Advertisement
Guest User

Untitled

a guest
May 23rd, 2019
230
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 1.59 KB | None | 0 0
  1. \begin{document}
  2.  
  3. % \renewcommand{\qedsymbol}{\filledbox}
  4.  
  5. \title{Assignment 1}
  6. \author{Chistyakov Gleb\\ group 164}
  7. \date{24th May 2019}
  8.  
  9. \maketitle
  10.  
  11. \subsection*{Task №1}
  12. $\forall x \forall y: \ Point(x) \wedge Point(y) \wedge \neg (x = y) \Rightarrow$
  13.  
  14. \begin{enumerate}
  15.    \item
  16.    $\exists!l: \ Line(l) \wedge LiesOn(x, l) \wedge LiesOn(y, l)$
  17.    
  18.    \item
  19.    $\forall l_1, \forall l_2: \ Line(l_1) \wedge Line(l_2) \ - \ l_1 \parallel l_2 \Longleftrightarrow \neg \exists x: \ Point(x) \wedge LiseOn(x, l_1) \wedge LiesOn(x, l_2)$
  20.    
  21.    \item
  22.    $\forall x, \forall y: Line(x) \wedge Point(y) \wedge \neg LiesOn(y, x) \Rightarrow \exists!z: Line(z) \wedge LiesOn(y, z) \wedge (z \parallel x)$
  23. \end{enumerate}
  24.  
  25. \subsection*{Task №2}
  26. Let's show that
  27. $$\forall x(\neg P(x) \rightarrow Q(x)) \rightarrow \forall y(\neg Q(y) \rightarrow P(y)) \equiv 1$$
  28. So
  29. $$\forall x(\neg P(x) \rightarrow Q(x)) \rightarrow \forall y(\neg Q(y) \rightarrow P(y)) =
  30. \neg(\forall x(\neg P(x) \rightarrow Q(x))) \vee \forall y (Q(y) \vee P(y))$$
  31. Consider the negation of the formula
  32. $$\forall x (\neg P(x) \rightarrow Q(x)) \wedge \exists y(\neg Q(y) \wedge \neg P(y))$$
  33. Take specific y' then there is one way when $\neg Q(y') \wedge \neg P(y') \equiv 1$ that is $P(y') = Q(y') = 0$
  34. But for such values $\neg P(y') \rightarrow Q(y') = 0$ \\
  35. In this way $\forall x (\neg P(x) \rightarrow Q(x)) \wedge \exists y(\neg Q(y) \wedge \neg P(y))$ is always false.
  36. Therefore $\forall x(\neg P(x) \rightarrow Q(x)) \rightarrow \forall y(\neg Q(y) \rightarrow P(y)) \equiv 1$
  37.  
  38. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement