzzzcRkCRJO52x3An4KWA98HdJvpnko0l2B/arqrsA2ue+rf6BwO1d269rZdKU9pGPfISzzz6bt7/97TzjGc/g7W9/O2effTYf+chHeh2aJEnSuBpLErALcDjw4ap6MfAIT3X9GUlGKKunVUpOSbI6yer169ePKVhpIm3cuJFTTz11k7JTTz2VjRs39igiSdJkSjIpkzQVjCUJWAesq6pr2vJn6CQF9wx382mf93bVP6hr+7nAnZvvtKouqKoFVbVgzpwxvd1YmlAzZ87k/PPP36Ts/PPPZ+bMmT2KSJI0mapqm6ft2U6aCraaBFTV3cDtSX6uFb0KuAW4FDihlZ0AfKHNXwoc354SdATw0HC3IWkqO/nkkznzzDM599xzefTRRzn33HM588wzOfnkk3sdmiRJ0rjaZYz1lgIXJ9kN+B5wIp0E4pIkS4DvA69vdS8DjgHWAo+2utKU91d/9VcAvPvd7+Yd73gHM2fO5NRTT32yXJIkaWeRqXBbasGCBbV69epehyFJU1aSa6tqQa/j6DXbC001SezioyljW9oK3xgsSZIk9RmTAEmSJKnPmARIkiRJfcYkQJIkSeozJgGSJElSnzEJkCRJkvqMSYAkaVwkOSjJqiRDSdYkedtm6/8wSSXZpy0nyYeSrE1yY5LDexO5JPWfsb4sTJKkrXkceEdVXZfkmcC1Sa6oqluSHAT8Kp2XSw47GjikTS8FPtw+JUkTzDsBkqRxUVV3VdV1bf5hYAg4sK3+IHAG0P1WpWOBj1fH1cCeSQ6YzJglqV+ZBEiSxl2SecCLgWuSvAa4o6pu2KzagcDtXcvreCppkCRNILsDSZLGVZI9gM8Cp9PpIrQM+LWRqo5QVk+rlJwCnAJw8MEHj1+gktTHvBMgSRo3SXalkwBcXFWfA34aeB5wQ5JbgbnAdUn2p3Pl/6CuzecCd26+z6q6oKoWVNWCOXPmTPRXkKS+YBIgSRoXSQKsAIaq6lyAqrqpqvatqnlVNY/OH/6HV9XdwKXA8e0pQUcAD1XVXb2KX5L6id2BJEnj5eXAm4Gbklzfyt5dVZeNUv8y4BhgLfAocOLEhyhJApMASdI4qapBRu7n311nXtd8AadNcFiSpBHYHUiSJEnqMyYBkiRJUp8xCZAkSZL6jEmAJEmS1GdMAiRJkqQ+YxIgSZIk9RmTAEmSJKnPmARIkiRJfcYkQJIkSeozJgGSJElSnxlTEpDk1iQ3Jbk+yepWNjvJFUm+2z73auVJ8qEka5PcmOTwifwCkiRJkrbNttwJWFRVh1XVgrb8TuArVXUI8JW2DHA0cEibTgE+PF7BSpIkSdpxO9Id6FjgojZ/EfDarvKPV8fVwJ5JDtiB40iSJEkaR2NNAgr4cpJrk5zSyvarqrsA2ue+rfxA4Paubde1sk0kOSXJ6iSr169fv33RS5IkSdpmu4yx3sur6s4k+wJXJPnWFupmhLJ6WkHVBcAFAAsWLHjaekmSJEkTY0x3AqrqzvZ5L/B54CXAPcPdfNrnva36OuCgrs3nAneOV8CSJEmSdsxWk4Akuyd55vA88GvAzcClwAmt2gnAF9r8pcDx7SlBRwAPDXcbkiRJktR7Y+kOtB/w+STD9T9ZVV9K8u/AJUmWAN8HXt/qXwYcA6wFHgVOHPeoJUmSJG23rSYBVfU94EUjlN8HvGqE8gJOG5foJEmSJI073xgsSZIk9RmTAEmSJKnPmARIknZYkoOSrEoylGRNkre18j9P8q0kNyb5fJI9u7Z5V5K1Sb6d5Nd7F70k9R+TAKnLypUrmT9/PjNmzGD+/PmsXLmy1yFJ08XjwDuqagA4AjgtyQuAK4D5VfVC4DvAuwDauuOAQ4GjgL9NMqMnkUtSHxrry8Kknd7KlStZtmwZK1asYOHChQwODrJkyRIAFi9e3OPopKmtPQp6+C3yDycZAg6sqi93VbsaeF2bPxb4VFVtBP4zyVo676D5+iSGLUl9yzsBUrN8+XJWrFjBokWL2HXXXVm0aBErVqxg+fLlvQ5NmlaSzANeDFyz2aqTgH9p8wcCt3etW9fKRtrfKUlWJ1m9fv368Q1WkvqUSYDUDA0NsXDhwk3KFi5cyNDQUI8ikqafJHsAnwVOr6ofdJUvo9Nl6OLhohE2r5H2WVUXVNWCqlowZ86c8Q5ZkvqSSYDUDAwMMDg4uEnZ4OAgAwMDPYpIml6S7EonAbi4qj7XVX4C8BvAm9q7ZKBz5f+grs3nAndOVqyS1O9MAqRm2bJlLFmyhFWrVvHYY4+xatUqlixZwrJly3odmjTlpfNa+RXAUFWd21V+FHAm8JqqerRrk0uB45LMTPI84BDgG5MZsyT1MwcGS83w4N+lS5cyNDTEwMAAy5cvd1CwNDYvB94M3JTk+lb2buBDwEzgik6ewNVVdWpVrUlyCXALnW5Cp1XVEz2IW5L6Up66M9s7CxYsqNWrV/c6DEmaspJcW1ULeh1Hr9leaKpJwlT4W0qCbWsr7A4kSZIk9RmTAEmSJKnPmARIkiRJfcYkQOqycuVK5s+fz4wZM5g/fz4rV67sdUiSJEnjzqcDSc3KlStZtmwZK1asYOHChQwODrJkyRIAnxAkSZJ2Kt4JkJrly5ezYsUKFi1axK677sqiRYtYsWIFy5cv73VokiRJ48okQGqGhoZYuHDhJmULFy5kaGioRxFJkiRNDJMAqRkYGGBwcHCTssHBQQYGBnoUkSRJ0sQwCZCaZcuWsWTJElatWsVjjz3GqlWrWLJkCcuWLet1aJIkSePKgcFSMzz4d+nSpQwNDTEwMMDy5csdFCxJknY6JgFSl8WLF/tHvyRJ2unZHUiSJEnqMyYBkiRJUp8xCZAkSZL6zJiTgCQzknwzyT+15ecluSbJd5N8OslurXxmW17b1s+bmNCl8Tdr1iySPDnNmjWr1yFJkiSNu225E/A2oPutSWcDH6yqQ4AHgCWtfAnwQFX9DPDBVk+a8mbNmsXGjRvZb7/9GBoaYr/99mPjxo0mApIkaaczpiQgyVzgvwEfbcsBXgl8plW5CHhtmz+2LdPWv6rVl6a04QTg7rvv5vnPfz533333k4mAJEnSzmSsdwL+EjgD+HFb3ht4sKoeb8vrgAPb/IHA7QBt/UOt/iaSnJJkdZLV69ev387wpfF15ZVXbnFZkiRpZ7DVJCDJbwD3VtW13cUjVK0xrHuqoOqCqlpQVQvmzJkzpmCliXbkkUducVmSJGlnMJY7AS8HXpPkVuBTdLoB/SWwZ5Lhl43NBe5s8+uAgwDa+mcD949jzNKEmDlzJvfccw/7778/3/rWt9h///255557mDlzZq9DkyRJGldbTQKq6l1VNbeq5gHHAV+tqjcBq4DXtWonAF9o85e2Zdr6r1bV0+4ESFPNhg0bnkwEBgYGnkwANmzY0OvQJEmSxtWOvCfgTODtSdbS6fO/opWvAPZu5W8H3rljIUqTZ8OGDVTVk5MJgDR2SQ5KsirJUJI1Sd7WymcnuaI9UvqKJHu18iT5UHuk9I1JDu/tN5Ck/rHL1qs8paquBK5s898DXjJCnQ3A68chNknS9PI48I6qui7JM4Frk1wBvAX4SlV9IMk76VwcOhM4GjikTS8FPtw+JUkTzDcGS5LGRVXdVVXXtfmH6bxb5kA2fXT05o+U/nh1XE1nrNkBkxy2JPUlkwBJ0rhrb4t/MXANsF9V3QWdRAHYt1V78pHSTffjprv35SOltV1mz569yVvgJ2ICJnT/s2fP7vFPUTsrkwCpy8qVK5k/fz4zZsxg/vz5rFy5stchSdNOkj2AzwKnV9UPtlR1hDIfKa1x88ADD2wyzms6Tg888ECvf4zaSW3TmABpZ7Zy5UqWLVvGihUrWLhwIYODgyxZsgSAxYsX9zg6aXpIsiudBODiqvpcK74nyQFVdVfr7nNvK3/ykdJN9+OmJUkTyDsBUrN8+XJWrFjBokWL2HXXXVm0aBErVqxg+fLlvQ5NmhbS6RuxAhiqqnO7VnU/OnrzR0of354SdATw0HC3IUnSxPJOgNQMDQ2xcOHCTcoWLlzI0NBQjyKSpp2XA28GbkpyfSt7N/AB4JIkS4Dv89QT5C4DjgHWAo8CJ05uuJLUv0wCpGZgYIDBwUEWLVr0ZNng4CADAwM9jEqaPqpqkJH7+QO8aoT6BZw2oUFJkkZkdyCpWbZsGUuWLGHVqlU89thjrFq1iiVLlrBs2bJehyZJkjSuvBMgNcODf5cuXcrQ0BADAwMsX77cQcGSJGmn450ASZIkqc94J0BqfESoJEnqF94JkBofESpJkvqFSYDU+IhQSZLUL0wCpGZgYICzzjqL+fPnM2PGDObPn89ZZ53lI0IlSdJOxyRAahYtWsTZZ5/NSSedxMMPP8xJJ53E2Wefvcl7AyRJknYGJgFSs2rVKs4880wuvPBCnvnMZ3LhhRdy5plnsmrVql6HJkmSNK7SeWFjby1YsKBWr17d6zDU52bMmMGGDRvYddddnyx77LHHmDVrFk888UQPI5MgybVVtaDXcfSa7YW2RRKmwt85O2Jn+A6aPNvSVngnQGoGBgYYHBzcpGxwcNAxAZIkaafjewKkZtmyZbzhDW9g991357bbbuO5z30ujzzyCOedd16vQ5MkSRpXJgFSlw0bNvDggw9SVdxxxx3MmjWr1yFJkiSNO7sDSc0ZZ5zBHnvsweWXX86PfvQjLr/8cvbYYw/OOOOMXocmSZI0rkwCpGbdunVcdNFFm7wx+KKLLmLdunW9Dk2SJGlc2R1IkiTtlOo9z4L3PrvXYeyQes+zeh2CdlImAVIzd+5cjj/+eD75yU+ycOFCBgcHOf7445k7d26vQ5MkbYec9YNp/3jNJNR7ex2FdkZb7Q6UZFaSbyS5IcmaJGe18ucluSbJd5N8OslurXxmW17b1s+b2K8gjY9zzjmHJ554gpNOOomZM2dy0kkn8cQTT3DOOef0OjRJkqRxNZYxARuBV1bVi4DDgKOSHAGcDXywqg4BHgCWtPpLgAeq6meAD7Z60pS3ePFizjvvPHbffXeSsPvuu3PeeeexePHiXocmSZI0rraaBFTHD9virm0q4JXAZ1r5RcBr2/yxbZm2/lVJMm4RS9shyZimN77xjaxZs4Yf//jHrFmzhje+8Y1j3laSJGm6GNPTgZLMSHI9cC9wBfAfwINV9Xirsg44sM0fCNwO0NY/BOw9nkFL26qqtmna3m0kSZKmgzElAVX1RFUdBswFXgIMjFStfY50SfRpfyElOSXJ6iSr169fP9Z4JUlTVJILk9yb5OaussOSXJ3k+nbOf0krT5IPtfFjNyY5vHeRS1L/2ab3BFTVg8CVwBHAnkmGny40F7izza8DDgJo658N3D/Cvi6oqgVVtWDOnDnbF70kaSr5GHDUZmXnAGe1C0l/2pYBjgYOadMpwIcnKUZJEmN7OtCcJHu2+Z8EXg0MAauA17VqJwBfaPOXtmXa+q+WfSUkaadXVV/j6Rd9Chh+0PmzeeqC0bHAx9u4s6vpXFg6YHIilSSN5T0BBwAXJZlBJ2m4pKr+KcktwKeSvA/4JrCi1V8B/H2StXQag+MmIG5J0vRwOnB5kr+g04b8Uit/cvxYMzy27K7Nd5DkFDp3Czj44IMnNFhJ6hdbTQKq6kbgxSOUf4/O+IDNyzcArx+X6CRJ093vAX9QVZ9N8jt0LhS9mjGOH4NO91HgAoAFCxZ4Z1mSxsE2jQmQJGkbnQB8rs3/A09dPHpy/FjTPbZMkjTBTAIkSRPpTuAVbf6VwHfb/KXA8e0pQUcAD1XV07oCSZImxljGBEiStFVJVgJHAvskWQe8BzgZOK89LW4DrW8/cBlwDLAWeBQ4cdIDlqQ+ZhIgSRoXVbV4lFW/MELdAk6b2IgkSaOxO5AkSZLUZ0wCJEmSpD5jEiBJkiT1GZMASZIkqc+YBEiSJEl9xiRAkiRJ6jMmAZIkSVKfMQmQJEmS+oxJgCRJktRnTAIkSZKkPmMSIEmSJPUZkwBJkiSpz5gESJIkSX3GJECSJEnqMyYBkiRJUp8xCZAkSZL6jEmAJEmS1Gd26XUA0raaPXs2DzzwwIQfJ8mE7n+vvfbi/vvvn9BjSFK/m+hz+UTba6+9eh2CdlImAZp2HnjgAaqq12HssOneMEnSVDcZbUWSnaJNUv+xO5AkSZLUZ0wCJEnjIsmFSe5NcvNm5UuTfDvJmiTndJW/K8natu7XJz9iSepfW00CkhyUZFWSoXYCf1srn53kiiTfbZ97tfIk+VA7sd+Y5PCJ/hKSpCnhY8BR3QVJFgHHAi+sqkOBv2jlLwCOAw5t2/xtkhmTGq0k9bGx3Al4HHhHVQ0ARwCntZP3O4GvVNUhwFfaMsDRwCFtOgX48LhHLUmacqrqa8Dmo91/D/hAVW1sde5t5ccCn6qqjVX1n8Ba4CWTFqwk9bmtJgFVdVdVXdfmHwaGgAPpnMAvatUuAl7b5o8FPl4dVwN7Jjlg3COXJE0HPwv8cpJrklyV5Bdb+YHA7V311rUySdIk2KYxAUnmAS8GrgH2q6q7oJMoAPu2amM6sSc5JcnqJKvXr1+/7ZFLkqaDXYC96NxJ/iPgknQejTXS47FGfMSK7YUkjb8xJwFJ9gA+C5xeVT/YUtURyp52Yq+qC6pqQVUtmDNnzljDkCRNL+uAz7W7w98Afgzs08oP6qo3F7hzpB3YXkjS+BtTEpBkVzoJwMVV9blWfM9wN5/2OdzPc8wndknSTu8fgVcCJPlZYDfgv4BLgeOSzEzyPDrjyL7Rsyglqc+M5elAAVYAQ1V1bteqS4ET2vwJwBe6yo9vTwk6AnhouNuQJGnnlWQl8HXg55KsS7IEuBD4qfbY0E8BJ7S7AmuAS4BbgC8Bp1XVE72KXZL6zVjeGPxy4M3ATUmub2XvBj5Ap2/nEuD7wOvbusuAY+g86eFR4MRxjViSNCVV1eJRVv3uKPWXA8snLiJJ0mi2mgRU1SAj9/MHeNUI9Qs4bQfjkkZV73kWvPfZvQ5jh9V7ntXrECRJUp8ay50AaUrJWT+gk2tOb0mo9/Y6CkmS1I+26RGhkiRJkqY/kwBJkiSpz5gESJIkSX3GJECSJEnqMyYBkiRJUp8xCZAkSZL6jEmAJEmS1Gd8T4CmpWS099dNH3vttVevQ5AkSX3KJEDTzmS8KCzJTvFCMkmSpJHYHUiSJEnqMyYBkiRJUp8xCZAkSZL6jEmAJEmS1GdMAiRJkqQ+YxIgSZIk9RmTAEmSJKnPmARIkiRJfcYkQJIkSeozJgGSJElSnzEJkCSNiyQXJrk3yc0jrPvDJJVkn7acJB9KsjbJjUkOn/yIJal/mQRIksbLx4CjNi9MchDwq8D3u4qPBg5p0ynAhychPklSYxIgSRoXVfU14P4RVn0QOAOorrJjgY9Xx9XAnkkOmIQwJUmYBEiSJlCS1wB3VNUNm606ELi9a3ldKxtpH6ckWZ1k9fr16ycoUknqLyYBkqQJkeQZwDLgT0daPUJZjVBGVV1QVQuqasGcOXPGM0RJ6ltbTQJGGuiVZHaSK5J8t33u1cod6CVJGvbTwPOAG5LcCswFrkuyP50r/wd11Z0L3DnpEUpSnxrLnYCP8fSBXu8EvlJVhwBfacvgQC9JUlNVN1XVvlU1r6rm0fnD//Cquhu4FDi+XTw6Anioqu7qZbyS1E+2mgSMMtDrWOCiNn8R8Nqucgd6acpJsk3T9m4j9bMkK4GvAz+XZF2SJVuofhnwPWAt8BHg9ychRElSs8t2brff8BWbqroryb6tfLSBXk+7upPkFDp3Czj44IO3MwxpbKpG7GosaRxV1eKtrJ/XNV/AaRMdkyRpZOM9MNiBXpIkSdIUt71JwD3D3Xza572t3IFekiRJ0hS3vUnApcAJbf4E4Atd5Q70kiRJkqawrY4JaAO9jgT2SbIOeA/wAeCSNujr+8DrW/XLgGPoDPR6FDhxAmKWJEmStAO2mgRsYaDXq0ao60AvSZIkaYrzjcGSJElSnzEJkCRJkvqMSYAkSZLUZ0wCJEmSpD5jEiBJkiT1GZMASZIkqc+YBEiSJEl9xiRAkiRJ6jMmAZIkSVKfMQmQJEmS+oxJgCRJktRnTAIkSZKkPmMSIEmSJPUZkwBJkiSpz5gESJIkSX3GJECSJEnqMyYBkqRxkeTCJPcmubmr7M+TfCvJjUk+n2TPrnXvSrI2ybeT/Hpvopak/mQSIEkaLx8Djtqs7ApgflW9EPgO8C6AJC8AjgMObdv8bZIZkxeqJPU3kwBJ0rioqq8B929W9uWqerwtXg3MbfPHAp+qqo1QOce/AAAK0UlEQVRV9Z/AWuAlkxasJPU5kwBJ0mQ5CfiXNn8gcHvXunWt7GmSnJJkdZLV69evn+AQJak/mARIkiZckmXA48DFw0UjVKuRtq2qC6pqQVUtmDNnzkSFKEl9ZZdeByBJ2rklOQH4DeBVVTX8h/464KCuanOBOyc7NknqV94JkCRNmCRHAWcCr6mqR7tWXQocl2RmkucBhwDf6EWMktSPvBMgSRoXSVYCRwL7JFkHvIfO04BmAlckAbi6qk6tqjVJLgFuodNN6LSqeqI3kUtS/5mQJKBd+TkPmAF8tKo+MBHHkSRNHVW1eITiFVuovxxYPnERSZJGM+7dgdpznv8GOBp4AbC4PQ9amvL23ntvkjw57b333r0OSZIkadxNxJiAlwBrq+p7VfUj4FN0ngctTWl77703999/P4ceeii33XYbhx56KPfff7+JgCRJ2ulMRBIw5mc/S1PJcAJw8803c/DBB3PzzTc/mQhIkiTtTCYiCRjTs599+Yumossuu2yLy5KknVd3d9CxTtuznTQVTEQSMKZnP/vyF01FxxxzzBaXJUk7r6qalEmaCiYiCfh34JAkz0uyG3AcnedBS1Pa7NmzWbNmDfPnz+f73/8+8+fPZ82aNcyePbvXoUmSJI2rcX9EaFU9nuR/ApfTeUTohVW1ZryPI423++67j7333ps1a9bw3Oc+F+gkBvfdd1+PI5MkSRpfE/KegKq6DLAztaYd/+CXJEn9YCK6A0mSJEmawkwCJEmSpD5jEiBJkiT1GZMASZIkqc+YBEiSJEl9JlPhpRVJ1gO39ToOqcs+wH/1Ogipy3Orqu/frGh7oSnI9kJTyZjbiimRBEhTTZLVVbWg13FIkqY22wtNV3YHkiRJkvqMSYAkSZLUZ0wCpJFd0OsAJEnTgu2FpiXHBEiSJEl9xjsBkiRJUp8xCZAkSZL6jEmA1CXJhUnuTXJzr2ORJE1dthea7kwCpE19DDiq10FIkqa8j2F7oWnMJEDqUlVfA+7vdRySpKnN9kLTnUmAJEmS1GdMAiRJkqQ+YxIgSZIk9RmTAEmSJKnPmARIXZKsBL4O/FySdUmW9DomSdLUY3uh6S5V1esYJEmSJE0i7wRIkiRJfcYkQJIkSeozJgGSJElSnzEJkCRJkvqMSYAkSZLUZ0wCJlmSH47TfvZOsirJD5P89Sh1Pp/k+iRrkzzU5q9P8kvjEcMYYnxbkv9IUkn2HKXOq9v6E7rKfrGVnT4OMQwkuap976EkH27lhyc5agvbvTTJB9v8+7Y3liRvTbK+Hf9bSf6fMWzzyiRHbM/xuvbxz0n+dbOyp32PJLskeXCE7d+X5I6un9vfJNni+SLJbyd5/o7ELanDtuJpdWwrnr6NbYV2iEnA9LUB+BPgD0erUFW/VVWHAW8F/rWqDmvTv01SjF8DXgncsZV6NwHHdS0fB9wwTjH8NXBO+zm8APjbVn44MOKJPckuVXVNVf3BOMVwcTv+LwPvTXLAVuq/EtjuE3uSvYGfB/ZLcvD27gf48xb3fOAXgJdvpf5vA57YpanFtmJsbCu2n23FNGUS0CNJjkxyZZLPtKz/4iRp625NclaS65LcNFLGXFWPVNUgnRP89hz/F9tVj2uT/EuS/Vr5qUn+PckNSf4hyU+28k+0DH9Vu2LzK0kuarGvGOkYVfXNqrptDOF8D3hWkn3az+BXgcu7Yh0tpn9O8sY2f1qSi0bY9wHAuhZPVdVNbfs/Bd7Url68rl3N+F9JrgD+rl11+scRfm6/1447K8khSS5vP8OvJfnZLX3JqlrfvusBbV/HJrkmyTeTfDnJvkl+mk5D/EfDV+KS7Jfkc0lWJ/nGGK78vA74R+DTwBu2UncsdgNmAg+2uJ/275Hkl4FjgA+2uOcl+YMkt7R6n2jbvi/Jx9r3vTXJa5P8f0lubj/XXVq90X4/B5N8oP0cvp1JulIp9YptxSZsK2wrbCvGU1U5TeIE/LB9Hgk8BMylk4x9HVjY1t0KLG3zvw98dAv7ewvw11s55pHAP3UtzwT+DdinLb8JuKDN791V7wPA77X5TwCfaPP/vcX+ghb79cD8LRx/HbDnKOteTeck9HbgVOAVwEeA9wGnbyWmA4C1dK6afHukY9A5ST4EXAacDjy7q/wvu+q9D/gGMKs7rq51p7fp88BurXwV8NNt/uXAl0c5/l+2+XnAN7u234unXth3KnB29/G69vFp4Iiufdy8lX/vK4GXtX+f6zb7jqdvVncX4MER9vE+OlflrgceAD7etW5LvyOv7Vp3V9d33bNrv1e14/4C8Cjwq23dF4HfYMu/n4NdP6fXAF/q9f9pJ6eJmLCt2HydbUXZVrR1thXjNO2CeukbVbUOIMn1dP7TDrZ1n2uf19K5dTaeBoBDgf/dLijNoF0BAV6Y5P8F9gSeCfxT13ZfbJ83AXdW1S0t9lta7DfvQEyfBv4e+A6wks5tzmEjxlRVd7XyVcBvVtXT+itW1UeT/Avw68BvAackOWyUGL5QVaNdLTsRuA347ap6PJ1+q0cAn20/Q2DU/09vSvKrwM8BJ1bVj1r5wcAlSfanczL7zijbv5rOa+mHl/dK8pNV9X83r5jkwLbfq6uqksxI8vyq+tYo+96SP6+qv0yyG/D5JK+rqs+w5d+RbmuATyT5Ap3Ge9hl7Wd4E0BVXdHKb6Lze7Sl30/Y9P/GvO34XtJ0Y1vxFNsK2wrbinFid6De2tg1/wSbnhg2jlI+HgLcWE/1+/z5qjq6rfs4nWz95+lk4rNGiOnHm8X+4x2NsaruaHG9gs7ViW5biunngfuA52xp31V1YVX9Jp3f+YFRqj6yhRBvAn4KOLAtB/ivrp/hYVU1f5RtL66qQ+lcZTsvyb6t/G+AD7bv9fubfa9uAV7SdZwDRzqpN28A9gb+M8mtdE7yx41Sd0xaQ/Ql4Fda0Zb+Pbr9OnA+8BJgdZIZrbz79+hHXfWHf4+29PvZvf1E/N+QpiLbisa2wrYC24pxYxLQn24BDkzyEoAkuyU5tK3bHbg7ya7AGyc5rj8BzqyqH29WPmJMSV4GvIrOwK13ZYSBTUmO6uo7+Bw6t1XvBB6mc2VirFYDpwFfTLJ/VT0A3JXkt9q+fyLJi7a0g+r0y10JLG1FzwbuSOcSxgldVTeP7X+3Yw9/p9GuTgEsBl5dVfOqah6dk+riMXy/UbX4fgn4j1Y02u/Ik3G3k/jcqvoq8EfAHOAZYzzkln4/JU0e2wrbijGzrZh+TAKmsZa9nwu8Jcm6JC8Yy3ZVtZHOgKBzk9xAp+/hS9vqP6XT3/EKOv/BdiS+tydZB+wPrEnyv7YS12BVXTrCqqfFlM6ArQvo3DK9AzgDuDBd90Gbo9uxb6D19azOoKuvAi9KZ6DV68byfarqKuCdwD8nmU3nqsmpbd9r6PRR3JoPAG9NsjvwXjr9Rq8C7umq8wXgd1psv0TnpP7yJDe22+knj7TjdAaK7U+nERqO+bvAxiS/0Ire235X1rXfH+gMtFvXNQ0/mu6PWteDm+lcSRn+9xvtd2Ql8O62zc8An0xyI3Adnb6ZD4/h57O1309J28i2wraim22Fhg0PNJEkSZLUJ7wTIEmSJPUZB0pI01CStwL/c7Pir1XVVt8yKUnqD7YV2hK7A0mSJEl9xu5AkiRJUp8xCZAkSZL6jEmAJEmS1GdMAiRJkqQ+YxIgSZIk9Zn/Hwfqz//i19OJAAAAAElFTkSuQmCC\n",
  4403.       "text/plain": [
  4404.        "<Figure size 936x648 with 2 Axes>"
  4405.       ]
  4406.      },
  4407.      "metadata": {
  4408.       "needs_background": "light"
  4409.      },
  4410.      "output_type": "display_data"
  4411.     }
  4412.    ],
  4413.    "source": [
  4414.     "plt.figure(figsize=(13,9))\n",
  4415.     "plt.subplot(221)\n",
  4416.     "plt.title('with outliers')\n",
  4417.     "plt.boxplot(train_data['Inn 1 Team 1 Max Strike Rate_ALLBatsmen'])\n",
  4418.     "plt.xlabel('Inn 1 Team 1 Max Strike Rate_ALLBatsmen')\n",
  4419.     "train_data.loc[(train_data['Inn 1 Team 1 Max Strike Rate_ALLBatsmen']>250.0) | (train_data['Inn 1 Team 1 Max Strike Rate_ALLBatsmen']<112.775) ,'Inn 1 Team 1 Max Strike Rate_ALLBatsmen']=train_data['Inn 1 Team 1 Max Strike Rate_ALLBatsmen'].median()\n",
  4420.     "plt.subplot(222)\n",
  4421.     "plt.title('without outliers')\n",
  4422.     "plt.boxplot(train_data['Inn 1 Team 1 Max Strike Rate_ALLBatsmen'])\n",
  4423.     "plt.xlabel('Inn 1 Team 1 Max Strike Rate_ALLBatsmen')\n",
  4424.     "plt.show()"
  4425.    ]
  4426.   },
  4427.   {
  4428.    "cell_type": "code",
  4429.    "execution_count": 281,
  4430.    "metadata": {},
  4431.    "outputs": [
  4432.     {
  4433.      "data": {
  4434.       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAEcCAYAAACfyLh5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8H3V95/HXm3BziQpoVK4Nq1iDqNGmiDVtBUGQbRfsaktqFd1YRNCt3a5VpF1x1yzareL6qOKioeClQdZLQaXlogGbVqUBkVtqjRJLIIUoF0VXVvCzf8z3wI/k3JJzTs5lXs/HYx6/me98Z+Yz5/zOfM9n5jszqSokSZIk9cdO0x2AJEmSpB3LJECSJEnqGZMASZIkqWdMAiRJkqSeMQmQJEmSesYkQJIkSeoZkwDNKknuT/JvR5m/IclROzKmgW1fleR1bfyVSS6fjjgkaS6bye3AZEqyMEkl2blN/02Sk6Y7Ls0dJgGaVapqflV9FyDJ+UneNR1xJDkzySdGml9Vn6yql+zImCSpD6arHUjymiRrpnD9oyYvVfXSqrpgqrav/jEJkGaYJPOmOwZJ0twwdCVB2pJJgKZdktcm+fzA9PokFw1M35ZkcRuvJE9LcjLwSuCP26Xhzw+scnGSG5Lcl+RTSXYfYbs7JfmTJN9LcleSjyV5fJv3oiQbt6i/IclRSY4F3g78Ttv2N4dZ96POGCV5RpIrktyd5FtJfntg3vlJzklyaZIfA0ckOS7JLUl+lOT2JP9l236qkjR77Mh2IMnvt/XfneSSJPu28kd1v2llVyV5XZJFwIeBF7Rt3TvCfuzb1nl328bvD8x71FWLwXYmyceBA4HPt/X/8TDrfrjLaZv+j0nWJbknyWVJfmFgXiU5Lcm3gW+nc3Zr6+5rP5tDR/udaO4zCdBMcDXwq+2f8n2AXYAXAqTr9zkfuGFwgao6F/gk8Gft0vBvDsz+beBY4CDg2cBrRtjua9pwBDC0nb8YK9iq+lvgfwCfatt+zmj1k+wBXAH8FfAkYBnwoSTPHKj2u8AK4LHAGmAl8PqqeixwKPDlseKSpFlsh7QDSY4Ezmrz9wG+B1w4VnBVtQ44Bfhq29aeI1RdBWwE9gVeDvyPJC8ex/pfBfwL8Jtt/X82Wv0kJ9CdjPotYAHwd23bg04Ang8cArwE+DXg6cCewO8APxgrLs1tJgGadq1v54+AxcCvA5cBtyd5Rpv+u6r6+Tas8gNVdUdV3Q18vq13OK8E3ldV362q+4HTgROn4NLpbwAbquovq+rBqroO+AxdAzHk4qr6+6r6eVX9FPgZcEiSx1XVPW0ZSZqTdmA78ErgvKq6rqoeoDvuvyDJwonuQ5IDgKXAW6vqp1V1PfBR4FUTXfcwXg+cVVXrqupBuhNTiwevBrT5d1fV/6VrUx4LPANIW27TFMSlWcQkQDPF1cCL6M5UXA1cRXfg//U2vS3+dWD8J3RnkIazL91ZoCHfA3YGnryN2xvLLwDPT3Lv0EDXED1loM5tWyzzH4DjgO8luTrJCyY5JkmaaXZEO/Co4347AfQDYL/tCXgL+wJ3V9WPBsq+N0nr3tIvAP9roE25G8gW23q4XamqL9Nd6f4gcGeSc5M8bgri0ixiEqCZYujg/6tt/GrGPvjXBLd5B92BdMiBwIPAncCPgX8zNCPdzboLtnPbtwFXV9WeA8P8qnrDSOurqn+squPpug/9NXARkjS37Yh24FHH/dZd8wnA7XTHfRg49vPokzVjbesOYO8kjx0oO7CtG7ZoV7ZY93jWP+g2ui6jg+3KY6rqH0ZaX1V9oKp+CXgmXbegt2zD9jQHmQRopriarm/+Y6pqI13/xmPpDs7fGGGZO+n68m+vVcAfJjkoyXwe6ef/IPDPwO5J/l2SXYA/AXbbYtsLk4znb+gLwNOTvCrJLm345Xaj2VaS7JruPQOPr6qfAT8EHprAfkrSbLAj2oG/Al6bZHGS3eiO+1+vqg1VtZnuH/bfSzIvyX8EnrrFtvZPsutwK66q24B/AM5KsnuSZwPL6e5bALgeOC7J3kmeArx5AvvyYeD0oXvLkjw+yStGqtzanOe39uzHwE+xXek9kwDNCFX1z8D9dAd9quqHwHeBv6+qkQ5UK+n6zd+b5K+3Y7PnAR8HvgLcSndQfFPb/n3AqXT9OYfOEA0+Lej/tM8fJBm1v367NPwS4ES6M0X/CryHRycVW3oVsCHJD+luRvu9bdkxSZptdkQ7UFVfAv6U7r6sTXT/5J84UOX36c6Q/4DujPngmfUvAzcD/5rk+yNsYhmwkO5Y/zngHVV1RZv3ceCbwAbgcuBTWyx7FvAnbV9GfSJcVX2Orh25sLUTNwEvHWWRxwEfAe6h66L0A+DPR9uG5r5UTbRHhSRJkqTZxCsBkiRJUs+YBEiSJEk9YxIgSZIk9YxJgCRJktQzJgGSJElSz+w83QEAPPGJT6yFCxdOdxiSNGNde+2136+qBWPXnNtsLyRpdONtL2ZEErBw4ULWrl073WFI0oyV5HvTHcNMYHshSaMbb3thdyBJkiSpZ0wCJEmSpJ4xCZAkSZJ6xiRAkiRJ6plxJwFJ5iX5RpIvtOmDknw9ybeTfCrJrq18tza9vs1fODWhS5JmkiS7J7kmyTeT3Jzkna3c9kKSZphtuRLwB8C6gen3AGdX1cHAPcDyVr4cuKeqngac3epJs8IxxxzDTjvtRBJ22mknjjnmmOkOSZpNHgCOrKrnAIuBY5Mcju2FJM0440oCkuwP/Dvgo206wJHAp1uVC4AT2vjxbZo2/8WtvjSjHXPMMVx++eWccsop3HvvvZxyyilcfvnlJgLSOFXn/ja5SxsK2wtJmnHG+56A9wN/DDy2TT8BuLeqHmzTG4H92vh+wG0AVfVgkvta/e9PSsTSFLniiit4wxvewIc+9CGAhz8//OEPT2dY0qySZB5wLfA04IPAd7C9kKQZZ8wrAUl+A7irqq4dLB6mao1j3uB6T06yNsnazZs3jytYaSpVFWedddajys466yyqtvr6ShpBVT1UVYuB/YHDgEXDVWuftheaUZLskEGaCcbTHeiFwL9PsgG4kO6y7vuBPZMMXUnYH7ijjW8EDgBo8x8P3L3lSqvq3KpaUlVLFiwY883G0pRLwumnn/6ostNPP90DtrQdqupe4CrgcGwvNEtU1TYP27OcNBOMmQRU1elVtX9VLQROBL5cVa8EVgMvb9VOAi5u45e0adr8L5ffeM0CRx99NOeccw6nnnoq9913H6eeeirnnHMORx999HSHJs0KSRYk2bONPwY4iu6BErYXkjTDjPeegOG8FbgwybuAbwArW/lK4ONJ1tOd0TlxYiFKO8Zll13GMcccw4c//GHOOecckvCSl7yEyy67bLpDk2aLfYAL2n0BOwEXVdUXktyC7YUkzSjblARU1VV0l3epqu/S9ffcss5PgVdMQmzSDvea17yG22+/nXXr1rFo0SJe85rXTHdI0qxRVTcAzx2m3PZCkmaYiVwJkOaUVatWccYZZ7By5UqWLl3KmjVrWL68e5z5smXLpjk6SZKkybMtLwuT5rQVK1awcuVKjjjiCHbZZReOOOIIVq5cyYoVK6Y7NEmSpEllEiA169atY+nSpY8qW7p0KevWrRthCUmSpNnJJEBqFi1axJo1ax5VtmbNGhYtGu4x55IkSbOXSYDUnHHGGSxfvpzVq1fzs5/9jNWrV7N8+XLOOOOM6Q5NkiRpUnljsNQM3fz7pje96eGnA61YscKbgiVJ0pxjEiANWLZsmf/0S5KkOc/uQJIkSVLPmARIA1atWsWhhx7KvHnzOPTQQ1m1atV0hyRJkjTp7A4kNb4sTJIk9YVXAqTGl4VJkqS+MAmQGl8WJkmS+sIkQGp8WZgkSeoLkwCp8WVhkiSpL7wxWGp8WZgkSeoLkwBpgC8LkyRJfWB3IEmSJKlnxkwCkuye5Jok30xyc5J3tvLzk9ya5Po2LG7lSfKBJOuT3JDkeVO9E5IkSZLGbzzdgR4Ajqyq+5PsAqxJ8jdt3luq6tNb1H8pcHAbng+c0z4lSZIkzQBjXgmozv1tcpc21CiLHA98rC33NWDPJPtMPFRJkiRJk2Fc9wQkmZfkeuAu4Iqq+nqbtaJ1+Tk7yW6tbD/gtoHFN7ayLdd5cpK1SdZu3rx5ArsgSZIkaVuMKwmoqoeqajGwP3BYkkOB04FnAL8M7A28tVXPcKsYZp3nVtWSqlqyYMGC7QpekiRJ0rbbpqcDVdW9wFXAsVW1qXX5eQD4S+CwVm0jcMDAYvsDd0xCrJIkSZImwXieDrQgyZ5t/DHAUcA/DfXzTxLgBOCmtsglwKvbU4IOB+6rqk1TEr0kSZKkbTaepwPtA1yQZB5d0nBRVX0hyZeTLKDr/nM9cEqrfylwHLAe+Anw2skPW5IkSdL2Gs/TgW6oqudW1bOr6tCq+m+t/MiqelYr+72hJwi1LkKnVdVT2/y1U70T0mRZtWoVhx56KPPmzePQQw9l1apV0x2SJEnSpBvPlQCpF1atWsUZZ5zBypUrWbp0KWvWrGH58uUALFu2bJqjkyRJmjzbdGOwNJetWLGClStXcsQRR7DLLrtwxBFHsHLlSlasWDHdoUmSJE0qkwCpWbduHUuXLn1U2dKlS1m3bt00RSRJkjQ1TAKkZtGiRaxZs+ZRZWvWrGHRokXTFJEkSdLUMAmQmjPOOIPly5ezevVqfvazn7F69WqWL1/OGWecMd2hSZIkTSpvDJaaoZt/3/SmN7Fu3ToWLVrEihUrvClYkiTNOSYB0oBly5b5T78kSZrzTALUC92LradWVU35NiRJkiaDSYB6YVv/QU/iP/WSJGnO8sZgSZIkqWdMAiRJkqSeMQmQJEmSesYkQJIkSeoZkwBJkiSpZ0wCJEmTIskBSVYnWZfk5iR/0MrPTHJ7kuvbcNzAMqcnWZ/kW0mOmb7oJalffESoJGmyPAj8UVVdl+SxwLVJrmjzzq6qPx+snOQQ4ETgmcC+wJVJnl5VD+3QqCWph8a8EpBk9yTXJPlmO7PzzlZ+UJKvJ/l2kk8l2bWV79am17f5C6d2FyRJM0FVbaqq69r4j4B1wH6jLHI8cGFVPVBVtwLrgcOmPlJJ0ni6Az0AHFlVzwEWA8cmORx4D92ZnYOBe4Dlrf5y4J6qehpwdqsnSeqRdgLoucDXW9Ebk9yQ5Lwke7Wy/YDbBhbbyOhJgyRpkoyZBFTn/ja5SxsKOBL4dCu/ADihjR/fpmnzX5wkkxaxJGlGSzIf+Azw5qr6IXAO8FS6E0mbgPcOVR1m8a1e1Z3k5CRrk6zdvHnzFEUtSf0yrhuDk8xLcj1wF3AF8B3g3qp6sFUZPHvz8JmdNv8+4AnDrNODuiTNMUl2oUsAPllVnwWoqjur6qGq+jnwER7p8rMROGBg8f2BO7ZcZ1WdW1VLqmrJggULpnYHJKknxpUEtIP3YroD9GHAouGqtc9xndnxoC5Jc0u76rsSWFdV7xso32eg2suAm9r4JcCJ7V6yg4CDgWt2VLyS1Gfb9HSgqro3yVXA4cCeSXZuZ/sHz94MndnZmGRn4PHA3ZMXsiRphnoh8Crgxnb1GODtwLIki+lOCG0AXg9QVTcnuQi4he7JQqf5ZCBJ2jHGTAKSLAB+1hKAxwBH0d3suxp4OXAhcBJwcVvkkjb91Tb/y1W11ZUASdLcUlVrGP5q8KWjLLMCWDFlQUmShjWeKwH7ABckmUfXfeiiqvpCkluAC5O8C/gG3SVg2ufHk6ynuwJw4hTELUmSJGk7jZkEVNUNdI9527L8uwzzPOeq+inwikmJTpIkSdKkG9eNwZIkSZLmDpMASZIkqWdMAiRJkqSeMQmQJEmSesYkQJIkSeoZkwBJkiSpZ0wCJEmSpJ4xCZAkSZJ6xiRAkiRJ6hmTAEmSJKlnTAIkSZKknjEJkCRJknrGJECSJEnqGZMASZIkqWdMAiRJkqSeMQmQJEmSembMJCDJAUlWJ1mX5OYkf9DKz0xye5Lr23DcwDKnJ1mf5FtJjpnKHZAkSZK0bXYeR50HgT+qquuSPBa4NskVbd7ZVfXng5WTHAKcCDwT2Be4MsnTq+qhyQxckiRJ0vYZ80pAVW2qquva+I+AdcB+oyxyPHBhVT1QVbcC64HDJiNYSZIkSRO3TfcEJFkIPBf4eit6Y5IbkpyXZK9Wth9w28BiGxkmaUhycpK1SdZu3rx5mwOXJEmStH3GnQQkmQ98BnhzVf0QOAd4KrAY2AS8d6jqMIvXVgVV51bVkqpasmDBgm0OXJIkSdL2GVcSkGQXugTgk1X1WYCqurOqHqqqnwMf4ZEuPxuBAwYW3x+4Y/JCliRJkjQR43k6UICVwLqqet9A+T4D1V4G3NTGLwFOTLJbkoOAg4FrJi9kSZIkSRMxnqcDvRB4FXBjkutb2duBZUkW03X12QC8HqCqbk5yEXAL3ZOFTvPJQJIkSdLMMWYSUFVrGL6f/6WjLLMCWDGBuCRJkiRNEd8YLEmSJPXMeLoDSZIkzTp7770399xzz5Rvp7t9cmrstdde3H333VO2fvWXSYAkSZqT7rnnHqq2ekr5rDKVCYb6ze5AkiRJUs+YBEiSJEk9YxIgSZIk9YxJgCRJktQzJgGSJElSz/h0IM06c+GRb+Bj3yRJ0vQxCdCsMxce+QY+9k2SJE0fuwNJkiRJPWMSIEmSJPWMSYAkSZLUMyYBkqRJkeSAJKuTrEtyc5I/aOV7J7kiybfb516tPEk+kGR9khuSPG9690CS+sMkQJI0WR4E/qiqFgGHA6clOQR4G/ClqjoY+FKbBngpcHAbTgbO2fEhS1I/mQRIkiZFVW2qquva+I+AdcB+wPHABa3aBcAJbfx44GPV+RqwZ5J9dnDYktRLYyYBXt6VJG2rJAuB5wJfB55cVZugSxSAJ7Vq+wG3DSy2sZVtua6Tk6xNsnbz5s1TGbYk9cZ4rgR4eVeSNG5J5gOfAd5cVT8creowZVu9BKSqzq2qJVW1ZMGCBZMVpiT12phJgJd3JUnjlWQXugTgk1X12VZ851A70D7vauUbgQMGFt8fuGNHxSpJfbZN9wRM5uVdSdLcku412CuBdVX1voFZlwAntfGTgIsHyl/dupEeDtw31K5IkqbWzuOtuOXl3e5YP3zVYcq2uryb5GS67kIceOCB4w1DkjRzvRB4FXBjkutb2duBdwMXJVkO/AvwijbvUuA4YD3wE+C1OzZcSeqvcSUBo13erapN23N5t6rOBc4FWLJkyVZJgiRpdqmqNQx/IgjgxcPUL+C0KQ1KkjSs8TwdyMu7kiRJ0hwynisBXt6VJEmS5pAxkwAv70qSJElzi28MliRJknrGJECSJEnqGZMASZIkqWdMAiRJkqSeGffLwqSZot7xODjz8dMdxoTVOx433SFIkqSeMgnQrJN3/pDuIVSzWxLqzOmOQpIk9ZHdgSRJkqSeMQmQJEmSesYkQJIkSeoZ7wmQJElz0lx4kIQPkdBUMQmQJElz0lx4kIQPkdBUsTuQJEmS1DMmAZIkSVLPmARIkiRJPWMSIEmSJPWMSYAkSZLUMyYBkiRJUs+MmQQkOS/JXUluGig7M8ntSa5vw3ED805Psj7Jt5IcM1WBS5IkSdo+43lPwPnAXwAf26L87Kr688GCJIcAJwLPBPYFrkzy9Kp6aBJilR6WZLpDmLC99tprukOQJEk9NWYSUFVfSbJwnOs7Hriwqh4Abk2yHjgM+Op2RyhtYUe8+CXJrH/BjCRJ0kgmck/AG5Pc0LoLDZ3S3A+4baDOxla2lSQnJ1mbZO3mzZsnEIYkSZKkbbG9ScA5wFOBxcAm4L2tfLg+GsOeTq2qc6tqSVUtWbBgwXaGIUmSJGlbbVcSUFV3VtVDVfVz4CN0XX6gO/N/wEDV/YE7JhaiJEmSpMm0XUlAkn0GJl8GDD056BLgxCS7JTkIOBi4ZmIhSpIkSZpMY94YnGQV8CLgiUk2Au8AXpRkMV1Xnw3A6wGq6uYkFwG3AA8Cp/lkIEmSJGlmGc/TgZYNU7xylPorgBUTCUqSJEnS1PGNwZIkSVLPmARIkiRJPWMSIEmSJPWMSYAkSZLUMyYBkiRJUs+YBEiSJEk9YxIgSZIk9YxJgCRJktQzJgGSJElSz4z5xmBJkqTZKsl0hzAhe+2113SHoDnKJECSJM1JVTXl20iyQ7YjTTa7A0mSJkWS85LcleSmgbIzk9ye5Po2HDcw7/Qk65N8K8kx0xO1JPWTSYAkabKcDxw7TPnZVbW4DZcCJDkEOBF4ZlvmQ0nm7bBIJannTAIkSZOiqr4C3D3O6scDF1bVA1V1K7AeOGzKgpMkPYpJgCRpqr0xyQ2tu9DQXY77AbcN1NnYyraS5OQka5Os3bx581THKkm9YBIgSZpK5wBPBRYDm4D3tvLhHtky7N2VVXVuVS2pqiULFiyYmiglqWfGTAJGuNFr7yRXJPl2+9yrlSfJB9qNXjcked5UBi9Jmtmq6s6qeqiqfg58hEe6/GwEDhiouj9wx46OT5L6ajxXAs5n6xu93gZ8qaoOBr7UpgFeChzchpPpzgBJknoqyT4Dky8Dhk4oXQKcmGS3JAfRtRvX7Oj4JKmvxnxPQFV9JcnCLYqPB17Uxi8ArgLe2so/Vt0Dc7+WZM8k+1TVpskKWJI0MyVZRdc2PDHJRuAdwIuSLKbr6rMBeD1AVd2c5CLgFuBB4LSqemg64pakPtrel4U9eegf+6ralORJrXykG722SgKSnEx3tYADDzxwO8OQJM0UVbVsmOKVo9RfAayYuogkSSOZ7BuDvdFLkiRJmuG2Nwm4c6ifZ/u8q5V7o5ckSZI0w21vEnAJcFIbPwm4eKD81e0pQYcD93k/gCRJkjSzjHlPwAg3er0buCjJcuBfgFe06pcCx9G9+fEnwGunIGZpmyXD9VSb3GW6++ElSZJmvvE8HWi4G70AXjxM3QJOm2hQ0mTzH3RJkqRH+MZgSZIkqWdMAiRJkqSeMQmQJEmSesYkQJIkSeoZkwBJkiSpZ0wCJEmSpJ4xCZAkSZJ6xiRAkiRJ6hmTAEmSJKlnTAIkSZKknjEJkCRJknrGJECSJEnqGZMASZIkqWdMAiRJkqSeMQmQJEmSesYkQJIkSeqZnSeycJINwI+Ah4AHq2pJkr2BTwELgQ3Ab1fVPRMLU5IkSdJkmYwrAUdU1eKqWtKm3wZ8qaoOBr7UpiVJkiTNEFPRHeh44II2fgFwwhRsQ5IkSdJ2mmgSUMDlSa5NcnIre3JVbQJon0+a4DYkSZIkTaIJ3RMAvLCq7kjyJOCKJP803gVb0nAywIEHHjjBMCRJkiSN14SuBFTVHe3zLuBzwGHAnUn2AWifd42w7LlVtaSqlixYsGAiYUiSJEnaBtudBCTZI8ljh8aBlwA3AZcAJ7VqJwEXTzRISZIkSZNnIt2Bngx8LsnQev6qqv42yT8CFyVZDvwL8IqJhylJkiRpsmx3ElBV3wWeM0z5D4AXTyQoSZIkSVPHNwZLkiRJPWMSIEmSJPWMSYAkSZLUMyYBkiRJUs+YBEiSJEk9YxIgSZIk9YxJgCRJktQzJgGSJElSz5gESJIkST1jEiBJkiT1jEmAJGlSJDkvyV1Jbhoo2zvJFUm+3T73auVJ8oEk65PckOR50xe5JPWPSYAkabKcDxy7RdnbgC9V1cHAl9o0wEuBg9twMnDODopRkoRJgCRpklTVV4C7tyg+HrigjV8AnDBQ/rHqfA3YM8k+OyZSSZJJgCRpKj25qjYBtM8ntfL9gNsG6m1sZVtJcnKStUnWbt68eUqDlaS+MAmQJE2HDFNWw1WsqnOraklVLVmwYMEUhyVJ/WASIEmaSncOdfNpn3e18o3AAQP19gfu2MGxSVJvTVkSkOTYJN9qT35429hLSJLmoEuAk9r4ScDFA+Wvbk8JOhy4b6jbkCRp6k1JEpBkHvBBuqc/HAIsS3LIVGxLmkzz588nycPD/PnzpzskadZIsgr4KvCLSTYmWQ68Gzg6ybeBo9s0wKXAd4H1wEeAU6chZEnqrZ2naL2HAeur6rsASS6kexLELVO0PWnC5s+fz49//GMWLlzIlVdeyVFHHcWGDRuYP38+999//3SHJ814VbVshFkvHqZuAadNbUSSpJFMVRIw3FMfnj9F25ImxVACcOuttwJw6623ctBBB7Fhw4bpDUySJGmSTdU9AWM+9cFHvmkmuvLKK0edliTNXYPdQcc7bM9y0kwwVUnAmE998JFvmomOOuqoUaclSXNXVe2QQZoJpioJ+Efg4CQHJdkVOJHuSRDSjLXHHnuwYcMGDjroIL7zne883BVojz32mO7QJEmSJtWU3BNQVQ8meSNwGTAPOK+qbp6KbUmT5f7772f+/Pls2LCBpz3taUCXGHhTsCRJmmum6sZgqupSukfASbOG//BLkqQ+8I3BkiRJUs+YBEiSJEk9YxIgSZIk9YxJgCRJktQzJgGSJElSz2QmvLQiyWbge9MdhzTgicD3pzsIacAvVFXv36xoe6EZyPZCM8242osZkQRIM02StVW1ZLrjkCTNbLYXmq3sDiRJkiT1jEmAJEmS1DMmAdLwzp3uACRJs4LthWYl7wmQJEmSesYrAZIkSVLPmARIkiRJPWMSIA1Icl6Su5LcNN2xSJJmLtsLzXYmAdKjnQ8cO91BSJJmvPOxvdAsZhIgDaiqrwB3T3cckqSZzfZCs51JgCRJktQzJgGSJElSz5gESJIkST1jEiBJkiT1jEmANCDJKuCrwC8m2Zhk+XTHJEmaeWwvNNulqqY7BkmSJEk7kFcCJEmSpJ4xCZAkSZJ6xiRAkiRJ6hmTAEmSJKlnTAIkSZKknjEJ2MGS3D9J6zk6ybVJbmyfRw5T53NJrk+yPsl9bfz6JL8yGTGMI8YLk3wryU1JPppk52HqHJWkkpw0UPbLrezNkxDDoiRXt/1el+ScVv68JMeOstzzk5zdxt+1vbEkeV2SzW37/5TkP41jmSOTHL492xtYxxeT/N0WZVvtR5Kdk9w7zPLvSnL7wM/tg0lGPV4k+a0kz5hI3JI6thVb1bGt2HoZ2wpNiEnA7PV94Der6lnAScDHt6xQVS+rqsXA64C/q6qlcliBAAAG90lEQVTFbfiHHRTjx4BnAM8GHg+8doR6NwInDkyfCHxzkmL4C+DP2s/hEOBDrfx5wLAH9iQ7V9XXq+oPJymGT7bt/ypwZpJ9xqh/JLDdB/YkTwCeBTw5yYHbux7gf7a4DwV+CXjhGPV/i+73LWnmsK0YH9uK7WdbMUuZBEyTJC9KclWST7es/5NJ0uZtSPLOJNe1szdb/bFU1Teq6o42eTOwe5LdtmH7v9zOelyb5G+SPLmVn5LkH5N8M8n/SfKYVv6JluGvTvKdJL+W5IIW+8rhtlFVl1bn58A1wP4jhPNd4HFJnth+BkcDlw3EOlJMX0zyu238tCQXDLPufYCNLZ6qqhvb8v8VeGU7e/Hydjbjfye5AvjLdtbpr4f5ub2hbXf3JAcnuaz9DL+S5Omj/cyranPb133auo5P8vUk30hyeZInJXkqXUP8lqEzcUmenOSzSdYmuWYcZ35eDvw18Cngd8aoOx67ArsB97a4t/p9JPlV4Djg7Bb3wiR/mOSWVu8Tbdl3JTm/7e+GJCckeW+6M4BfTDsDOMr3c02Sd7efw7eyg85UStPFtuJRbCtsK2wrJlNVOezAAbi/fb4IuI/uYLcT3VsHl7Z5G4A3tfFTgY+Osc6XA1eOMv9FwBcGpncD/gF4Ypt+JXBuG3/CQL13A29o458APtHG/0OL/ZAW+/XAoaNsf9dW5wXDzDuK7iD0n4FTgF8HPgK8C3jzGDHtA6ynO2vyLWDPYdb/uhbrpcCbgccPlL9/oN676Bqf3QfjGpj35jZ8Dti1la8GntrGXwhcPsL239/GFwLfGFh+Lx55Yd8pwHsGtzewjk8Bhw+s46Yxvg9XAS9ov5/rttjHN29Rd2fg3mHW8S7g9vZ7uwf42MC80b4jJwzM2zSwr3sOrPfqtt1fAn4CHN3mfR74DUb/fq4Z+Dn9e+Bvp/tv2sFhKgZsK7acZ1tRthVtnm3FJA1b9bvTDnVNVW0ESHI93R/tmjbvs+3zWrpLZ8NK8kzgPcBLtmG7i4BnAle2E0rzaGdAgGcn+W/AnsBjgS8MLPf59nkjcEdV3dJiuKXFftMI2/swXcPz1VFi+hTdZep/BlbRXeYcMmxMVbWpla+mu9y9VX/Fqvpokr8BjgFeBpycZPEIMVxcVT8dYd5rge8Bv1VVDybZk+4y7GfazxAY8e/plUmOBn4ReG1V/b9WfiBwUZKn0B3M/nmE5Y+iey390PReSR5TVf93y4pJ9mvr/VpVVZJ5SZ5RVf80wrpH8z+r6v1JdgU+l+TlVfVpRv+ODLoZ+ESSi+ka7yGXtp/hjQBVdUUrv5HuezTa9xMe/bexcDv2S5ptbCseYVthW2FbMUnsDjS9HhgYf4hHHxgeGKH8YUn2pzvb8Oqq+s42bDfADfVIv89nVdVL27yP0WXrz6LLxHcfJqafbxH7z0eJ8b/T9fH849ECqqrbW1y/Tnd2YtBoMT0L+AGw72jrrqrzquo36b7zi0ao+uNRQrwR+LfAfm06wPcHfoaLq+rQEZb9ZFU9k+4s2/9K8qRW/kHg7LZfp26xX4MCHDawnf2GO6g3vwM8Abg1yQa6g/yJI9Qdl9YQ/S3wa61otN/HoGPoGvXDgLVJ5rXywe/R/xuoP/Q9Gu37Obj8iH8b0hxjW9HYVthWYFsxaUwCZql2duGLwOlV9ffbuPgtwH5JDmvr2rWdJQLYA/jXJLsAvzvBGE+hO5i9srq+nmP5U+Ctw9QdNqYkLwBeTHfj1ukZ5samJMcO9B3cl+6y6h3Aj+jOTIzXWuA04PNJnlJV9wCbkrysrXunJM8ZbQVVtYbuzNWbWtHjgdvTncI4aaDqlrFd2bY9tE8jnZ0CWAYcVVULq2oh3UF12Tj2b0Qtvl8Bhv55GOk78nDc7SC+f1V9GXgLsAD4N+Pc5GjfT0nbwLbCtmIEthUyCZjF3gg8DfjTPPI4tyeNtRBAVT1A1zf0fUm+Sdf38Plt9n+l6+94Bd0f2HZpf9h/QdcX82stvjPGiGtNVV0yzKytYkp3w9a5dJdMb6c7e3ReBq6DNi8Fbm77eSldP8fNwJeB56S70erl49mnqroaeBvwxSR70501OaWt+2a6PopjeTfwuiR7AGfSnZ27GrhzoM7FwG+32H6F7qD+wiQ3tMvpvz/citPdKPYUukZoKOZvAw8k+aVWdGaSjW3Y0MoeN1C2MY88mu4trevBTXRnUv53Kx/pO7IKeHtb5mnAXyW5AbiOrm/mj8bx8xnr+ylp29hW2FY8im2FhgzdaCJJkiSpJ7wSIEmSJPWMN0pIs1CS19Fd5h/0laoa8y2TkqR+sK3QaOwOJEmSJPWM3YEkSZKknjEJkCRJknrGJECSJEnqGZMASZIkqWdMAiRJkqSe+f9ZE3sgC/hxuQAAAABJRU5ErkJggg==\n",
  4435.       "text/plain": [
  4436.        "<Figure size 936x648 with 2 Axes>"
  4437.       ]
  4438.      },
  4439.      "metadata": {
  4440.       "needs_background": "light"
  4441.      },
  4442.      "output_type": "display_data"
  4443.     }
  4444.    ],
  4445.    "source": [
  4446.     "plt.figure(figsize=(13,9))\n",
  4447.     "plt.subplot(221)\n",
  4448.     "plt.title('with outliers')\n",
  4449.     "plt.boxplot(train_data['Inn 2 Team 2 Max Strike Rate_ALLBatsmen'])\n",
  4450.     "plt.xlabel('Inn 2 Team 2 Max Strike Rate_ALLBatsmen')\n",
  4451.     "train_data.loc[(train_data['Inn 2 Team 2 Max Strike Rate_ALLBatsmen']>315.0) | (train_data['Inn 2 Team 2 Max Strike Rate_ALLBatsmen']<10.0) ,'Inn 2 Team 2 Max Strike Rate_ALLBatsmen']=train_data['Inn 2 Team 2 Max Strike Rate_ALLBatsmen'].median()\n",
  4452.     "plt.subplot(222)\n",
  4453.     "plt.title('without outliers')\n",
  4454.     "plt.boxplot(train_data['Inn 2 Team 2 Max Strike Rate_ALLBatsmen'])\n",
  4455.     "plt.xlabel('Inn 2 Team 2 Max Strike Rate_ALLBatsmen')\n",
  4456.     "plt.show()"
  4457.    ]
  4458.   },
  4459.   {
  4460.    "cell_type": "markdown",
  4461.    "metadata": {},
  4462.    "source": [
  4463.     "## 7. Transformation:"
  4464.    ]
  4465.   },
  4466.   {
  4467.    "cell_type": "code",
  4468.    "execution_count": 282,
  4469.    "metadata": {},
  4470.    "outputs": [],
  4471.    "source": [
  4472.     "# converting 'object' type into 'int' type\n",
  4473.     "\n",
  4474.     "from sklearn.preprocessing import LabelEncoder\n",
  4475.     "\n",
  4476.     "col=['Team 1', 'Team 2','City','TimeOfGame']\n",
  4477.     "\n",
  4478.     "le=LabelEncoder()\n",
  4479.     "\n",
  4480.     "for i in col:\n",
  4481.     "    train_data[i]=le.fit_transform(train_data[i]).astype(np.int)"
  4482.    ]
  4483.   },
  4484.   {
  4485.    "cell_type": "code",
  4486.    "execution_count": 283,
  4487.    "metadata": {},
  4488.    "outputs": [
  4489.     {
  4490.      "data": {
  4491.       "text/html": [
  4492.        "<div>\n",
  4493.        "<style scoped>\n",
  4494.        "    .dataframe tbody tr th:only-of-type {\n",
  4495.        "        vertical-align: middle;\n",
  4496.        "    }\n",
  4497.        "\n",
  4498.        "    .dataframe tbody tr th {\n",
  4499.        "        vertical-align: top;\n",
  4500.        "    }\n",
  4501.        "\n",
  4502.        "    .dataframe thead th {\n",
  4503.        "        text-align: right;\n",
  4504.        "    }\n",
  4505.        "</style>\n",
  4506.        "<table border=\"1\" class=\"dataframe\">\n",
  4507.        "  <thead>\n",
  4508.        "    <tr style=\"text-align: right;\">\n",
  4509.        "      <th></th>\n",
  4510.        "      <th>Team 1</th>\n",
  4511.        "      <th>Team 2</th>\n",
  4512.        "      <th>City</th>\n",
  4513.        "      <th>DayOfWeek</th>\n",
  4514.        "      <th>TimeOfGame</th>\n",
  4515.        "      <th>AvgWindSpeed</th>\n",
  4516.        "      <th>AvgHumidity</th>\n",
  4517.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  4518.        "      <th>Inn 1 Team 1 NOP R<25, SR>125</th>\n",
  4519.        "      <th>Inn 1 Team 1 Total 4s</th>\n",
  4520.        "      <th>...</th>\n",
  4521.        "      <th>Inn 2 Team 2 NOP R<25, SR>125</th>\n",
  4522.        "      <th>Inn 2 Team 2 Total 4s</th>\n",
  4523.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  4524.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  4525.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  4526.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  4527.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  4528.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  4529.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  4530.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  4531.        "    </tr>\n",
  4532.        "  </thead>\n",
  4533.        "  <tbody>\n",
  4534.        "    <tr>\n",
  4535.        "      <th>0</th>\n",
  4536.        "      <td>6</td>\n",
  4537.        "      <td>10</td>\n",
  4538.        "      <td>8</td>\n",
  4539.        "      <td>1</td>\n",
  4540.        "      <td>8</td>\n",
  4541.        "      <td>6</td>\n",
  4542.        "      <td>0.66</td>\n",
  4543.        "      <td>1</td>\n",
  4544.        "      <td>1</td>\n",
  4545.        "      <td>15</td>\n",
  4546.        "      <td>...</td>\n",
  4547.        "      <td>0</td>\n",
  4548.        "      <td>3</td>\n",
  4549.        "      <td>3</td>\n",
  4550.        "      <td>120.00</td>\n",
  4551.        "      <td>5</td>\n",
  4552.        "      <td>0</td>\n",
  4553.        "      <td>6</td>\n",
  4554.        "      <td>4</td>\n",
  4555.        "      <td>11</td>\n",
  4556.        "      <td>1</td>\n",
  4557.        "    </tr>\n",
  4558.        "    <tr>\n",
  4559.        "      <th>1</th>\n",
  4560.        "      <td>2</td>\n",
  4561.        "      <td>9</td>\n",
  4562.        "      <td>7</td>\n",
  4563.        "      <td>2</td>\n",
  4564.        "      <td>5</td>\n",
  4565.        "      <td>7</td>\n",
  4566.        "      <td>0.66</td>\n",
  4567.        "      <td>3</td>\n",
  4568.        "      <td>2</td>\n",
  4569.        "      <td>20</td>\n",
  4570.        "      <td>...</td>\n",
  4571.        "      <td>2</td>\n",
  4572.        "      <td>18</td>\n",
  4573.        "      <td>9</td>\n",
  4574.        "      <td>215.15</td>\n",
  4575.        "      <td>4</td>\n",
  4576.        "      <td>1</td>\n",
  4577.        "      <td>4</td>\n",
  4578.        "      <td>0</td>\n",
  4579.        "      <td>5</td>\n",
  4580.        "      <td>1</td>\n",
  4581.        "    </tr>\n",
  4582.        "    <tr>\n",
  4583.        "      <th>2</th>\n",
  4584.        "      <td>5</td>\n",
  4585.        "      <td>8</td>\n",
  4586.        "      <td>6</td>\n",
  4587.        "      <td>3</td>\n",
  4588.        "      <td>10</td>\n",
  4589.        "      <td>11</td>\n",
  4590.        "      <td>0.66</td>\n",
  4591.        "      <td>2</td>\n",
  4592.        "      <td>2</td>\n",
  4593.        "      <td>13</td>\n",
  4594.        "      <td>...</td>\n",
  4595.        "      <td>1</td>\n",
  4596.        "      <td>18</td>\n",
  4597.        "      <td>1</td>\n",
  4598.        "      <td>300.00</td>\n",
  4599.        "      <td>3</td>\n",
  4600.        "      <td>3</td>\n",
  4601.        "      <td>0</td>\n",
  4602.        "      <td>1</td>\n",
  4603.        "      <td>10</td>\n",
  4604.        "      <td>0</td>\n",
  4605.        "    </tr>\n",
  4606.        "  </tbody>\n",
  4607.        "</table>\n",
  4608.        "<p>3 rows × 28 columns</p>\n",
  4609.        "</div>"
  4610.       ],
  4611.       "text/plain": [
  4612.        "   Team 1  Team 2  City  DayOfWeek  TimeOfGame  AvgWindSpeed  AvgHumidity  \\\n",
  4613.        "0       6      10     8          1           8             6         0.66   \n",
  4614.        "1       2       9     7          2           5             7         0.66   \n",
  4615.        "2       5       8     6          3          10            11         0.66   \n",
  4616.        "\n",
  4617.        "   Inn 1 Team 1 NOP R>25,SR>125  Inn 1 Team 1 NOP R<25, SR>125  \\\n",
  4618.        "0                             1                              1   \n",
  4619.        "1                             3                              2   \n",
  4620.        "2                             2                              2   \n",
  4621.        "\n",
  4622.        "   Inn 1 Team 1 Total 4s  ...  Inn 2 Team 2 NOP R<25, SR>125  \\\n",
  4623.        "0                     15  ...                              0   \n",
  4624.        "1                     20  ...                              2   \n",
  4625.        "2                     13  ...                              1   \n",
  4626.        "\n",
  4627.        "   Inn 2 Team 2 Total 4s  Inn 2 Team 2 Total 6s  \\\n",
  4628.        "0                      3                      3   \n",
  4629.        "1                     18                      9   \n",
  4630.        "2                     18                      1   \n",
  4631.        "\n",
  4632.        "   Inn 2 Team 2 Max Strike Rate_ALLBatsmen  Inn 2 Team 1 NoP fast bowlers  \\\n",
  4633.        "0                                   120.00                              5   \n",
  4634.        "1                                   215.15                              4   \n",
  4635.        "2                                   300.00                              3   \n",
  4636.        "\n",
  4637.        "   Inn 2 Team 1 NoP Spinners  Inn 2 Team 1 wickets taken_catches_runout  \\\n",
  4638.        "0                          0                                          6   \n",
  4639.        "1                          1                                          4   \n",
  4640.        "2                          3                                          0   \n",
  4641.        "\n",
  4642.        "   Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping  \\\n",
  4643.        "0                                                  4                  \n",
  4644.        "1                                                  0                  \n",
  4645.        "2                                                  1                  \n",
  4646.        "\n",
  4647.        "   Inn 2 Team 1 Extras conceded in_wides_No Balls  Winner (team 1=1, team 2=0)  \n",
  4648.        "0                                              11                            1  \n",
  4649.        "1                                               5                            1  \n",
  4650.        "2                                              10                            0  \n",
  4651.        "\n",
  4652.        "[3 rows x 28 columns]"
  4653.       ]
  4654.      },
  4655.      "execution_count": 283,
  4656.      "metadata": {},
  4657.      "output_type": "execute_result"
  4658.     }
  4659.    ],
  4660.    "source": [
  4661.     "train_data.head(3)"
  4662.    ]
  4663.   },
  4664.   {
  4665.    "cell_type": "markdown",
  4666.    "metadata": {},
  4667.    "source": [
  4668.     "# 8. Modeling :"
  4669.    ]
  4670.   },
  4671.   {
  4672.    "cell_type": "code",
  4673.    "execution_count": 284,
  4674.    "metadata": {},
  4675.    "outputs": [],
  4676.    "source": [
  4677.     "# now separating train and test dataset\n",
  4678.     "\n",
  4679.     "training=train_data[:252]\n",
  4680.     "testing=train_data[252:]"
  4681.    ]
  4682.   },
  4683.   {
  4684.    "cell_type": "code",
  4685.    "execution_count": 285,
  4686.    "metadata": {},
  4687.    "outputs": [],
  4688.    "source": [
  4689.     "# separating independent and dependent variables\n",
  4690.     "\n",
  4691.     "x1 = training.iloc[:, :-1].values\n",
  4692.     "y1 = training[\"Winner (team 1=1, team 2=0)\"].values"
  4693.    ]
  4694.   },
  4695.   {
  4696.    "cell_type": "code",
  4697.    "execution_count": 286,
  4698.    "metadata": {},
  4699.    "outputs": [],
  4700.    "source": [
  4701.     "x2 = testing.iloc[:, :-1].values\n",
  4702.     "y2 = testing[\"Winner (team 1=1, team 2=0)\"].values"
  4703.    ]
  4704.   },
  4705.   {
  4706.    "cell_type": "code",
  4707.    "execution_count": 287,
  4708.    "metadata": {},
  4709.    "outputs": [
  4710.     {
  4711.      "data": {
  4712.       "text/plain": [
  4713.        "(0.44047619047619047, 0.5595238095238095)"
  4714.       ]
  4715.      },
  4716.      "execution_count": 287,
  4717.      "metadata": {},
  4718.      "output_type": "execute_result"
  4719.     }
  4720.    ],
  4721.    "source": [
  4722.     "np.mean(y1), np.mean(1-y1)"
  4723.    ]
  4724.   },
  4725.   {
  4726.    "cell_type": "code",
  4727.    "execution_count": 288,
  4728.    "metadata": {},
  4729.    "outputs": [
  4730.     {
  4731.      "data": {
  4732.       "text/plain": [
  4733.        "(0.4473684210526316, 0.5526315789473685)"
  4734.       ]
  4735.      },
  4736.      "execution_count": 288,
  4737.      "metadata": {},
  4738.      "output_type": "execute_result"
  4739.     }
  4740.    ],
  4741.    "source": [
  4742.     "np.mean(y2), np.mean(1-y2)"
  4743.    ]
  4744.   },
  4745.   {
  4746.    "cell_type": "markdown",
  4747.    "metadata": {},
  4748.    "source": [
  4749.     "## Applying Bagging and Boosting techniques as well as traditional technique (Logistic Regression)"
  4750.    ]
  4751.   },
  4752.   {
  4753.    "cell_type": "code",
  4754.    "execution_count": 289,
  4755.    "metadata": {},
  4756.    "outputs": [],
  4757.    "source": [
  4758.     "from sklearn.ensemble import RandomForestClassifier\n",
  4759.     "from sklearn.metrics import accuracy_score,roc_auc_score"
  4760.    ]
  4761.   },
  4762.   {
  4763.    "cell_type": "code",
  4764.    "execution_count": 290,
  4765.    "metadata": {},
  4766.    "outputs": [
  4767.     {
  4768.      "data": {
  4769.       "text/plain": [
  4770.        "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n",
  4771.        "            max_depth=None, max_features='auto', max_leaf_nodes=None,\n",
  4772.        "            min_impurity_decrease=0.0, min_impurity_split=None,\n",
  4773.        "            min_samples_leaf=1, min_samples_split=2,\n",
  4774.        "            min_weight_fraction_leaf=0.0, n_estimators=200, n_jobs=None,\n",
  4775.        "            oob_score=False, random_state=None, verbose=0,\n",
  4776.        "            warm_start=False)"
  4777.       ]
  4778.      },
  4779.      "execution_count": 290,
  4780.      "metadata": {},
  4781.      "output_type": "execute_result"
  4782.     }
  4783.    ],
  4784.    "source": [
  4785.     "# training the RF Model\n",
  4786.     "\n",
  4787.     "rf_model = RandomForestClassifier(n_estimators=200)\n",
  4788.     "rf_model.fit(x1, y1)"
  4789.    ]
  4790.   },
  4791.   {
  4792.    "cell_type": "code",
  4793.    "execution_count": 291,
  4794.    "metadata": {},
  4795.    "outputs": [
  4796.     {
  4797.      "name": "stdout",
  4798.      "output_type": "stream",
  4799.      "text": [
  4800.       "accuracy is 0.855\n",
  4801.       "roc-auc is 0.940\n"
  4802.      ]
  4803.     }
  4804.    ],
  4805.    "source": [
  4806.     "# make predictions on the test set - both \"hard\" predictions, and the scores \n",
  4807.     "\n",
  4808.     "y_pred_class_rf = rf_model.predict(x2)\n",
  4809.     "y_pred_prob_rf = rf_model.predict_proba(x2)\n",
  4810.     "\n",
  4811.     "\n",
  4812.     "print('accuracy is {:.3f}'.format(accuracy_score(y2,y_pred_class_rf)))\n",
  4813.     "print('roc-auc is {:.3f}'.format(roc_auc_score(y2,y_pred_prob_rf[:,1])))"
  4814.    ]
  4815.   },
  4816.   {
  4817.    "cell_type": "code",
  4818.    "execution_count": 292,
  4819.    "metadata": {},
  4820.    "outputs": [
  4821.     {
  4822.      "data": {
  4823.       "text/plain": [
  4824.        "(array([0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,\n",
  4825.        "        0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,\n",
  4826.        "        1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,\n",
  4827.        "        1, 0, 0, 1, 1, 0, 1, 1, 1, 0]),\n",
  4828.        " array([0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0,\n",
  4829.        "        0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,\n",
  4830.        "        0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0,\n",
  4831.        "        1, 0, 0, 1, 1, 0, 1, 1, 1, 1]))"
  4832.       ]
  4833.      },
  4834.      "execution_count": 292,
  4835.      "metadata": {},
  4836.      "output_type": "execute_result"
  4837.     }
  4838.    ],
  4839.    "source": [
  4840.     "y2,y_pred_class_rf"
  4841.    ]
  4842.   },
  4843.   {
  4844.    "cell_type": "code",
  4845.    "execution_count": 293,
  4846.    "metadata": {},
  4847.    "outputs": [
  4848.     {
  4849.      "data": {
  4850.       "text/plain": [
  4851.        "array([0.085, 0.11 , 0.435, 0.795, 0.67 , 0.835, 0.85 , 0.71 , 0.255,\n",
  4852.        "       0.865, 0.04 , 0.845, 0.565, 0.045, 0.22 , 0.085, 0.555, 0.865,\n",
  4853.        "       0.135, 0.52 , 0.295, 0.025, 0.375, 0.765, 0.285, 0.09 , 0.835,\n",
  4854.        "       0.14 , 0.33 , 0.815, 0.08 , 0.035, 0.555, 0.015, 0.765, 0.895,\n",
  4855.        "       0.745, 0.66 , 0.125, 0.32 , 0.27 , 0.43 , 0.045, 0.425, 0.405,\n",
  4856.        "       0.585, 0.72 , 0.905, 0.675, 0.35 , 0.155, 0.06 , 0.87 , 0.08 ,\n",
  4857.        "       0.31 , 0.505, 0.625, 0.285, 0.06 , 0.875, 0.485, 0.45 , 0.39 ,\n",
  4858.        "       0.305, 0.61 , 0.31 , 0.67 , 0.36 , 0.09 , 0.795, 0.71 , 0.09 ,\n",
  4859.        "       0.94 , 0.91 , 0.915, 0.695])"
  4860.       ]
  4861.      },
  4862.      "execution_count": 293,
  4863.      "metadata": {},
  4864.      "output_type": "execute_result"
  4865.     }
  4866.    ],
  4867.    "source": [
  4868.     "y_pred_prob_rf[:,1]"
  4869.    ]
  4870.   },
  4871.   {
  4872.    "cell_type": "code",
  4873.    "execution_count": 294,
  4874.    "metadata": {},
  4875.    "outputs": [
  4876.     {
  4877.      "data": {
  4878.       "text/html": [
  4879.        "<div>\n",
  4880.        "<style scoped>\n",
  4881.        "    .dataframe tbody tr th:only-of-type {\n",
  4882.        "        vertical-align: middle;\n",
  4883.        "    }\n",
  4884.        "\n",
  4885.        "    .dataframe tbody tr th {\n",
  4886.        "        vertical-align: top;\n",
  4887.        "    }\n",
  4888.        "\n",
  4889.        "    .dataframe thead th {\n",
  4890.        "        text-align: right;\n",
  4891.        "    }\n",
  4892.        "</style>\n",
  4893.        "<table border=\"1\" class=\"dataframe\">\n",
  4894.        "  <thead>\n",
  4895.        "    <tr style=\"text-align: right;\">\n",
  4896.        "      <th></th>\n",
  4897.        "      <th>accuracy</th>\n",
  4898.        "    </tr>\n",
  4899.        "  </thead>\n",
  4900.        "  <tbody>\n",
  4901.        "    <tr>\n",
  4902.        "      <th>LogisticRegression</th>\n",
  4903.        "      <td>0.934211</td>\n",
  4904.        "    </tr>\n",
  4905.        "    <tr>\n",
  4906.        "      <th>GBC</th>\n",
  4907.        "      <td>0.907895</td>\n",
  4908.        "    </tr>\n",
  4909.        "    <tr>\n",
  4910.        "      <th>ABC</th>\n",
  4911.        "      <td>0.776316</td>\n",
  4912.        "    </tr>\n",
  4913.        "  </tbody>\n",
  4914.        "</table>\n",
  4915.        "</div>"
  4916.       ],
  4917.       "text/plain": [
  4918.        "                    accuracy\n",
  4919.        "LogisticRegression  0.934211\n",
  4920.        "GBC                 0.907895\n",
  4921.        "ABC                 0.776316"
  4922.       ]
  4923.      },
  4924.      "execution_count": 294,
  4925.      "metadata": {},
  4926.      "output_type": "execute_result"
  4927.     }
  4928.    ],
  4929.    "source": [
  4930.     "from sklearn.ensemble import GradientBoostingClassifier,AdaBoostClassifier\n",
  4931.     "\n",
  4932.     "from sklearn.linear_model import LogisticRegression\n",
  4933.     "\n",
  4934.     "Classifiers=['LogisticRegression','GBC','ABC']\n",
  4935.     "\n",
  4936.     "models=[LogisticRegression(),GradientBoostingClassifier(n_estimators=250,max_depth=3,learning_rate=0.01),\n",
  4937.     "        AdaBoostClassifier(n_estimators=250,learning_rate=0.01)]\n",
  4938.     "\n",
  4939.     "accuracy=[]\n",
  4940.     "roc=[]\n",
  4941.     "\n",
  4942.     "for i in models:\n",
  4943.     "    mod=i\n",
  4944.     "    fit=mod.fit(x1,y1)\n",
  4945.     "    predict=fit.predict(x2)\n",
  4946.     "    predict_proba=fit.predict_proba(x2)\n",
  4947.     "    accuracy.append(accuracy_score(y2,predict))\n",
  4948.     "    roc.append(roc_auc_score(y2,predict_proba[:,1]))\n",
  4949.     "    \n",
  4950.     "pd.DataFrame(accuracy,index=Classifiers,columns=['accuracy'])"
  4951.    ]
  4952.   },
  4953.   {
  4954.    "cell_type": "code",
  4955.    "execution_count": 295,
  4956.    "metadata": {},
  4957.    "outputs": [
  4958.     {
  4959.      "data": {
  4960.       "text/html": [
  4961.        "<div>\n",
  4962.        "<style scoped>\n",
  4963.        "    .dataframe tbody tr th:only-of-type {\n",
  4964.        "        vertical-align: middle;\n",
  4965.        "    }\n",
  4966.        "\n",
  4967.        "    .dataframe tbody tr th {\n",
  4968.        "        vertical-align: top;\n",
  4969.        "    }\n",
  4970.        "\n",
  4971.        "    .dataframe thead th {\n",
  4972.        "        text-align: right;\n",
  4973.        "    }\n",
  4974.        "</style>\n",
  4975.        "<table border=\"1\" class=\"dataframe\">\n",
  4976.        "  <thead>\n",
  4977.        "    <tr style=\"text-align: right;\">\n",
  4978.        "      <th></th>\n",
  4979.        "      <th>roc</th>\n",
  4980.        "    </tr>\n",
  4981.        "  </thead>\n",
  4982.        "  <tbody>\n",
  4983.        "    <tr>\n",
  4984.        "      <th>LogisticRegression</th>\n",
  4985.        "      <td>0.979692</td>\n",
  4986.        "    </tr>\n",
  4987.        "    <tr>\n",
  4988.        "      <th>GBC</th>\n",
  4989.        "      <td>0.934174</td>\n",
  4990.        "    </tr>\n",
  4991.        "    <tr>\n",
  4992.        "      <th>ABC</th>\n",
  4993.        "      <td>0.911415</td>\n",
  4994.        "    </tr>\n",
  4995.        "  </tbody>\n",
  4996.        "</table>\n",
  4997.        "</div>"
  4998.       ],
  4999.       "text/plain": [
  5000.        "                         roc\n",
  5001.        "LogisticRegression  0.979692\n",
  5002.        "GBC                 0.934174\n",
  5003.        "ABC                 0.911415"
  5004.       ]
  5005.      },
  5006.      "execution_count": 295,
  5007.      "metadata": {},
  5008.      "output_type": "execute_result"
  5009.     }
  5010.    ],
  5011.    "source": [
  5012.     "pd.DataFrame(roc,index=Classifiers,columns=['roc'])"
  5013.    ]
  5014.   },
  5015.   {
  5016.    "cell_type": "code",
  5017.    "execution_count": 296,
  5018.    "metadata": {},
  5019.    "outputs": [
  5020.     {
  5021.      "name": "stdout",
  5022.      "output_type": "stream",
  5023.      "text": [
  5024.       "accuracy is 0.934\n",
  5025.       "roc-auc is 0.980\n"
  5026.      ]
  5027.     }
  5028.    ],
  5029.    "source": [
  5030.     "lg=LogisticRegression()\n",
  5031.     "lg.fit(x1,y1)\n",
  5032.     "y_pred_class = lg.predict(x2)\n",
  5033.     "y_pred_prob=lg.predict_proba(x2)\n",
  5034.     "\n",
  5035.     "\n",
  5036.     "print('accuracy is {:.3f}'.format(accuracy_score(y2,y_pred_class)))\n",
  5037.     "print('roc-auc is {:.3f}'.format(roc_auc_score(y2,y_pred_prob[:,1])))"
  5038.    ]
  5039.   },
  5040.   {
  5041.    "cell_type": "code",
  5042.    "execution_count": 297,
  5043.    "metadata": {},
  5044.    "outputs": [
  5045.     {
  5046.      "data": {
  5047.       "text/plain": [
  5048.        "(array([0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,\n",
  5049.        "        0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,\n",
  5050.        "        1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,\n",
  5051.        "        1, 0, 0, 1, 1, 0, 1, 1, 1, 0]),\n",
  5052.        " array([0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,\n",
  5053.        "        0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0,\n",
  5054.        "        0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,\n",
  5055.        "        1, 0, 0, 1, 1, 0, 1, 1, 1, 0]))"
  5056.       ]
  5057.      },
  5058.      "execution_count": 297,
  5059.      "metadata": {},
  5060.      "output_type": "execute_result"
  5061.     }
  5062.    ],
  5063.    "source": [
  5064.     "y2,y_pred_class"
  5065.    ]
  5066.   },
  5067.   {
  5068.    "cell_type": "code",
  5069.    "execution_count": 298,
  5070.    "metadata": {},
  5071.    "outputs": [
  5072.     {
  5073.      "data": {
  5074.       "text/plain": [
  5075.        "array([3.40483743e-07, 3.03274601e-03, 9.93964035e-01, 9.99988149e-01,\n",
  5076.        "       9.98937407e-01, 9.99998073e-01, 9.99881475e-01, 9.86895835e-01,\n",
  5077.        "       4.53882552e-02, 9.99992056e-01, 2.87620188e-04, 9.99959355e-01,\n",
  5078.        "       7.79730740e-01, 2.16710345e-03, 5.73821706e-02, 6.70463952e-04,\n",
  5079.        "       9.85809832e-01, 9.99999972e-01, 4.65158232e-02, 1.48981503e-01,\n",
  5080.        "       2.72798487e-04, 5.96832421e-05, 5.87572367e-04, 9.93350127e-01,\n",
  5081.        "       9.11166428e-03, 3.31698706e-01, 9.86698093e-01, 4.66122665e-02,\n",
  5082.        "       7.77048117e-04, 9.99922692e-01, 6.95461422e-04, 3.77596738e-03,\n",
  5083.        "       7.11761288e-01, 2.74741028e-03, 4.62106335e-01, 9.99985758e-01,\n",
  5084.        "       9.79152103e-01, 9.98808014e-01, 6.10339992e-01, 4.02401264e-03,\n",
  5085.        "       9.73911149e-04, 5.05842486e-01, 5.67609146e-03, 1.84856105e-01,\n",
  5086.        "       4.50354181e-02, 8.22950339e-02, 9.46822317e-01, 9.99727577e-01,\n",
  5087.        "       4.31286933e-01, 4.38681050e-02, 1.39928968e-01, 9.20476706e-05,\n",
  5088.        "       9.99863662e-01, 6.65918387e-06, 4.24013742e-04, 1.06447751e-03,\n",
  5089.        "       9.99958256e-01, 9.59562012e-01, 1.53679981e-05, 9.99999451e-01,\n",
  5090.        "       4.72179643e-03, 1.14455356e-01, 1.69064354e-01, 6.81891018e-02,\n",
  5091.        "       9.99286957e-01, 2.90742266e-02, 9.99997082e-01, 3.22585430e-03,\n",
  5092.        "       8.66524237e-04, 9.99725912e-01, 8.45765771e-01, 1.46543986e-06,\n",
  5093.        "       9.97580113e-01, 9.99916805e-01, 9.99999990e-01, 4.32658519e-02])"
  5094.       ]
  5095.      },
  5096.      "execution_count": 298,
  5097.      "metadata": {},
  5098.      "output_type": "execute_result"
  5099.     }
  5100.    ],
  5101.    "source": [
  5102.     "y_pred_prob[:,1]"
  5103.    ]
  5104.   },
  5105.   {
  5106.    "cell_type": "markdown",
  5107.    "metadata": {},
  5108.    "source": [
  5109.     "## Applying Neural Network technique:"
  5110.    ]
  5111.   },
  5112.   {
  5113.    "cell_type": "code",
  5114.    "execution_count": 299,
  5115.    "metadata": {},
  5116.    "outputs": [],
  5117.    "source": [
  5118.     "# importing Keras objects for Deep Learning\n",
  5119.     "\n",
  5120.     "from keras.models  import Sequential\n",
  5121.     "from keras.layers import Input, Dense,Dropout\n",
  5122.     "from keras.optimizers import RMSprop"
  5123.    ]
  5124.   },
  5125.   {
  5126.    "cell_type": "code",
  5127.    "execution_count": 300,
  5128.    "metadata": {},
  5129.    "outputs": [],
  5130.    "source": [
  5131.     "# i will build a model with two hidden layers of size 512\n",
  5132.     "# Fully connected inputs at each layer\n",
  5133.     "# i will use dropout of .2 to help regularize\n",
  5134.     "\n",
  5135.     "model_1 = Sequential()\n",
  5136.     "model_1.add(Dense(64, activation='relu', input_shape=(27,)))\n",
  5137.     "model_1.add(Dropout(0.2))\n",
  5138.     "model_1.add(Dense(64, activation='relu'))\n",
  5139.     "model_1.add(Dropout(0.2))\n",
  5140.     "model_1.add(Dense(1, activation=\"sigmoid\"))"
  5141.    ]
  5142.   },
  5143.   {
  5144.    "cell_type": "code",
  5145.    "execution_count": 301,
  5146.    "metadata": {},
  5147.    "outputs": [
  5148.     {
  5149.      "name": "stdout",
  5150.      "output_type": "stream",
  5151.      "text": [
  5152.       "_________________________________________________________________\n",
  5153.       "Layer (type)                 Output Shape              Param #   \n",
  5154.       "=================================================================\n",
  5155.       "dense_16 (Dense)             (None, 64)                1792      \n",
  5156.       "_________________________________________________________________\n",
  5157.       "dropout_11 (Dropout)         (None, 64)                0         \n",
  5158.       "_________________________________________________________________\n",
  5159.       "dense_17 (Dense)             (None, 64)                4160      \n",
  5160.       "_________________________________________________________________\n",
  5161.       "dropout_12 (Dropout)         (None, 64)                0         \n",
  5162.       "_________________________________________________________________\n",
  5163.       "dense_18 (Dense)             (None, 1)                 65        \n",
  5164.       "=================================================================\n",
  5165.       "Total params: 6,017\n",
  5166.       "Trainable params: 6,017\n",
  5167.       "Non-trainable params: 0\n",
  5168.       "_________________________________________________________________\n"
  5169.      ]
  5170.     }
  5171.    ],
  5172.    "source": [
  5173.     "model_1.summary()"
  5174.    ]
  5175.   },
  5176.   {
  5177.    "cell_type": "code",
  5178.    "execution_count": 302,
  5179.    "metadata": {},
  5180.    "outputs": [],
  5181.    "source": [
  5182.     "# now compiling the model\n",
  5183.     "\n",
  5184.     "learning_rate = .001\n",
  5185.     "model_1.compile(loss='binary_crossentropy',\n",
  5186.     "              optimizer=RMSprop(lr=learning_rate),\n",
  5187.     "              metrics=['accuracy'])"
  5188.    ]
  5189.   },
  5190.   {
  5191.    "cell_type": "code",
  5192.    "execution_count": 303,
  5193.    "metadata": {},
  5194.    "outputs": [
  5195.     {
  5196.      "name": "stdout",
  5197.      "output_type": "stream",
  5198.      "text": [
  5199.       "Train on 252 samples, validate on 76 samples\n",
  5200.       "Epoch 1/150\n",
  5201.       "252/252 [==============================] - 1s 2ms/step - loss: 6.9613 - acc: 0.5595 - val_loss: 7.2107 - val_acc: 0.5526\n",
  5202.       "Epoch 2/150\n",
  5203.       "252/252 [==============================] - 0s 75us/step - loss: 7.0973 - acc: 0.5595 - val_loss: 7.2107 - val_acc: 0.5526\n",
  5204.       "Epoch 3/150\n",
  5205.       "252/252 [==============================] - 0s 72us/step - loss: 7.0165 - acc: 0.5595 - val_loss: 7.2107 - val_acc: 0.5526\n",
  5206.       "Epoch 4/150\n",
  5207.       "252/252 [==============================] - 0s 88us/step - loss: 6.8399 - acc: 0.5516 - val_loss: 7.2107 - val_acc: 0.5526\n",
  5208.       "Epoch 5/150\n",
  5209.       "252/252 [==============================] - 0s 41us/step - loss: 6.9069 - acc: 0.5317 - val_loss: 7.2107 - val_acc: 0.5526\n",
  5210.       "Epoch 6/150\n",
  5211.       "252/252 [==============================] - 0s 81us/step - loss: 6.6908 - acc: 0.5278 - val_loss: 7.2107 - val_acc: 0.5526\n",
  5212.       "Epoch 7/150\n",
  5213.       "252/252 [==============================] - 0s 77us/step - loss: 6.0762 - acc: 0.5397 - val_loss: 3.0008 - val_acc: 0.5658\n",
  5214.       "Epoch 8/150\n",
  5215.       "252/252 [==============================] - 0s 82us/step - loss: 5.5813 - acc: 0.5238 - val_loss: 1.3634 - val_acc: 0.5526\n",
  5216.       "Epoch 9/150\n",
  5217.       "252/252 [==============================] - 0s 79us/step - loss: 5.0466 - acc: 0.5317 - val_loss: 0.9255 - val_acc: 0.4868\n",
  5218.       "Epoch 10/150\n",
  5219.       "252/252 [==============================] - 0s 56us/step - loss: 5.4292 - acc: 0.4802 - val_loss: 2.0214 - val_acc: 0.5526\n",
  5220.       "Epoch 11/150\n",
  5221.       "252/252 [==============================] - 0s 37us/step - loss: 5.3716 - acc: 0.4881 - val_loss: 0.9769 - val_acc: 0.5132\n",
  5222.       "Epoch 12/150\n",
  5223.       "252/252 [==============================] - 0s 100us/step - loss: 4.9477 - acc: 0.4881 - val_loss: 0.9533 - val_acc: 0.5789\n",
  5224.       "Epoch 13/150\n",
  5225.       "252/252 [==============================] - 0s 73us/step - loss: 4.5824 - acc: 0.5238 - val_loss: 2.5210 - val_acc: 0.4737\n",
  5226.       "Epoch 14/150\n",
  5227.       "252/252 [==============================] - 0s 35us/step - loss: 4.6289 - acc: 0.5278 - val_loss: 0.8645 - val_acc: 0.5921\n",
  5228.       "Epoch 15/150\n",
  5229.       "252/252 [==============================] - 0s 36us/step - loss: 4.4709 - acc: 0.5516 - val_loss: 1.0121 - val_acc: 0.6316\n",
  5230.       "Epoch 16/150\n",
  5231.       "252/252 [==============================] - 0s 100us/step - loss: 4.4986 - acc: 0.5357 - val_loss: 1.1343 - val_acc: 0.5789\n",
  5232.       "Epoch 17/150\n",
  5233.       "252/252 [==============================] - 0s 58us/step - loss: 3.9190 - acc: 0.5992 - val_loss: 1.0397 - val_acc: 0.6316\n",
  5234.       "Epoch 18/150\n",
  5235.       "252/252 [==============================] - 0s 44us/step - loss: 4.7588 - acc: 0.4960 - val_loss: 1.0317 - val_acc: 0.5658\n",
  5236.       "Epoch 19/150\n",
  5237.       "252/252 [==============================] - 0s 89us/step - loss: 3.8100 - acc: 0.5556 - val_loss: 0.7782 - val_acc: 0.6447\n",
  5238.       "Epoch 20/150\n",
  5239.       "252/252 [==============================] - 0s 38us/step - loss: 4.1435 - acc: 0.5317 - val_loss: 0.6667 - val_acc: 0.6579\n",
  5240.       "Epoch 21/150\n",
  5241.       "252/252 [==============================] - 0s 39us/step - loss: 3.6260 - acc: 0.6071 - val_loss: 2.2773 - val_acc: 0.5132\n",
  5242.       "Epoch 22/150\n",
  5243.       "252/252 [==============================] - 0s 77us/step - loss: 4.1852 - acc: 0.5437 - val_loss: 2.0804 - val_acc: 0.5000\n",
  5244.       "Epoch 23/150\n",
  5245.       "252/252 [==============================] - 0s 56us/step - loss: 3.2150 - acc: 0.5476 - val_loss: 2.3391 - val_acc: 0.4737\n",
  5246.       "Epoch 24/150\n",
  5247.       "252/252 [==============================] - 0s 47us/step - loss: 3.1800 - acc: 0.5635 - val_loss: 2.4375 - val_acc: 0.4737\n",
  5248.       "Epoch 25/150\n",
  5249.       "252/252 [==============================] - 0s 41us/step - loss: 3.7439 - acc: 0.5357 - val_loss: 0.6821 - val_acc: 0.6447\n",
  5250.       "Epoch 26/150\n",
  5251.       "252/252 [==============================] - 0s 59us/step - loss: 3.4848 - acc: 0.5556 - val_loss: 0.7963 - val_acc: 0.6316\n",
  5252.       "Epoch 27/150\n",
  5253.       "252/252 [==============================] - 0s 43us/step - loss: 2.9464 - acc: 0.5675 - val_loss: 0.9939 - val_acc: 0.6184\n",
  5254.       "Epoch 28/150\n",
  5255.       "252/252 [==============================] - 0s 85us/step - loss: 3.0968 - acc: 0.5437 - val_loss: 1.0572 - val_acc: 0.5789\n",
  5256.       "Epoch 29/150\n",
  5257.       "252/252 [==============================] - 0s 41us/step - loss: 2.8950 - acc: 0.5635 - val_loss: 0.6111 - val_acc: 0.6711\n",
  5258.       "Epoch 30/150\n",
  5259.       "252/252 [==============================] - 0s 57us/step - loss: 3.1858 - acc: 0.5437 - val_loss: 0.7311 - val_acc: 0.6184\n",
  5260.       "Epoch 31/150\n",
  5261.       "252/252 [==============================] - 0s 42us/step - loss: 2.8878 - acc: 0.5397 - val_loss: 0.7806 - val_acc: 0.6184\n",
  5262.       "Epoch 32/150\n",
  5263.       "252/252 [==============================] - 0s 42us/step - loss: 2.5863 - acc: 0.5635 - val_loss: 1.1858 - val_acc: 0.5789\n",
  5264.       "Epoch 33/150\n",
  5265.       "252/252 [==============================] - 0s 40us/step - loss: 2.2358 - acc: 0.6032 - val_loss: 1.0832 - val_acc: 0.5789\n",
  5266.       "Epoch 34/150\n",
  5267.       "252/252 [==============================] - 0s 61us/step - loss: 2.2834 - acc: 0.6032 - val_loss: 0.6424 - val_acc: 0.6842\n",
  5268.       "Epoch 35/150\n",
  5269.       "252/252 [==============================] - 0s 94us/step - loss: 2.1172 - acc: 0.5476 - val_loss: 0.5189 - val_acc: 0.7105\n",
  5270.       "Epoch 36/150\n",
  5271.       "252/252 [==============================] - 0s 96us/step - loss: 2.0956 - acc: 0.5675 - val_loss: 0.6763 - val_acc: 0.6447\n",
  5272.       "Epoch 37/150\n",
  5273.       "252/252 [==============================] - 0s 59us/step - loss: 2.0578 - acc: 0.5794 - val_loss: 0.7708 - val_acc: 0.5921\n",
  5274.       "Epoch 38/150\n",
  5275.       "252/252 [==============================] - 0s 64us/step - loss: 2.2519 - acc: 0.5476 - val_loss: 0.5393 - val_acc: 0.7500\n",
  5276.       "Epoch 39/150\n",
  5277.       "252/252 [==============================] - 0s 41us/step - loss: 2.1048 - acc: 0.5873 - val_loss: 0.6771 - val_acc: 0.6579\n",
  5278.       "Epoch 40/150\n",
  5279.       "252/252 [==============================] - 0s 64us/step - loss: 1.6489 - acc: 0.6310 - val_loss: 0.6094 - val_acc: 0.6447\n",
  5280.       "Epoch 41/150\n",
  5281.       "252/252 [==============================] - 0s 85us/step - loss: 1.9634 - acc: 0.5595 - val_loss: 0.7260 - val_acc: 0.5658\n",
  5282.       "Epoch 42/150\n",
  5283.       "252/252 [==============================] - 0s 34us/step - loss: 1.6733 - acc: 0.6111 - val_loss: 0.5984 - val_acc: 0.6316\n",
  5284.       "Epoch 43/150\n",
  5285.       "252/252 [==============================] - 0s 40us/step - loss: 1.7568 - acc: 0.5556 - val_loss: 0.5476 - val_acc: 0.7105\n",
  5286.       "Epoch 44/150\n",
  5287.       "252/252 [==============================] - 0s 54us/step - loss: 1.7179 - acc: 0.5278 - val_loss: 0.5730 - val_acc: 0.6974\n",
  5288.       "Epoch 45/150\n",
  5289.       "252/252 [==============================] - 0s 104us/step - loss: 1.4594 - acc: 0.6151 - val_loss: 0.5418 - val_acc: 0.7368\n",
  5290.       "Epoch 46/150\n",
  5291.       "252/252 [==============================] - 0s 45us/step - loss: 1.5521 - acc: 0.5913 - val_loss: 0.5764 - val_acc: 0.6711\n",
  5292.       "Epoch 47/150\n",
  5293.       "252/252 [==============================] - 0s 75us/step - loss: 1.3250 - acc: 0.5635 - val_loss: 0.5462 - val_acc: 0.7500\n",
  5294.       "Epoch 48/150\n",
  5295.       "252/252 [==============================] - 0s 141us/step - loss: 1.3410 - acc: 0.5833 - val_loss: 0.5754 - val_acc: 0.6842\n",
  5296.       "Epoch 49/150\n",
  5297.       "252/252 [==============================] - 0s 68us/step - loss: 1.0250 - acc: 0.6151 - val_loss: 0.6550 - val_acc: 0.5526\n",
  5298.       "Epoch 50/150\n",
  5299.       "252/252 [==============================] - 0s 74us/step - loss: 1.3762 - acc: 0.5397 - val_loss: 0.5850 - val_acc: 0.7105\n",
  5300.       "Epoch 51/150\n",
  5301.       "252/252 [==============================] - 0s 39us/step - loss: 1.5653 - acc: 0.5397 - val_loss: 0.5915 - val_acc: 0.7105\n",
  5302.       "Epoch 52/150\n",
  5303.       "252/252 [==============================] - 0s 34us/step - loss: 1.1430 - acc: 0.5873 - val_loss: 0.6567 - val_acc: 0.6053\n",
  5304.       "Epoch 53/150\n",
  5305.       "252/252 [==============================] - 0s 118us/step - loss: 1.4155 - acc: 0.5397 - val_loss: 0.6150 - val_acc: 0.6711\n",
  5306.       "Epoch 54/150\n",
  5307.       "252/252 [==============================] - 0s 39us/step - loss: 1.1519 - acc: 0.5754 - val_loss: 0.6088 - val_acc: 0.6711\n",
  5308.       "Epoch 55/150\n",
  5309.       "252/252 [==============================] - 0s 37us/step - loss: 1.0338 - acc: 0.5754 - val_loss: 0.6058 - val_acc: 0.6842\n",
  5310.       "Epoch 56/150\n",
  5311.       "252/252 [==============================] - 0s 80us/step - loss: 1.1220 - acc: 0.5635 - val_loss: 0.6033 - val_acc: 0.7237\n",
  5312.       "Epoch 57/150\n",
  5313.       "252/252 [==============================] - 0s 44us/step - loss: 1.1087 - acc: 0.5556 - val_loss: 0.6252 - val_acc: 0.6447\n",
  5314.       "Epoch 58/150\n",
  5315.       "252/252 [==============================] - 0s 65us/step - loss: 0.9753 - acc: 0.5833 - val_loss: 0.6342 - val_acc: 0.6316\n",
  5316.       "Epoch 59/150\n",
  5317.       "252/252 [==============================] - 0s 41us/step - loss: 0.9100 - acc: 0.6151 - val_loss: 0.6339 - val_acc: 0.6579\n",
  5318.       "Epoch 60/150\n",
  5319.       "252/252 [==============================] - 0s 46us/step - loss: 1.1550 - acc: 0.4921 - val_loss: 0.6357 - val_acc: 0.6053\n",
  5320.       "Epoch 61/150\n",
  5321.       "252/252 [==============================] - 0s 50us/step - loss: 0.9439 - acc: 0.6190 - val_loss: 0.6379 - val_acc: 0.6842\n",
  5322.       "Epoch 62/150\n",
  5323.       "252/252 [==============================] - 0s 46us/step - loss: 0.9031 - acc: 0.5833 - val_loss: 0.6247 - val_acc: 0.5921\n",
  5324.       "Epoch 63/150\n",
  5325.       "252/252 [==============================] - 0s 38us/step - loss: 0.9493 - acc: 0.5714 - val_loss: 0.6215 - val_acc: 0.6184\n",
  5326.       "Epoch 64/150\n",
  5327.       "252/252 [==============================] - 0s 38us/step - loss: 0.7862 - acc: 0.6468 - val_loss: 0.6229 - val_acc: 0.6974\n",
  5328.       "Epoch 65/150\n",
  5329.       "252/252 [==============================] - 0s 47us/step - loss: 0.8136 - acc: 0.5833 - val_loss: 0.6229 - val_acc: 0.7237\n",
  5330.       "Epoch 66/150\n",
  5331.       "252/252 [==============================] - 0s 103us/step - loss: 0.8665 - acc: 0.5437 - val_loss: 0.6448 - val_acc: 0.5526\n",
  5332.       "Epoch 67/150\n",
  5333.       "252/252 [==============================] - 0s 58us/step - loss: 0.8324 - acc: 0.6151 - val_loss: 0.6294 - val_acc: 0.6447\n",
  5334.       "Epoch 68/150\n",
  5335.       "252/252 [==============================] - 0s 86us/step - loss: 0.8515 - acc: 0.6111 - val_loss: 0.6431 - val_acc: 0.6579\n",
  5336.       "Epoch 69/150\n",
  5337.       "252/252 [==============================] - 0s 92us/step - loss: 0.8734 - acc: 0.5714 - val_loss: 0.6375 - val_acc: 0.7895\n",
  5338.       "Epoch 70/150\n",
  5339.       "252/252 [==============================] - 0s 49us/step - loss: 0.7698 - acc: 0.6190 - val_loss: 0.6156 - val_acc: 0.7237\n",
  5340.       "Epoch 71/150\n",
  5341.       "252/252 [==============================] - 0s 87us/step - loss: 0.9139 - acc: 0.5476 - val_loss: 0.6275 - val_acc: 0.5921\n",
  5342.       "Epoch 72/150\n",
  5343.       "252/252 [==============================] - 0s 75us/step - loss: 0.8369 - acc: 0.6270 - val_loss: 0.6228 - val_acc: 0.7500\n",
  5344.       "Epoch 73/150\n",
  5345.       "252/252 [==============================] - 0s 42us/step - loss: 0.7770 - acc: 0.6190 - val_loss: 0.6259 - val_acc: 0.6316\n",
  5346.       "Epoch 74/150\n",
  5347.       "252/252 [==============================] - 0s 106us/step - loss: 0.7126 - acc: 0.6151 - val_loss: 0.6096 - val_acc: 0.6842\n",
  5348.       "Epoch 75/150\n",
  5349.       "252/252 [==============================] - 0s 36us/step - loss: 0.7686 - acc: 0.6230 - val_loss: 0.6155 - val_acc: 0.7895\n",
  5350.       "Epoch 76/150\n",
  5351.       "252/252 [==============================] - 0s 32us/step - loss: 0.7445 - acc: 0.6032 - val_loss: 0.6246 - val_acc: 0.7105\n",
  5352.       "Epoch 77/150\n",
  5353.       "252/252 [==============================] - 0s 39us/step - loss: 0.7536 - acc: 0.6032 - val_loss: 0.6407 - val_acc: 0.6316\n",
  5354.       "Epoch 78/150\n",
  5355.       "252/252 [==============================] - 0s 56us/step - loss: 0.6960 - acc: 0.5992 - val_loss: 0.6407 - val_acc: 0.7105\n",
  5356.       "Epoch 79/150\n",
  5357.       "252/252 [==============================] - 0s 49us/step - loss: 0.6648 - acc: 0.6865 - val_loss: 0.6388 - val_acc: 0.6316\n",
  5358.       "Epoch 80/150\n",
  5359.       "252/252 [==============================] - 0s 35us/step - loss: 0.6990 - acc: 0.6032 - val_loss: 0.6268 - val_acc: 0.6711\n",
  5360.       "Epoch 81/150\n",
  5361.       "252/252 [==============================] - 0s 54us/step - loss: 0.7754 - acc: 0.5714 - val_loss: 0.6341 - val_acc: 0.7632\n",
  5362.       "Epoch 82/150\n",
  5363.       "252/252 [==============================] - 0s 35us/step - loss: 0.7079 - acc: 0.5873 - val_loss: 0.6339 - val_acc: 0.8158\n",
  5364.       "Epoch 83/150\n",
  5365.       "252/252 [==============================] - 0s 80us/step - loss: 0.6539 - acc: 0.6468 - val_loss: 0.6178 - val_acc: 0.8026\n",
  5366.       "Epoch 84/150\n",
  5367.       "252/252 [==============================] - 0s 47us/step - loss: 0.6619 - acc: 0.6508 - val_loss: 0.6118 - val_acc: 0.6974\n",
  5368.       "Epoch 85/150\n",
  5369.       "252/252 [==============================] - 0s 40us/step - loss: 0.7295 - acc: 0.6587 - val_loss: 0.6149 - val_acc: 0.7632\n",
  5370.       "Epoch 86/150\n",
  5371.       "252/252 [==============================] - 0s 38us/step - loss: 0.6609 - acc: 0.6071 - val_loss: 0.5964 - val_acc: 0.8158\n",
