Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Dragon Warrior III item glitch TAS route notes
- ==============================================
- | RNG ctr |
- Location |Start| End | Notes
- ------------------+-----+-----+-----------------------------------------
- Hero's home 2F | 25 | 27 | 13 steps
- Aliahan | 28 | 36 | 14 steps straight up
- Aliahan Castle 1F | 37 | 55 | 20 steps straight up
- Aliahan Castle 2F | 56 | 64 | 16 steps up, 16 steps dn
- Aliahan Castle 1F | 65 | 82 | 20 steps straight down
- Aliahan | 83 | 118 | 26 steps to item shop; 28 to Luisa 2F
- Luisa's Place 2F | 119 | 120 | 11 steps to registration counter
- Luisa's Place 2F | 136 | 138 | 11 steps back after registering 2 chars
- Aliahan | 139 | 159 | 5 steps to Luisa, checksum, 25 steps out
- Overworld | 160 | 220 | First step battle with 1 Slime
- Aliahan | 221 | 238 |
- Reset | --- | --- |
- Aliahan Castle 2F | 2 | 3 | Formation change, then immediate Wing
- Overworld | 4 | 59 | 33 steps to hidden entrance; wait for
- | | | 5*64 frames after 14 steps to avoid
- | | | encounter
- Najima Hidden Entr| 60 | 60 | 9 steps; no enemies or NPCs
- Najima Tunnel | 61 | 124 | 63 steps
- Najima Tower 1F | 125 | 172 | 35 steps; 12 doublecounts due to low
- | | | encounter rate
- Najima Tower 2F | 173 | 225 | 52 steps
- Najima Tower 3F | 226 | 18 | 48 steps
- Najima Tower 4F | 19 | 19 | 24 steps; no enemies or random NPCs
- Overworld | 20 | 87 | Immediate Wing, heal, then 39 steps
- Reeve | 88 | 96 | 7 steps to item shop; 20 to door; 7 to
- | | | stairs
- Reeve house 2F | 97 | 97 | 2+2 steps; no NPC randomness
- Reeve | 98 | 108 | 23 steps to weapon shop; 11 steps out
- Overworld | 109 | 189 | 56 steps
- Romaly Tunnel 1F | 190 | 190 | No randomness
- Romaly Tunnel B1 | 191 | 191 | No randomness
- Romaly Tunnel B2 | 192 | 163 | 156 steps; after 84 steps (20 steps into
- | | | long vertical corridor), use Heal and
- | | | 2 extra steps to avoid an encounter;
- | | | many doublecounts
- Romaly Tunnel B3 | 164 | 207 | 43 steps
- Romaly Shrine B1 | 208 | 208 | No randomness
- Romaly Shrine 1F | 209 | 209 | No randomness
- Overworld | 210 | 85 | 71+2 steps; Heal+herb after 44, wait 80
- | | | frames & take 2 extra steps in forest
- | | | to avoid encounter
- Kanave | 87 | 87 | No randomness at night
- Overworld | 88 | 23 | Walk around SE mountains, stop once
- | | | before each of the last two steps
- Killer Bee battle | 23 | 131 | See turn list below
- Overworld | 132 | 132 | Walk straight into town
- Aliahan | 133 | 176 | 23 steps to Luisa; careful not to cure
- | | | numbness
- Luisa's Place | --- | --- | Item glitch, reset for Metal Babbles
- Aliahan | 2 | 4 | Transfer/equip stuff; Wing to Rimuldar
- Alefgard | 5 | 35 | 30 steps around Rimuldar until battle
- Metal Babbles | 35 | --- | See turn list below
- Alefgard | --- | --- | Straight into Rimuldar
- Rimuldar | --- | --- | Shop, inn, Return->Aliahan, save/reset
- Aliahan | 2 | 4 | Transfer/equip stuff; Return->Rimuldar
- Alefgard | 5 | 211 | 103+24 steps; 2x Heal after 16 steps to
- | | | avoid encounter; extra 24 steps in
- | | | Charlock swamp to advance counter
- Charlock 1F | 212 | 187 | 135+4 steps; 3xHeal, 1xWizRing, 4xHeal
- | | | after 61 steps to avoid encounter and
- | | | advance RNG counter; 4 extra steps in
- | | | front of Titan door
- Granite Titans 1 | 187 | 216 | 1x Heal after battle
- Granite Titans 2 | 227 | 76 | 2x WizRing, 2x Heal after battle
- Granite Titans 3 | 145 | 108 |
- Charlock 1F | 109 | 129 | 20 steps
- Charlock B1 | 130 | 132 | 2 steps
- Charlock B2 | 133 | 185 | 44 steps; 8 overcounts
- Charlock B3 | 186 | 21 | 90 steps
- Charlock B3 heals | 21 | 163 | 8x Heal, 2x WizRing 4/2 tiles E/S of up
- | | | stairs
- Charlock B3 | 163 | 193 | 31 steps; 4-step circle before stairs
- Charlock B4 | 194 | 242 | 48 steps
- Ortega/Hydra | 242 | 130 |
- Charlock B4 | 131 | 253 | 104+4 steps; 4-step circle and 1x Heal
- | | | before stairs
- Charlock B5 | 254 | 254 | No randomness
- King Hydra | 254 | 34 | 5x WizRing after battle (2x[P2], 3x[P1])
- Baramos Bomus | 125 | 32 | 2x Heal after battle
- Baramos Gonus | 51 | 234 | 2x Heal, 1x WizRing after battle
- Zoma | 254 | win |
- The End | wht | evr |
- ------------------------------------------------------------------------
- Notes:
- - Save slot 3 must be file #3 and be empty to get the correct data for
- created files.
- - The battle RNG counter ($6A68) must be 0 when starting.
- Menu
- ----
- Create file 1 as name R, sex Male, speed 8.
- Aliahan
- -------
- Buy 2 Wings of Wyvern at the item shop. Create 1 Pilgrim (E/Male) and
- 1 Wizard (O/Male) at Luisa 2F, then take out the pregenerated Soldier
- and the two new characters.
- Overworld
- ---------
- Get into an encounter, which will be a single Slime on the first step
- away from the castle, and kill off the two new characters.
- Turn 1: Hr -> Pr, Sr -> Wz, Pr -> parry, Wz -> parry
- Turn 2: Hr -> Pr, Sr -> Wz, Pr -> Pr, Wz -> Wz
- Turn 3: Run
- This leaves the battle RNG counter at $7.
- Aliahan
- -------
- Swap out the two new characters for the two remaining pregenerated
- characters, Wizard first. Reset (can reset as soon as the "You're
- adding..." message starts appearing).
- Menu
- ----
- Create file 2 as E?/Female/5. Reset again, set the message speed on
- file 2 to 5 (to put the RNG in a broken state), and load file 1.
- Aliahan
- -------
- Set party order to Hr/Wz/Sr/Pr (swap characters 2 and 3), then Wing out.
- Overworld
- ---------
- Walk to the hidden entrance to the Najima tunnel. When the 4th party
- member reaches the bridge, wait for 20 steps (5*64 frames) to get past
- the encounter.
- Najima
- ------
- Walk through.
- Overworld
- ---------
- Wing to Aliahan, immediately use Heal to get past an encounter, then
- walk to Reeve.
- Reeve
- -----
- Sell: [Sr] Leather Armor, [Pr] Club
- Buy: [Hr] Herb x 2, [Wz] Wing
- Get the Magic Ball from the guy in the NE house.
- Buy at weapon shop: [Pr] Leather Helmet
- Leave to the east.
- Overworld
- ---------
- Walk to the lake.
- Romaly Tunnel
- -------------
- Walk through. Heal needed 20 steps down the long vertical corridor on
- B2 to avoid an encounter. Also need to take 2 extra steps and exit out
- the top tile of the long vertical corridor to avoid an encounter on room
- change.