  5372.       "Epoch 87/150\n",
  5373.       "252/252 [==============================] - 0s 37us/step - loss: 0.6277 - acc: 0.6349 - val_loss: 0.6082 - val_acc: 0.6316\n",
  5374.       "Epoch 88/150\n",
  5375.       "252/252 [==============================] - 0s 73us/step - loss: 0.6354 - acc: 0.6746 - val_loss: 0.6148 - val_acc: 0.6184\n",
  5376.       "Epoch 89/150\n",
  5377.       "252/252 [==============================] - 0s 38us/step - loss: 0.7100 - acc: 0.6310 - val_loss: 0.6125 - val_acc: 0.7763\n",
  5378.       "Epoch 90/150\n",
  5379.       "252/252 [==============================] - 0s 32us/step - loss: 0.6774 - acc: 0.6389 - val_loss: 0.6116 - val_acc: 0.6974\n",
  5380.       "Epoch 91/150\n",
  5381.       "252/252 [==============================] - 0s 34us/step - loss: 0.6433 - acc: 0.6825 - val_loss: 0.6223 - val_acc: 0.7237\n",
  5382.       "Epoch 92/150\n",
  5383.       "252/252 [==============================] - 0s 70us/step - loss: 0.6724 - acc: 0.6349 - val_loss: 0.5994 - val_acc: 0.8289\n",
  5384.       "Epoch 93/150\n",
  5385.       "252/252 [==============================] - 0s 33us/step - loss: 0.6759 - acc: 0.6667 - val_loss: 0.6137 - val_acc: 0.6316\n",
  5386.       "Epoch 94/150\n",
  5387.       "252/252 [==============================] - 0s 71us/step - loss: 0.6441 - acc: 0.6905 - val_loss: 0.6243 - val_acc: 0.6579\n",
  5388.       "Epoch 95/150\n",
  5389.       "252/252 [==============================] - 0s 97us/step - loss: 0.7153 - acc: 0.6270 - val_loss: 0.5872 - val_acc: 0.8158\n",
  5390.       "Epoch 96/150\n",
  5391.       "252/252 [==============================] - 0s 60us/step - loss: 0.6536 - acc: 0.6627 - val_loss: 0.5837 - val_acc: 0.8026\n",
  5392.       "Epoch 97/150\n",
  5393.       "252/252 [==============================] - 0s 75us/step - loss: 0.6450 - acc: 0.6587 - val_loss: 0.5669 - val_acc: 0.7895\n",
  5394.       "Epoch 98/150\n",
  5395.       "252/252 [==============================] - 0s 153us/step - loss: 0.6079 - acc: 0.6587 - val_loss: 0.5582 - val_acc: 0.7895\n",
  5396.       "Epoch 99/150\n",
  5397.       "252/252 [==============================] - 0s 151us/step - loss: 0.6114 - acc: 0.6825 - val_loss: 0.5570 - val_acc: 0.8026\n",
  5398.       "Epoch 100/150\n",
  5399.       "252/252 [==============================] - 0s 46us/step - loss: 0.6566 - acc: 0.6667 - val_loss: 0.5603 - val_acc: 0.8026\n",
  5400.       "Epoch 101/150\n",
  5401.       "252/252 [==============================] - 0s 72us/step - loss: 0.6188 - acc: 0.6310 - val_loss: 0.5606 - val_acc: 0.7237\n",
  5402.       "Epoch 102/150\n",
  5403.       "252/252 [==============================] - 0s 120us/step - loss: 0.6386 - acc: 0.6270 - val_loss: 0.5558 - val_acc: 0.8158\n",
  5404.       "Epoch 103/150\n",
  5405.       "252/252 [==============================] - 0s 75us/step - loss: 0.6659 - acc: 0.6627 - val_loss: 0.5698 - val_acc: 0.8289\n",
  5406.       "Epoch 104/150\n",
  5407.       "252/252 [==============================] - 0s 53us/step - loss: 0.6350 - acc: 0.6468 - val_loss: 0.5708 - val_acc: 0.7500\n",
  5408.       "Epoch 105/150\n",
  5409.       "252/252 [==============================] - 0s 98us/step - loss: 0.6030 - acc: 0.6627 - val_loss: 0.5388 - val_acc: 0.7895\n",
  5410.       "Epoch 106/150\n",
  5411.       "252/252 [==============================] - 0s 48us/step - loss: 0.6216 - acc: 0.6746 - val_loss: 0.5353 - val_acc: 0.8553\n",
  5412.       "Epoch 107/150\n",
  5413.       "252/252 [==============================] - 0s 111us/step - loss: 0.5624 - acc: 0.7063 - val_loss: 0.5235 - val_acc: 0.8158\n",
  5414.       "Epoch 108/150\n",
  5415.       "252/252 [==============================] - 0s 43us/step - loss: 0.5606 - acc: 0.7341 - val_loss: 0.5194 - val_acc: 0.8289\n",
  5416.       "Epoch 109/150\n",
  5417.       "252/252 [==============================] - 0s 41us/step - loss: 0.6544 - acc: 0.6786 - val_loss: 0.5108 - val_acc: 0.7895\n",
  5418.       "Epoch 110/150\n",
  5419.       "252/252 [==============================] - 0s 43us/step - loss: 0.5783 - acc: 0.7063 - val_loss: 0.5268 - val_acc: 0.7500\n",
  5420.       "Epoch 111/150\n",
  5421.       "252/252 [==============================] - 0s 44us/step - loss: 0.5963 - acc: 0.7024 - val_loss: 0.5141 - val_acc: 0.7632\n",
  5422.       "Epoch 112/150\n",
  5423.       "252/252 [==============================] - 0s 96us/step - loss: 0.5876 - acc: 0.7183 - val_loss: 0.4892 - val_acc: 0.8158\n",
  5424.       "Epoch 113/150\n",
  5425.       "252/252 [==============================] - 0s 48us/step - loss: 0.5961 - acc: 0.6944 - val_loss: 0.4954 - val_acc: 0.8289\n",
  5426.       "Epoch 114/150\n",
  5427.       "252/252 [==============================] - 0s 84us/step - loss: 0.4928 - acc: 0.7619 - val_loss: 0.4872 - val_acc: 0.7500\n",
  5428.       "Epoch 115/150\n",
  5429.       "252/252 [==============================] - 0s 90us/step - loss: 0.5670 - acc: 0.7341 - val_loss: 0.4910 - val_acc: 0.7763\n",
  5430.       "Epoch 116/150\n",
  5431.       "252/252 [==============================] - 0s 143us/step - loss: 0.5497 - acc: 0.7143 - val_loss: 0.4890 - val_acc: 0.7763\n",
  5432.       "Epoch 117/150\n",
  5433.       "252/252 [==============================] - 0s 45us/step - loss: 0.5312 - acc: 0.7341 - val_loss: 0.5049 - val_acc: 0.7763\n",
  5434.       "Epoch 118/150\n",
  5435.       "252/252 [==============================] - 0s 45us/step - loss: 0.5427 - acc: 0.7143 - val_loss: 0.4847 - val_acc: 0.7763\n",
  5436.       "Epoch 119/150\n",
  5437.       "252/252 [==============================] - 0s 70us/step - loss: 0.5105 - acc: 0.7381 - val_loss: 0.4860 - val_acc: 0.7763\n",
  5438.       "Epoch 120/150\n",
  5439.       "252/252 [==============================] - 0s 53us/step - loss: 0.6040 - acc: 0.6905 - val_loss: 0.4878 - val_acc: 0.7763\n",
  5440.       "Epoch 121/150\n",
  5441.       "252/252 [==============================] - 0s 90us/step - loss: 0.5060 - acc: 0.7381 - val_loss: 0.4629 - val_acc: 0.8553\n",
  5442.       "Epoch 122/150\n",
  5443.       "252/252 [==============================] - 0s 70us/step - loss: 0.5498 - acc: 0.7381 - val_loss: 0.4618 - val_acc: 0.7895\n",
  5444.       "Epoch 123/150\n",
  5445.       "252/252 [==============================] - 0s 104us/step - loss: 0.5388 - acc: 0.7341 - val_loss: 0.4689 - val_acc: 0.7895\n",
  5446.       "Epoch 124/150\n",
  5447.       "252/252 [==============================] - 0s 52us/step - loss: 0.5230 - acc: 0.7579 - val_loss: 0.4606 - val_acc: 0.7895\n",
  5448.       "Epoch 125/150\n",
  5449.       "252/252 [==============================] - 0s 43us/step - loss: 0.4991 - acc: 0.7659 - val_loss: 0.4597 - val_acc: 0.8026\n",
  5450.       "Epoch 126/150\n",
  5451.       "252/252 [==============================] - 0s 92us/step - loss: 0.5061 - acc: 0.7381 - val_loss: 0.4323 - val_acc: 0.8553\n",
  5452.       "Epoch 127/150\n",
  5453.       "252/252 [==============================] - 0s 48us/step - loss: 0.4255 - acc: 0.8175 - val_loss: 0.4236 - val_acc: 0.8553\n",
  5454.       "Epoch 128/150\n",
  5455.       "252/252 [==============================] - 0s 33us/step - loss: 0.5343 - acc: 0.7500 - val_loss: 0.4438 - val_acc: 0.8158\n",
  5456.       "Epoch 129/150\n",
  5457.       "252/252 [==============================] - 0s 62us/step - loss: 0.5068 - acc: 0.7341 - val_loss: 0.5004 - val_acc: 0.7237\n",
  5458.       "Epoch 130/150\n",
  5459.       "252/252 [==============================] - 0s 52us/step - loss: 0.5025 - acc: 0.7817 - val_loss: 0.4200 - val_acc: 0.8421\n",
  5460.       "Epoch 131/150\n",
  5461.       "252/252 [==============================] - 0s 58us/step - loss: 0.4708 - acc: 0.7937 - val_loss: 0.4177 - val_acc: 0.8421\n",
  5462.       "Epoch 132/150\n",
  5463.       "252/252 [==============================] - 0s 45us/step - loss: 0.5135 - acc: 0.7579 - val_loss: 0.4119 - val_acc: 0.8421\n",
  5464.       "Epoch 133/150\n",
  5465.       "252/252 [==============================] - 0s 68us/step - loss: 0.4513 - acc: 0.8056 - val_loss: 0.4185 - val_acc: 0.8421\n",
  5466.       "Epoch 134/150\n",
  5467.       "252/252 [==============================] - 0s 41us/step - loss: 0.4817 - acc: 0.7619 - val_loss: 0.4254 - val_acc: 0.7763\n",
  5468.       "Epoch 135/150\n",
  5469.       "252/252 [==============================] - 0s 71us/step - loss: 0.4857 - acc: 0.7698 - val_loss: 0.4009 - val_acc: 0.8553\n",
  5470.       "Epoch 136/150\n",
  5471.       "252/252 [==============================] - 0s 68us/step - loss: 0.4371 - acc: 0.8254 - val_loss: 0.4044 - val_acc: 0.8421\n",
  5472.       "Epoch 137/150\n",
  5473.       "252/252 [==============================] - 0s 122us/step - loss: 0.4386 - acc: 0.7976 - val_loss: 0.3999 - val_acc: 0.8553\n",
  5474.       "Epoch 138/150\n",
  5475.       "252/252 [==============================] - 0s 44us/step - loss: 0.4814 - acc: 0.7778 - val_loss: 0.4582 - val_acc: 0.7763\n",
  5476.       "Epoch 139/150\n",
  5477.       "252/252 [==============================] - 0s 57us/step - loss: 0.4360 - acc: 0.8095 - val_loss: 0.4029 - val_acc: 0.8421\n",
  5478.       "Epoch 140/150\n",
  5479.       "252/252 [==============================] - 0s 36us/step - loss: 0.3902 - acc: 0.8492 - val_loss: 0.4219 - val_acc: 0.8158\n",
  5480.       "Epoch 141/150\n",
  5481.       "252/252 [==============================] - 0s 72us/step - loss: 0.4460 - acc: 0.8016 - val_loss: 0.3906 - val_acc: 0.8553\n",
  5482.       "Epoch 142/150\n",
  5483.       "252/252 [==============================] - 0s 45us/step - loss: 0.3792 - acc: 0.8373 - val_loss: 0.3923 - val_acc: 0.8553\n",
  5484.       "Epoch 143/150\n",
  5485.       "252/252 [==============================] - 0s 80us/step - loss: 0.4590 - acc: 0.7937 - val_loss: 0.3829 - val_acc: 0.8553\n",
  5486.       "Epoch 144/150\n",
  5487.       "252/252 [==============================] - 0s 40us/step - loss: 0.4379 - acc: 0.8016 - val_loss: 0.3757 - val_acc: 0.8421\n",
  5488.       "Epoch 145/150\n",
  5489.       "252/252 [==============================] - 0s 48us/step - loss: 0.4251 - acc: 0.8056 - val_loss: 0.3948 - val_acc: 0.8158\n",
  5490.       "Epoch 146/150\n",
  5491.       "252/252 [==============================] - 0s 80us/step - loss: 0.4386 - acc: 0.7976 - val_loss: 0.3880 - val_acc: 0.8553\n",
  5492.       "Epoch 147/150\n",
  5493.       "252/252 [==============================] - 0s 69us/step - loss: 0.3581 - acc: 0.8492 - val_loss: 0.3723 - val_acc: 0.8421\n",
  5494.       "Epoch 148/150\n",
  5495.       "252/252 [==============================] - 0s 39us/step - loss: 0.4551 - acc: 0.7937 - val_loss: 0.4038 - val_acc: 0.7895\n",
  5496.       "Epoch 149/150\n",
  5497.       "252/252 [==============================] - 0s 41us/step - loss: 0.4816 - acc: 0.7817 - val_loss: 0.3829 - val_acc: 0.8553\n",
  5498.       "Epoch 150/150\n",
  5499.       "252/252 [==============================] - 0s 42us/step - loss: 0.4301 - acc: 0.8016 - val_loss: 0.3773 - val_acc: 0.8684\n"
  5500.      ]
  5501.     }
  5502.    ],
  5503.    "source": [
  5504.     "# And now fitting \n",
  5505.     "\n",
  5506.     "batch_size = 128  # mini-batch with 128 examples\n",
  5507.     "epochs = 150\n",
  5508.     "history = model_1.fit(\n",
  5509.     "    x1, y1,\n",
  5510.     "    batch_size=batch_size,\n",
  5511.     "    epochs=epochs,\n",
  5512.     "    verbose=1,\n",
  5513.     "    validation_data=(x2, y2))"
  5514.    ]
  5515.   },
  5516.   {
  5517.    "cell_type": "code",
  5518.    "execution_count": 304,
  5519.    "metadata": {},
  5520.    "outputs": [
  5521.     {
  5522.      "name": "stdout",
  5523.      "output_type": "stream",
  5524.      "text": [
  5525.       "Test loss: 0.3773496378409235\n",
  5526.       "Test accuracy: 0.868421052631579\n"
  5527.      ]
  5528.     }
  5529.    ],
  5530.    "source": [
  5531.     "score = model_1.evaluate(x2, y2, verbose=0)\n",
  5532.     "print('Test loss:', score[0])\n",
  5533.     "print('Test accuracy:', score[1])"
  5534.    ]
  5535.   },
  5536.   {
  5537.    "cell_type": "code",
  5538.    "execution_count": 305,
  5539.    "metadata": {},
  5540.    "outputs": [],
  5541.    "source": [
  5542.     "test_original['my_prediction']=y_pred_class_rf\n",
  5543.     "test_original['likelihood_winning']=y_pred_prob_rf[:,1]"
  5544.    ]
  5545.   },
  5546.   {
  5547.    "cell_type": "code",
  5548.    "execution_count": 306,
  5549.    "metadata": {},
  5550.    "outputs": [
  5551.     {
  5552.      "data": {
  5553.       "text/html": [
  5554.        "<div>\n",
  5555.        "<style scoped>\n",
  5556.        "    .dataframe tbody tr th:only-of-type {\n",
  5557.        "        vertical-align: middle;\n",
  5558.        "    }\n",
  5559.        "\n",
  5560.        "    .dataframe tbody tr th {\n",
  5561.        "        vertical-align: top;\n",
  5562.        "    }\n",
  5563.        "\n",
  5564.        "    .dataframe thead th {\n",
  5565.        "        text-align: right;\n",
  5566.        "    }\n",
  5567.        "</style>\n",
  5568.        "<table border=\"1\" class=\"dataframe\">\n",
  5569.        "  <thead>\n",
  5570.        "    <tr style=\"text-align: right;\">\n",
  5571.        "      <th></th>\n",
  5572.        "      <th>Game ID</th>\n",
  5573.        "      <th>Team 1</th>\n",
  5574.        "      <th>Team 2</th>\n",
  5575.        "      <th>CityOfGame</th>\n",
  5576.        "      <th>Day</th>\n",
  5577.        "      <th>DateOfGame</th>\n",
  5578.        "      <th>TimeOfGame</th>\n",
  5579.        "      <th>AvgWindSpeed</th>\n",
  5580.        "      <th>AvgHumidity</th>\n",
  5581.        "      <th>Inn 1 Team 1 NOP R>25,SR>125</th>\n",
  5582.        "      <th>...</th>\n",
  5583.        "      <th>Inn 2 Team 2 Total 6s</th>\n",
  5584.        "      <th>Inn 2 Team 2 Max Strike Rate_ALLBatsmen</th>\n",
  5585.        "      <th>Inn 2 Team 1 NoP fast bowlers</th>\n",
  5586.        "      <th>Inn 2 Team 1 NoP Spinners</th>\n",
  5587.        "      <th>Inn 2 Team 1 wickets taken_catches_runout</th>\n",
  5588.        "      <th>Inn2 Team 1 wickets taken_ bowled _lbw_caught by keeper_stumping</th>\n",