- Overworld
- ---------
- Walk E, then N. Follow the grassy area as far as possible, then go 3
- steps north into the forest; use Heal and 1 herb and wait 5 steps (80
- frames), then take 2 extra steps in the forest in order to avoid an
- encounter in the hills. Proceed NE and enter Kanave.
- Kanave
- ------
- Get the Poison Needle from the shop (top chest), then walk out the E
- side of the map.
- Overworld
- ---------
- Take 125 steps, then pause once, step, pause once, and step again to
- enter the correct battle.
- Killer Bee battle (see appendix below for details)
- -----------------
- Turn 1:
- Hero: Parry+Fight any enemy
- Wizard: Parry
- Soldier: Parry (will be numbed)
- Pilgrim: Parry
- Turn 2:
- Hero: Parry (will be killed, but needs to take 2 attacks)
- Wizard: Wing
- Pilgrim: Parry (will be killed)
- Battle ends with the battle seed at $D.
- Overworld
- ---------
- Walk straight into Aliahan. Do not pass Go, do not collect 200G.
- Aliahan
- -------
- Walk up to Luisa's Place. To avoid curing numbness, stop for 2 steps
- (32 frames) 1 tile above the level of the Vault NPC; after that, walk
- straight to Luisa without stopping. Return the Wizard and Soldier (in
- that order), then take out the two dead characters (Pilgrim first) to
- get a dead party.
- Dream Ruby glitch
- -----------------
- Note: [P1] = pregenerated Pilgrim, [P2] = single-letter-name Pilgrim
- Item manip:
- - Black Raven ($7E) x 2 <- [Wz] Cypress Stick ($00) [1 step]
- - Rainbow Drop ($76) <- [Wz] Black Raven ($7E) [4 steps]
- - Sphere of Light ($72) <- [Hr] Copper Sword ($02) [8 steps]
- - Sword of Kings ($1C) <- [Hr] Leather Armor ($22) [3 steps]
- - Shield of Heroes ($3B) <- [P1] Leather Helmet ($45) [5 steps]
- - Armor of Radiance ($28) <- [P1] Wayfarer's Clothes ($30) [4 steps]
- - Water Flying Cloth ($2E) <- [P2] Wayfarer's Clothes ($30) [1 step]
- - Wizard's Ring ($4E) <- [Hr] Thief's Key ($58) [5 steps]
- - Final Key ($5A) <- [Hr] Medical Herb ($65) [underflow + 5 steps]
- Return list manip: char 3
- Spell manip: char 2 x 2
- Timing notes:
- - For $34, unless otherwise noted, trigger damage 4 frames after the
- note starts. If making 5 moves, $30 will be triggered on the 4th.
- If making 4 moves, wait 16 frames after the 3rd to avoid triggering
- $30. In either case, wait 2*16 frames before taking the first step
- for $3C.
- What to do:
- - While in Aliahan:
- - Equip [Wz]: unequip Cypress Stick
- - Leave Aliahan:
- - Transfer [P2] Club -> [Hr]
- - Glitch $1E: Return list
- - Drop [Wz] Clothes
- - Glitch $34: [P1] Wayfarer's Clothes -> Water Flying Cloth (hit 8 frames after note starts)
- - Glitch $34: [P1] Water Flying Cloth -> Sacred Robe
- - Glitch $34: [P1] Sacred Robe -> Animal Suit (wait 1*16 frames before moving)
- - Glitch $34: [P1] Animal Suit -> Armor of Radiance
- - Glitch $38: [P2] Wayfarer's Clothes -> Water Flying Cloth
- - Glitch $3C: [Wz] Cypress Stick -> Black Raven x 2, [Hr] Copper Sword -> Cypress Stick
- - Glitch $3C: [Wz] Black Raven -> Green Orb
- - Glitch $3C: [Wz] Green Orb -> Purple Orb
- - Glitch $47: [P1] spell page 3 (wait 5*16 frames)
- - Enter and leave Aliahan:
- - Transfer [Hr] Cypress Stick -> [P2]
- - Transfer [P1] Armor of Radiance -> [Hr]
- - Glitch $34: [P1] Leather Helmet -> Turban
- - Glitch $34: [P1] Turban -> Mysterious Hat
- - Glitch $34: [P1] Mysterious Hat -> Golden Crown
- - Glitch $34: [P1] Golden Crown -> Bronze Shield, [Hr] Leather Armor -> Clothes
- - Glitch $34: [P1] Bronze Shield -> Shield of Heroes
- - Glitch $3C: [Wz] Purple Orb -> Red Orb
- - Glitch $3C: [Wz] Red Orb -> Rainbow Drop, [Hr] max MP -2
- - Enter Aliahan:
- - Set formation: Hr, P2, P1, Wz
- - Transfer [Hr] Thief's Key -> [Wz]
- - Transfer [Hr] Medical Herb -> [P2]
- - Leave Aliahan:
- - Transfer [P2] Water Flying Cloth -> [Wz]
- - Transfer [Wz] Rainbow Drop -> [Hr]
- - Glitch $34: [P2] Cypress Stick -> Black Raven, Medical Herb -> Acorns of Life
- - Glitch $34: [P2] Black Raven -> Green Orb
- - Enter and leave Aliahan:
- - Transfer [Wz] Black Raven -> [P2]
- - Transfer [Hr] Poison Needle -> [Wz]
- - Glitch $34: [P2] Green Orb -> Purple Orb
- - Glitch $34: [P2] Purple Orb -> Red Orb
- - Glitch $34: [P2] Red Orb -> Rainbow Drop
- - Glitch $34: [P2] Rainbow Drop -> Spider's Web, [Hr] Clothes -> Dragon Killer
- - Glitch $34: [P2] Spider's Web -> Sphere of Light
- - Glitch $3C: [Wz] Thief's Key -> Invisibility Herb
- - Glitch $3C: [Wz] Invisibility Herb -> Staff of Change, [Hr] max MP -2
- - Glitch $3C: [Wz] Staff of Change -> Vase of Drought
- - Glitch $47: [P2] spell page 3 (wait 4*16 frames)
- - Enter and leave Aliahan:
- - Transfer [Hr] Club -> [P1]
- - Transfer [P2] Sphere of Light -> [Hr]
- - Glitch $34: [P2] Acorns of Life -> Luck Seed
- - Glitch $34: [P2] Luck Seed -> Agility Seed
- - Glitch $34: [P2] Agility Seed -> Oricon
- - Glitch $34: [P2] Oricon -> Wake-Up Powder, [Hr] Dragon Killer -> Sword of Kings
- - Glitch $34: [P2] Wake-Up Powder -> Final Key
- - Glitch $3C: [Wz] Vase of Drought -> Sage's Stone
- - Glitch $3C: [Wz] Sage's Stone -> Wizard's Ring (wait 2*16 frames to avoid max HP loss)
- - Wait 1*16 frames to avoid guy in church getting in our way later
- - Enter Aliahan:
- - Sell [P2] Black Raven
- - Buy [P2] Wing of Wyvern
- - Buy [P2] Herb x 2
- - Buy [P1] Herb x 2
- - Buy [Wz] Herb x 2
- - Revive party members
- - Save at Luisa's
- Reset
- -----
- Create file 3 as ypp/Female/3. Reset again, set the message speed on file
- 3 to 1 (to set our desired RNG seed), and load file 1.
- Aliahan
- -------
- (*) From here on down, [P1] is first pilgrim in party order (former [P2])
- and vice versa.
- Transfer [P2] Shield of Heroes -> [Hr]
- Equip [P2], [Wz]
- [P1] Wing -> Rimuldar
- Alefgard
- --------
- 30 steps to a Metal Babble encounter (see appendix).