  5589.        "      <th>Inn 2 Team 1 Extras conceded in_wides_No Balls</th>\n",
  5590.        "      <th>Winner (team 1=1, team 2=0)</th>\n",
  5591.        "      <th>my_prediction</th>\n",
  5592.        "      <th>likelihood_winning</th>\n",
  5593.        "    </tr>\n",
  5594.        "  </thead>\n",
  5595.        "  <tbody>\n",
  5596.        "    <tr>\n",
  5597.        "      <th>0</th>\n",
  5598.        "      <td>253</td>\n",
  5599.        "      <td>Electronic City Power Savers</td>\n",
  5600.        "      <td>Marathalli Chokers</td>\n",
  5601.        "      <td>Electronic City</td>\n",
  5602.        "      <td>6</td>\n",
  5603.        "      <td>01-01-2016</td>\n",
  5604.        "      <td>20:00:00</td>\n",
  5605.        "      <td>5</td>\n",
  5606.        "      <td>0.62</td>\n",
  5607.        "      <td>1</td>\n",
  5608.        "      <td>...</td>\n",
  5609.        "      <td>5</td>\n",
  5610.        "      <td>142.85</td>\n",
  5611.        "      <td>3</td>\n",
  5612.        "      <td>3</td>\n",
  5613.        "      <td>1</td>\n",
  5614.        "      <td>1</td>\n",
  5615.        "      <td>3</td>\n",
  5616.        "      <td>0</td>\n",
  5617.        "      <td>0</td>\n",
  5618.        "      <td>0.085</td>\n",
  5619.        "    </tr>\n",
  5620.        "    <tr>\n",
  5621.        "      <th>1</th>\n",
  5622.        "      <td>254</td>\n",
  5623.        "      <td>Koramangala Traffic Jammers</td>\n",
  5624.        "      <td>Sarjapur Water Tankers</td>\n",
  5625.        "      <td>Koramangala</td>\n",
  5626.        "      <td>7</td>\n",
  5627.        "      <td>01-02-2016</td>\n",
  5628.        "      <td>20:00:00</td>\n",
  5629.        "      <td>6</td>\n",
  5630.        "      <td>0.66</td>\n",
  5631.        "      <td>1</td>\n",
  5632.        "      <td>...</td>\n",
  5633.        "      <td>4</td>\n",
  5634.        "      <td>210.00</td>\n",
  5635.        "      <td>3</td>\n",
  5636.        "      <td>2</td>\n",
  5637.        "      <td>1</td>\n",
  5638.        "      <td>1</td>\n",
  5639.        "      <td>1</td>\n",
  5640.        "      <td>0</td>\n",
  5641.        "      <td>0</td>\n",
  5642.        "      <td>0.110</td>\n",
  5643.        "    </tr>\n",
  5644.        "    <tr>\n",
  5645.        "      <th>2</th>\n",
  5646.        "      <td>255</td>\n",
  5647.        "      <td>HSR High Rent Payers</td>\n",
  5648.        "      <td>Marathalli Chokers</td>\n",
  5649.        "      <td>Marathalli</td>\n",
  5650.        "      <td>1</td>\n",
  5651.        "      <td>01-03-2016</td>\n",
  5652.        "      <td>16:00:00</td>\n",
  5653.        "      <td>5</td>\n",
  5654.        "      <td>0.64</td>\n",
  5655.        "      <td>0</td>\n",
  5656.        "      <td>...</td>\n",
  5657.        "      <td>1</td>\n",
  5658.        "      <td>166.66</td>\n",
  5659.        "      <td>4</td>\n",
  5660.        "      <td>2</td>\n",
  5661.        "      <td>2</td>\n",
  5662.        "      <td>7</td>\n",
  5663.        "      <td>4</td>\n",
  5664.        "      <td>1</td>\n",
  5665.        "      <td>0</td>\n",
  5666.        "      <td>0.435</td>\n",
  5667.        "    </tr>\n",
  5668.        "    <tr>\n",
  5669.        "      <th>3</th>\n",
  5670.        "      <td>256</td>\n",
  5671.        "      <td>Indranagar Pub Watchers</td>\n",
  5672.        "      <td>Silkboard Slow Movers</td>\n",
  5673.        "      <td>Indranagar</td>\n",
  5674.        "      <td>2</td>\n",
  5675.        "      <td>01-04-2016</td>\n",
  5676.        "      <td>20:00:00</td>\n",
  5677.        "      <td>5</td>\n",
  5678.        "      <td>0.64</td>\n",
  5679.        "      <td>1</td>\n",
  5680.        "      <td>...</td>\n",
  5681.        "      <td>4</td>\n",
  5682.        "      <td>166.66</td>\n",
  5683.        "      <td>2</td>\n",
  5684.        "      <td>4</td>\n",
  5685.        "      <td>6</td>\n",
  5686.        "      <td>3</td>\n",
  5687.        "      <td>2</td>\n",
  5688.        "      <td>1</td>\n",
  5689.        "      <td>1</td>\n",
  5690.        "      <td>0.795</td>\n",
  5691.        "    </tr>\n",
  5692.        "    <tr>\n",
  5693.        "      <th>4</th>\n",
  5694.        "      <td>257</td>\n",
  5695.        "      <td>Whitefield Water Loggers</td>\n",
  5696.        "      <td>Sarjapur Water Tankers</td>\n",
  5697.        "      <td>Whitefield</td>\n",
  5698.        "      <td>3</td>\n",
  5699.        "      <td>01-05-2016</td>\n",
  5700.        "      <td>16:00:00</td>\n",
  5701.        "      <td>5</td>\n",
  5702.        "      <td>0.62</td>\n",
  5703.        "      <td>2</td>\n",
  5704.        "      <td>...</td>\n",
  5705.        "      <td>2</td>\n",
  5706.        "      <td>160.00</td>\n",
  5707.        "      <td>4</td>\n",
  5708.        "      <td>2</td>\n",
  5709.        "      <td>6</td>\n",
  5710.        "      <td>1</td>\n",
  5711.        "      <td>2</td>\n",
  5712.        "      <td>1</td>\n",
  5713.        "      <td>1</td>\n",
  5714.        "      <td>0.670</td>\n",
  5715.        "    </tr>\n",
  5716.        "    <tr>\n",
  5717.        "      <th>5</th>\n",
  5718.        "      <td>258</td>\n",
  5719.        "      <td>Electronic City Power Savers</td>\n",
  5720.        "      <td>Bellandur Froth Fighters</td>\n",
  5721.        "      <td>Bellandur</td>\n",
  5722.        "      <td>4</td>\n",
  5723.        "      <td>01-06-2016</td>\n",
  5724.        "      <td>20:00:00</td>\n",
  5725.        "      <td>5</td>\n",
  5726.        "      <td>0.62</td>\n",
  5727.        "      <td>3</td>\n",
  5728.        "      <td>...</td>\n",
  5729.        "      <td>4</td>\n",
  5730.        "      <td>187.50</td>\n",
  5731.        "      <td>3</td>\n",
  5732.        "      <td>4</td>\n",
  5733.        "      <td>5</td>\n",
  5734.        "      <td>5</td>\n",
  5735.        "      <td>3</td>\n",
  5736.        "      <td>1</td>\n",
  5737.        "      <td>1</td>\n",
  5738.        "      <td>0.835</td>\n",
  5739.        "    </tr>\n",
  5740.        "    <tr>\n",
  5741.        "      <th>6</th>\n",
  5742.        "      <td>259</td>\n",
  5743.        "      <td>Indranagar Pub Watchers</td>\n",
  5744.        "      <td>Koramangala Traffic Jammers</td>\n",
  5745.        "      <td>Indranagar</td>\n",
  5746.        "      <td>5</td>\n",
  5747.        "      <td>01-07-2016</td>\n",
  5748.        "      <td>16:00:00</td>\n",
  5749.        "      <td>5</td>\n",
  5750.        "      <td>0.60</td>\n",
  5751.        "      <td>2</td>\n",
  5752.        "      <td>...</td>\n",
  5753.        "      <td>5</td>\n",
  5754.        "      <td>227.27</td>\n",
  5755.        "      <td>2</td>\n",
  5756.        "      <td>3</td>\n",
  5757.        "      <td>4</td>\n",
  5758.        "      <td>6</td>\n",
  5759.        "      <td>5</td>\n",
  5760.        "      <td>1</td>\n",
  5761.        "      <td>1</td>\n",
  5762.        "      <td>0.850</td>\n",
  5763.        "    </tr>\n",
  5764.        "    <tr>\n",
  5765.        "      <th>7</th>\n",
  5766.        "      <td>260</td>\n",
  5767.        "      <td>HSR High Rent Payers</td>\n",
  5768.        "      <td>Silkboard Slow Movers</td>\n",
  5769.        "      <td>HSR</td>\n",
  5770.        "      <td>6</td>\n",
  5771.        "      <td>01-08-2016</td>\n",
  5772.        "      <td>20:00:00</td>\n",
  5773.        "      <td>5</td>\n",
  5774.        "      <td>0.60</td>\n",
  5775.        "      <td>0</td>\n",
  5776.        "      <td>...</td>\n",
  5777.        "      <td>4</td>\n",
  5778.        "      <td>200.00</td>\n",
  5779.        "      <td>4</td>\n",
  5780.        "      <td>2</td>\n",
  5781.        "      <td>6</td>\n",
  5782.        "      <td>2</td>\n",
  5783.        "      <td>5</td>\n",
  5784.        "      <td>1</td>\n",
  5785.        "      <td>1</td>\n",
  5786.        "      <td>0.710</td>\n",
  5787.        "    </tr>\n",
  5788.        "    <tr>\n",
  5789.        "      <th>8</th>\n",
  5790.        "      <td>261</td>\n",
  5791.        "      <td>Bellandur Froth Fighters</td>\n",
  5792.        "      <td>Marathalli Chokers</td>\n",
  5793.        "      <td>HSR</td>\n",
  5794.        "      <td>7</td>\n",
  5795.        "      <td>01-09-2016</td>\n",
  5796.        "      <td>20:00:00</td>\n",
  5797.        "      <td>5</td>\n",
  5798.        "      <td>0.63</td>\n",
  5799.        "      <td>2</td>\n",
  5800.        "      <td>...</td>\n",
  5801.        "      <td>8</td>\n",
  5802.        "      <td>175.00</td>\n",
  5803.        "      <td>2</td>\n",
  5804.        "      <td>3</td>\n",
  5805.        "      <td>3</td>\n",
  5806.        "      <td>2</td>\n",
  5807.        "      <td>0</td>\n",
  5808.        "      <td>0</td>\n",
  5809.        "      <td>0</td>\n",
  5810.        "      <td>0.255</td>\n",
  5811.        "    </tr>\n",
  5812.        "    <tr>\n",
  5813.        "      <th>9</th>\n",
  5814.        "      <td>262</td>\n",
  5815.        "      <td>Koramangala Traffic Jammers</td>\n",
  5816.        "      <td>Whitefield Water Loggers</td>\n",
  5817.        "      <td>Whitefield</td>\n",
  5818.        "      <td>1</td>\n",
  5819.        "      <td>01-10-2016</td>\n",
  5820.        "      <td>16:00:00</td>\n",
  5821.        "      <td>5</td>\n",
  5822.        "      <td>0.64</td>\n",
  5823.        "      <td>2</td>\n",
  5824.        "      <td>...</td>\n",
  5825.        "      <td>3</td>\n",
  5826.        "      <td>166.66</td>\n",
  5827.        "      <td>4</td>\n",
  5828.        "      <td>1</td>\n",
  5829.        "      <td>6</td>\n",
  5830.        "      <td>3</td>\n",
  5831.        "      <td>8</td>\n",
  5832.        "      <td>1</td>\n",
  5833.        "      <td>1</td>\n",
  5834.        "      <td>0.865</td>\n",
  5835.        "    </tr>\n",
  5836.        "    <tr>\n",
  5837.        "      <th>10</th>\n",
  5838.        "      <td>263</td>\n",
  5839.        "      <td>Electronic City Power Savers</td>\n",
  5840.        "      <td>Sarjapur Water Tankers</td>\n",
  5841.        "      <td>Sarjapur</td>\n",
  5842.        "      <td>2</td>\n",
  5843.        "      <td>01-11-2016</td>\n",
  5844.        "      <td>20:00:00</td>\n",
  5845.        "      <td>5</td>\n",
  5846.        "      <td>0.64</td>\n",
  5847.        "      <td>0</td>\n",
  5848.        "      <td>...</td>\n",
  5849.        "      <td>3</td>\n",
  5850.        "      <td>165.38</td>\n",
  5851.        "      <td>3</td>\n",
  5852.        "      <td>3</td>\n",
  5853.        "      <td>2</td>\n",
  5854.        "      <td>0</td>\n",
  5855.        "      <td>0</td>\n",
  5856.        "      <td>0</td>\n",
  5857.        "      <td>0</td>\n",
  5858.        "      <td>0.040</td>\n",
  5859.        "    </tr>\n",
  5860.        "    <tr>\n",
  5861.        "      <th>11</th>\n",
  5862.        "      <td>264</td>\n",
  5863.        "      <td>Marathalli Chokers</td>\n",
  5864.        "      <td>Indranagar Pub Watchers</td>\n",
  5865.        "      <td>Marathalli</td>\n",
  5866.        "      <td>3</td>\n",
  5867.        "      <td>01-12-2016</td>\n",
  5868.        "      <td>20:00:00</td>\n",
  5869.        "      <td>6</td>\n",
  5870.        "      <td>0.67</td>\n",
  5871.        "      <td>3</td>\n",
  5872.        "      <td>...</td>\n",
  5873.        "      <td>10</td>\n",
  5874.        "      <td>233.33</td>\n",
  5875.        "      <td>4</td>\n",
  5876.        "      <td>2</td>\n",
  5877.        "      <td>5</td>\n",
  5878.        "      <td>5</td>\n",
  5879.        "      <td>3</td>\n",
  5880.        "      <td>1</td>\n",
  5881.        "      <td>1</td>\n",
  5882.        "      <td>0.845</td>\n",
  5883.        "    </tr>\n",
  5884.        "    <tr>\n",
  5885.        "      <th>12</th>\n",
  5886.        "      <td>265</td>\n",
  5887.        "      <td>Whitefield Water Loggers</td>\n",
  5888.        "      <td>Electronic City Power Savers</td>\n",
  5889.        "      <td>Electronic City</td>\n",
  5890.        "      <td>4</td>\n",
  5891.        "      <td>01-13-2016</td>\n",
  5892.        "      <td>16:00:00</td>\n",
  5893.        "      <td>6</td>\n",
  5894.        "      <td>0.62</td>\n",
  5895.        "      <td>2</td>\n",
  5896.        "      <td>...</td>\n",
  5897.        "      <td>11</td>\n",
  5898.        "      <td>400.00</td>\n",
  5899.        "      <td>3</td>\n",
  5900.        "      <td>2</td>\n",
  5901.        "      <td>5</td>\n",
  5902.        "      <td>0</td>\n",
  5903.        "      <td>4</td>\n",
  5904.        "      <td>0</td>\n",
  5905.        "      <td>1</td>\n",
  5906.        "      <td>0.565</td>\n",
  5907.        "    </tr>\n",
  5908.        "    <tr>\n",
  5909.        "      <th>13</th>\n",
  5910.        "      <td>266</td>\n",
  5911.        "      <td>HSR High Rent Payers</td>\n",
  5912.        "      <td>Silkboard Slow Movers</td>\n",
  5913.        "      <td>Silkboard</td>\n",
  5914.        "      <td>5</td>\n",
  5915.        "      <td>01-14-2016</td>\n",
  5916.        "      <td>20:00:00</td>\n",
  5917.        "      <td>6</td>\n",
  5918.        "      <td>0.62</td>\n",
  5919.        "      <td>0</td>\n",
  5920.        "      <td>...</td>\n",
  5921.        "      <td>1</td>\n",
  5922.        "      <td>123.52</td>\n",
  5923.        "      <td>5</td>\n",
  5924.        "      <td>1</td>\n",
  5925.        "      <td>2</td>\n",
  5926.        "      <td>1</td>\n",
  5927.        "      <td>0</td>\n",
  5928.        "      <td>0</td>\n",
  5929.        "      <td>0</td>\n",
  5930.        "      <td>0.045</td>\n",
  5931.        "    </tr>\n",
  5932.        "    <tr>\n",
  5933.        "      <th>14</th>\n",
  5934.        "      <td>267</td>\n",
  5935.        "      <td>Indranagar Pub Watchers</td>\n",
  5936.        "      <td>Koramangala Traffic Jammers</td>\n",
  5937.        "      <td>Koramangala</td>\n",
  5938.        "      <td>6</td>\n",
  5939.        "      <td>01-15-2016</td>\n",
  5940.        "      <td>20:00:00</td>\n",
  5941.        "      <td>5</td>\n",
  5942.        "      <td>0.65</td>\n",
  5943.        "      <td>0</td>\n",
  5944.        "      <td>...</td>\n",