- Metal Babble battle
- -------------------
- Turn 1: [Hr] Fight(*), [P1] Heal, [P2] Fight, [Wz] Fight
- Turn 2: Run (will fail; remaining enemy will run away)
- (*) Parry would cause turn 2 Run to succeed.
- If turn 2 is not Run, final battle seed is:
- Fight = $7, Parry = $3, KingSword = $4, WizRing = $0
- Battle seed after the battle is $9 (which gives better HP boosts than $7
- during level-ups).
- Page through level spam, then enter Rimuldar.
- Rimuldar
- --------
- Use the inn.
- [Hr] Return -> Aliahan and save at Luisa.
- Reset
- -----
- Set message speed on file 2 and start file 1.
- Aliahan
- -------
- Transfer [Wz] Wizard's Ring -> [Hr]
- Equip [Hr]
- [Hr] Return -> Rimuldar
- Alefgard
- --------
- Walk to Charlock.
- 2x Heal above left side of Rimuldar to avoid encounter.
- Charlock 1F
- -----------
- Walk to the Granite Titan room. 3x Heal, 1x Wizard's Ring, 4x Heal at
- NW corner (4 steps W, 3 steps N of stairs) to avoid encounter and
- consume RNG outputs. Also do 4 extra steps in front of the Granite
- Titan door (or anywhere, really, as long as it's not in the Titan room)
- to set the RNG counter to the right value for the Granite Titan battles.
- Granite Titans
- --------------
- Battle 1: [Hr] Fight, [P1] Defeat, [P2] Fight, [Wz] Fight
- 1x Heal after battle
- Battle 2: [Hr] Fight, [P1] Defeat, [P2] Fight, [Wz] Fight
- 2x WizRing + 2x Heal after battle
- Battle 3: [Hr] Fight, [P1] Defeat, [P2] Heal, [Wz] Fight
- Charlock 1F-B4
- --------------
- Cast StepGuard immediately after the Granite Titans, and be careful not
- to lose it while going to the secret stairway.
- On B3, after crossing the south side of the room from west to east, use
- 8x Heal, 2x WizRing to skip an encounter (optimal location: 4 tiles east
- and 2 south of the up stairs), and do a 4-step square before going down
- the stairs and put the RNG in the proper place.
- Ortega goes down in 2 turns.
- Take 12 extra steps (3 small squares) before going down to B5.
- King Hydra
- ----------
- Turn 1: [Hr] Heal->[Hr], [P1] Parry+Healall->[Wz], [P2] Parry, [Wz] Parry
- Turn 2: [Hr] KingSword, [P1] Parry+Infermost, [P2] Healus, [Wz] IceBolt
- Turn 3: [Hr] KingSword, [P1] Parry+Infermost, [P2] Revive->[P1], [Wz] Blaze
- Turn 4: [Hr] KingSword, [P1] Infermost, [P2] Infermost, [Wz] Fight
- After battle:
- - Transfer [Hr] Wizard's Ring -> [P2]
- - [P2] Use Wizard's Ring x2
- - Transfer [P2] Wizard's Ring -> [P1]
- - [P1] Use Wizard's Ring x3
- Baramos Bomus
- -------------
- Turn 1: [Hr] Attack, [P1] Parry+Infermost, [P2] Parry+Infermost, [Wz] Herb->[Wz]
- Turn 2: [Hr] KingSword, [P1] Parry+Infermost, [P2] Parry+Infermost, [Wz] Parry
- After battle:
- - [P1] Healmore -> [P1]
- - [P1] Healmore -> [P2]
- Baramos Gonus
- -------------
- Turn 1: [Hr] KingSword, [P1] Infermost, [P2] Surround, [Wz] Blazemore
- Turn 2: [Hr] KingSword, [P1] Infermost, [P2] Infermost, [Wz] Blazemore
- Turn 3: [Hr] KingSword, [P1] Infermost, [P2] Infermost, [Wz] Snowblast
- After battle:
- - [Hr] Heal -> [Wz]
- - [P1] Use Wizard's Ring
- - [P1] Healmore -> [Hr]
- - Take 8 steps to get to Zoma so [Hr] has full HP.