  5945.        "      <td>3</td>\n",
  5946.        "      <td>233.33</td>\n",
  5947.        "      <td>1</td>\n",
  5948.        "      <td>5</td>\n",
  5949.        "      <td>3</td>\n",
  5950.        "      <td>2</td>\n",
  5951.        "      <td>6</td>\n",
  5952.        "      <td>0</td>\n",
  5953.        "      <td>0</td>\n",
  5954.        "      <td>0.220</td>\n",
  5955.        "    </tr>\n",
  5956.        "    <tr>\n",
  5957.        "      <th>15</th>\n",
  5958.        "      <td>268</td>\n",
  5959.        "      <td>Electronic City Power Savers</td>\n",
  5960.        "      <td>HSR High Rent Payers</td>\n",
  5961.        "      <td>HSR</td>\n",
  5962.        "      <td>7</td>\n",
  5963.        "      <td>01-16-2016</td>\n",
  5964.        "      <td>20:00:00</td>\n",
  5965.        "      <td>7</td>\n",
  5966.        "      <td>0.58</td>\n",
  5967.        "      <td>2</td>\n",
  5968.        "      <td>...</td>\n",
  5969.        "      <td>5</td>\n",
  5970.        "      <td>200.00</td>\n",
  5971.        "      <td>4</td>\n",
  5972.        "      <td>2</td>\n",
  5973.        "      <td>2</td>\n",
  5974.        "      <td>1</td>\n",
  5975.        "      <td>3</td>\n",
  5976.        "      <td>0</td>\n",
  5977.        "      <td>0</td>\n",
  5978.        "      <td>0.085</td>\n",
  5979.        "    </tr>\n",
  5980.        "    <tr>\n",
  5981.        "      <th>16</th>\n",
  5982.        "      <td>269</td>\n",
  5983.        "      <td>Silkboard Slow Movers</td>\n",
  5984.        "      <td>Koramangala Traffic Jammers</td>\n",
  5985.        "      <td>Koramangala</td>\n",
  5986.        "      <td>1</td>\n",
  5987.        "      <td>01-17-2016</td>\n",
  5988.        "      <td>16:00:00</td>\n",
  5989.        "      <td>8</td>\n",
  5990.        "      <td>0.50</td>\n",
  5991.        "      <td>0</td>\n",
  5992.        "      <td>...</td>\n",
  5993.        "      <td>2</td>\n",
  5994.        "      <td>169.23</td>\n",
  5995.        "      <td>3</td>\n",
  5996.        "      <td>2</td>\n",
  5997.        "      <td>3</td>\n",
  5998.        "      <td>4</td>\n",
  5999.        "      <td>2</td>\n",
  6000.        "      <td>1</td>\n",
  6001.        "      <td>1</td>\n",
  6002.        "      <td>0.555</td>\n",
  6003.        "    </tr>\n",
  6004.        "    <tr>\n",
  6005.        "      <th>17</th>\n",
  6006.        "      <td>270</td>\n",
  6007.        "      <td>Indranagar Pub Watchers</td>\n",
  6008.        "      <td>Whitefield Water Loggers</td>\n",
  6009.        "      <td>Whitefield</td>\n",
  6010.        "      <td>2</td>\n",
  6011.        "      <td>01-18-2016</td>\n",
  6012.        "      <td>20:00:00</td>\n",
  6013.        "      <td>8</td>\n",
  6014.        "      <td>0.50</td>\n",
  6015.        "      <td>2</td>\n",
  6016.        "      <td>...</td>\n",
  6017.        "      <td>5</td>\n",
  6018.        "      <td>175.00</td>\n",
  6019.        "      <td>2</td>\n",
  6020.        "      <td>3</td>\n",
  6021.        "      <td>4</td>\n",
  6022.        "      <td>6</td>\n",
  6023.        "      <td>2</td>\n",
  6024.        "      <td>1</td>\n",
  6025.        "      <td>1</td>\n",
  6026.        "      <td>0.865</td>\n",
  6027.        "    </tr>\n",
  6028.        "    <tr>\n",
  6029.        "      <th>18</th>\n",
  6030.        "      <td>271</td>\n",
  6031.        "      <td>Marathalli Chokers</td>\n",
  6032.        "      <td>Sarjapur Water Tankers</td>\n",
  6033.        "      <td>Marathalli</td>\n",
  6034.        "      <td>3</td>\n",
  6035.        "      <td>01-19-2016</td>\n",
  6036.        "      <td>20:00:00</td>\n",
  6037.        "      <td>7</td>\n",
  6038.        "      <td>0.52</td>\n",
  6039.        "      <td>1</td>\n",
  6040.        "      <td>...</td>\n",
  6041.        "      <td>1</td>\n",
  6042.        "      <td>112.50</td>\n",
  6043.        "      <td>4</td>\n",
  6044.        "      <td>1</td>\n",
  6045.        "      <td>3</td>\n",
  6046.        "      <td>0</td>\n",
  6047.        "      <td>6</td>\n",
  6048.        "      <td>0</td>\n",
  6049.        "      <td>0</td>\n",
  6050.        "      <td>0.135</td>\n",
  6051.        "    </tr>\n",
  6052.        "    <tr>\n",
  6053.        "      <th>19</th>\n",
  6054.        "      <td>272</td>\n",
  6055.        "      <td>Bellandur Froth Fighters</td>\n",
  6056.        "      <td>Indranagar Pub Watchers</td>\n",
  6057.        "      <td>Indranagar</td>\n",
  6058.        "      <td>4</td>\n",
  6059.        "      <td>01-20-2016</td>\n",
  6060.        "      <td>16:00:00</td>\n",
  6061.        "      <td>6</td>\n",
  6062.        "      <td>0.56</td>\n",
  6063.        "      <td>3</td>\n",
  6064.        "      <td>...</td>\n",
  6065.        "      <td>6</td>\n",
  6066.        "      <td>300.00</td>\n",
  6067.        "      <td>2</td>\n",
  6068.        "      <td>2</td>\n",
  6069.        "      <td>4</td>\n",
  6070.        "      <td>1</td>\n",
  6071.        "      <td>6</td>\n",
  6072.        "      <td>0</td>\n",
  6073.        "      <td>1</td>\n",
  6074.        "      <td>0.520</td>\n",
  6075.        "    </tr>\n",
  6076.        "    <tr>\n",
  6077.        "      <th>20</th>\n",
  6078.        "      <td>273</td>\n",
  6079.        "      <td>HSR High Rent Payers</td>\n",
  6080.        "      <td>Whitefield Water Loggers</td>\n",
  6081.        "      <td>Whitefield</td>\n",
  6082.        "      <td>5</td>\n",
  6083.        "      <td>01-21-2016</td>\n",
  6084.        "      <td>20:00:00</td>\n",
  6085.        "      <td>6</td>\n",
  6086.        "      <td>0.56</td>\n",
  6087.        "      <td>3</td>\n",
  6088.        "      <td>...</td>\n",
  6089.        "      <td>14</td>\n",
  6090.        "      <td>235.71</td>\n",
  6091.        "      <td>5</td>\n",
  6092.        "      <td>1</td>\n",
  6093.        "      <td>2</td>\n",
  6094.        "      <td>2</td>\n",
  6095.        "      <td>5</td>\n",
  6096.        "      <td>0</td>\n",
  6097.        "      <td>0</td>\n",
  6098.        "      <td>0.295</td>\n",
  6099.        "    </tr>\n",
  6100.        "    <tr>\n",
  6101.        "      <th>21</th>\n",
  6102.        "      <td>274</td>\n",
  6103.        "      <td>Silkboard Slow Movers</td>\n",
  6104.        "      <td>Koramangala Traffic Jammers</td>\n",
  6105.        "      <td>Silkboard</td>\n",
  6106.        "      <td>6</td>\n",
  6107.        "      <td>01-22-2016</td>\n",
  6108.        "      <td>20:00:00</td>\n",
  6109.        "      <td>7</td>\n",
  6110.        "      <td>0.58</td>\n",
  6111.        "      <td>1</td>\n",
  6112.        "      <td>...</td>\n",
  6113.        "      <td>3</td>\n",
  6114.        "      <td>150.00</td>\n",
  6115.        "      <td>3</td>\n",
  6116.        "      <td>2</td>\n",
  6117.        "      <td>1</td>\n",
  6118.        "      <td>1</td>\n",
  6119.        "      <td>1</td>\n",
  6120.        "      <td>0</td>\n",
  6121.        "      <td>0</td>\n",
  6122.        "      <td>0.025</td>\n",
  6123.        "    </tr>\n",
  6124.        "    <tr>\n",
  6125.        "      <th>22</th>\n",
  6126.        "      <td>275</td>\n",
  6127.        "      <td>Bellandur Froth Fighters</td>\n",
  6128.        "      <td>Sarjapur Water Tankers</td>\n",
  6129.        "      <td>Sarjapur</td>\n",
  6130.        "      <td>7</td>\n",
  6131.        "      <td>01-23-2016</td>\n",
  6132.        "      <td>16:00:00</td>\n",
  6133.        "      <td>6</td>\n",
  6134.        "      <td>0.61</td>\n",
  6135.        "      <td>2</td>\n",
  6136.        "      <td>...</td>\n",
  6137.        "      <td>9</td>\n",
  6138.        "      <td>160.93</td>\n",
  6139.        "      <td>3</td>\n",
  6140.        "      <td>3</td>\n",
  6141.        "      <td>4</td>\n",
  6142.        "      <td>1</td>\n",
  6143.        "      <td>4</td>\n",
  6144.        "      <td>0</td>\n",
  6145.        "      <td>0</td>\n",
  6146.        "      <td>0.375</td>\n",
  6147.        "    </tr>\n",
  6148.        "    <tr>\n",
  6149.        "      <th>23</th>\n",
  6150.        "      <td>276</td>\n",
  6151.        "      <td>Electronic City Power Savers</td>\n",
  6152.        "      <td>HSR High Rent Payers</td>\n",
  6153.        "      <td>Electronic City</td>\n",
  6154.        "      <td>1</td>\n",
  6155.        "      <td>01-24-2016</td>\n",
  6156.        "      <td>20:00:00</td>\n",
  6157.        "      <td>6</td>\n",
  6158.        "      <td>0.61</td>\n",
  6159.        "      <td>1</td>\n",
  6160.        "      <td>...</td>\n",
  6161.        "      <td>2</td>\n",
  6162.        "      <td>216.66</td>\n",
  6163.        "      <td>3</td>\n",
  6164.        "      <td>3</td>\n",
  6165.        "      <td>6</td>\n",
  6166.        "      <td>1</td>\n",
  6167.        "      <td>8</td>\n",
  6168.        "      <td>1</td>\n",
  6169.        "      <td>1</td>\n",
  6170.        "      <td>0.765</td>\n",
  6171.        "    </tr>\n",
  6172.        "    <tr>\n",
  6173.        "      <th>24</th>\n",
  6174.        "      <td>277</td>\n",
  6175.        "      <td>Silkboard Slow Movers</td>\n",
  6176.        "      <td>Whitefield Water Loggers</td>\n",
  6177.        "      <td>Silkboard</td>\n",
  6178.        "      <td>2</td>\n",
  6179.        "      <td>01-25-2016</td>\n",
  6180.        "      <td>20:00:00</td>\n",
  6181.        "      <td>7</td>\n",
  6182.        "      <td>0.60</td>\n",
  6183.        "      <td>2</td>\n",
  6184.        "      <td>...</td>\n",
  6185.        "      <td>4</td>\n",
  6186.        "      <td>155.35</td>\n",
  6187.        "      <td>4</td>\n",
  6188.        "      <td>1</td>\n",
  6189.        "      <td>2</td>\n",
  6190.        "      <td>3</td>\n",
  6191.        "      <td>8</td>\n",
  6192.        "      <td>0</td>\n",
  6193.        "      <td>0</td>\n",
  6194.        "      <td>0.285</td>\n",
  6195.        "    </tr>\n",
  6196.        "    <tr>\n",
  6197.        "      <th>25</th>\n",
  6198.        "      <td>278</td>\n",
  6199.        "      <td>Indranagar Pub Watchers</td>\n",
  6200.        "      <td>Electronic City Power Savers</td>\n",
  6201.        "      <td>Electronic City</td>\n",
  6202.        "      <td>3</td>\n",
  6203.        "      <td>01-26-2016</td>\n",
  6204.        "      <td>16:00:00</td>\n",
  6205.        "      <td>10</td>\n",
  6206.        "      <td>0.55</td>\n",
  6207.        "      <td>0</td>\n",
  6208.        "      <td>...</td>\n",
  6209.        "      <td>2</td>\n",
  6210.        "      <td>160.00</td>\n",
  6211.        "      <td>3</td>\n",
  6212.        "      <td>3</td>\n",
  6213.        "      <td>1</td>\n",
  6214.        "      <td>2</td>\n",
  6215.        "      <td>1</td>\n",
  6216.        "      <td>0</td>\n",
  6217.        "      <td>0</td>\n",
  6218.        "      <td>0.090</td>\n",
  6219.        "    </tr>\n",
  6220.        "    <tr>\n",
  6221.        "      <th>26</th>\n",
  6222.        "      <td>279</td>\n",
  6223.        "      <td>HSR High Rent Payers</td>\n",
  6224.        "      <td>Sarjapur Water Tankers</td>\n",
  6225.        "      <td>Sarjapur</td>\n",
  6226.        "      <td>4</td>\n",
  6227.        "      <td>01-27-2016</td>\n",
  6228.        "      <td>20:00:00</td>\n",
  6229.        "      <td>10</td>\n",
  6230.        "      <td>0.55</td>\n",
  6231.        "      <td>2</td>\n",
  6232.        "      <td>...</td>\n",
  6233.        "      <td>9</td>\n",
  6234.        "      <td>183.33</td>\n",
  6235.        "      <td>6</td>\n",
  6236.        "      <td>1</td>\n",
  6237.        "      <td>6</td>\n",
  6238.        "      <td>1</td>\n",
  6239.        "      <td>3</td>\n",
  6240.        "      <td>1</td>\n",
  6241.        "      <td>1</td>\n",
  6242.        "      <td>0.835</td>\n",
  6243.        "    </tr>\n",
  6244.        "    <tr>\n",
  6245.        "      <th>27</th>\n",
  6246.        "      <td>280</td>\n",
  6247.        "      <td>Marathalli Chokers</td>\n",
  6248.        "      <td>Silkboard Slow Movers</td>\n",
  6249.        "      <td>Marathalli</td>\n",
  6250.        "      <td>5</td>\n",
  6251.        "      <td>01-28-2016</td>\n",
  6252.        "      <td>16:00:00</td>\n",
  6253.        "      <td>10</td>\n",
  6254.        "      <td>0.58</td>\n",
  6255.        "      <td>2</td>\n",
  6256.        "      <td>...</td>\n",
  6257.        "      <td>4</td>\n",
  6258.        "      <td>170.00</td>\n",
  6259.        "      <td>4</td>\n",
  6260.        "      <td>2</td>\n",
  6261.        "      <td>3</td>\n",
  6262.        "      <td>1</td>\n",
  6263.        "      <td>6</td>\n",
  6264.        "      <td>0</td>\n",
  6265.        "      <td>0</td>\n",
  6266.        "      <td>0.140</td>\n",
  6267.        "    </tr>\n",
  6268.        "    <tr>\n",
  6269.        "      <th>28</th>\n",
  6270.        "      <td>281</td>\n",
  6271.        "      <td>Bellandur Froth Fighters</td>\n",
  6272.        "      <td>Koramangala Traffic Jammers</td>\n",
  6273.        "      <td>Silkboard</td>\n",
  6274.        "      <td>6</td>\n",
  6275.        "      <td>01-29-2016</td>\n",
  6276.        "      <td>20:00:00</td>\n",
  6277.        "      <td>10</td>\n",
  6278.        "      <td>0.58</td>\n",
  6279.        "      <td>0</td>\n",
  6280.        "      <td>...</td>\n",
  6281.        "      <td>1</td>\n",
  6282.        "      <td>150.00</td>\n",
  6283.        "      <td>2</td>\n",
  6284.        "      <td>4</td>\n",
  6285.        "      <td>1</td>\n",
  6286.        "      <td>4</td>\n",
  6287.        "      <td>7</td>\n",
  6288.        "      <td>0</td>\n",
  6289.        "      <td>0</td>\n",
  6290.        "      <td>0.330</td>\n",
  6291.        "    </tr>\n",
  6292.        "    <tr>\n",
  6293.        "      <th>29</th>\n",
  6294.        "      <td>282</td>\n",
  6295.        "      <td>Whitefield Water Loggers</td>\n",
  6296.        "      <td>Indranagar Pub Watchers</td>\n",
  6297.        "      <td>Indranagar</td>\n",
  6298.        "      <td>7</td>\n",
  6299.        "      <td>01-30-2016</td>\n",
  6300.        "      <td>20:00:00</td>\n",
  6301.        "      <td>9</td>\n",
  6302.        "      <td>0.58</td>\n",
  6303.        "      <td>2</td>\n",