- Zoma
- ----
- Turn 1: [Hr] Sphere, [P1] Parry+Herb, [P2] Parry+Herb, [Wz] Parry
- Turn 2: [Hr] Fight, [P1] Herb, [P2] Herb, [Wz] Herb
- The End
- -------
- Walk out.
- Return -> Tantegel, walk into town, walk into castle, walk up stairs.
- The End.
- [Appendix: Killer Bee battle]
- Encounters with a Killer Bee can happen if the RNG output immediately
- before the encounter check is $00, $03-$06, $08, $0B-$0E, or $10, with
- the last output at respectively $0C, $10, $14, $18, $1C at battle entry.
- The possible encounters are:
- - Putrepup x 1, Killer Bee x 1, Masked Moth x 1, Caterpillar x 1
- ($00, $08, $10)
- - Putrepup x 1, Caterpillar x 1, Killer Bee x 1, Masked Moth x 1
- ($03-$06, $0B-$0E)
- Both encounters have 4 enemies, so there will be 8 multi-random rolls at
- the beginning of battle; this plus the back/preemptive attack check
- (which will always fail here), plus turn order rolls for the first turn,
- cause the RNG output to be advanced 20(N+2)+2 for battle seed N.
- In order for the Killer Bee to select "attack + numb", the RNG output
- must be in the range $40-$5F or $C0-$FF when the action is selected.
- Putrepup has AI type 2 and thus doesn't select an action until turn
- resolution, so the Killer Bee will be either the first or the second
- enemy to choose an action. If second, the Caterpillar is first, and it
- will consume 2 multi-random rolls, plus 1 more roll for each time
- Increase is selected (because of the Increase target selection bug);
- Increase is at $00-$3F and $C0-$DF in the action table.
- Once "attack + numb" has been selected, it first needs to hit the target
- (RNG output >= 4; the Killer Bee will get the first action). The
- effective hit chance for numbness given current party status is 47/256,
- so the RNG output at the time the numbness check occurs must be less
- than 47.
- Taking all this into consideration, and letting rng[0] be the RNG output
- immediately before battle entry and N[0] be the battle seed on entry:
- - N[1] = rng[20*(N[0]+2)+3] & 15
- - One of the following must be true:
- - With Killer Bee first, for some k >= 0, all of these must hold:
- - For each i in [0,k):
- - $00 <= rng[20*(N[0]+2)+3+(i+1)*(N[1]+2)] <= $1F
- - Either:
- - $40 <= rng[20*(N[0]+2)+3+(k+1)*(N[1]+2)] <= $5F
- - $C0 <= rng[20*(N[0]+2)+3+(k+1)*(N[1]+2)] <= $FF
- - With Caterpillar first, for some k >= 0, all of these must hold:
- - For each i in [0,k), one of the following must be true:
- - $00 <= rng[20*(N[0]+2)+3+(i+1)*(N[1]+2)] <= $3F
- - $C0 <= rng[20*(N[0]+2)+3+(i+1)*(N[1]+2)] <= $DF
- - Either:
- - $40 <= rng[20*(N[0]+2)+3+(k+1)*(N[1]+2)] <= $BF
- - $E0 <= rng[20*(N[0]+2)+3+(k+1)*(N[1]+2)] <= $FF
- - rng[20*(N[0]+2)+3+(k+2)*(N[1]+2)] <= $70
- (*) Other target possibilities omitted for brevity.
- - Either:
- - $40 <= rng[20*(N[0]+2)+3+(k+3)*(N[1]+2)] <= $5F
- - $C0 <= rng[20*(N[0]+2)+3+(k+3)*(N[1]+2)] <= $FF
- - Let n be the number of multi-random rolls taken during action
- selection. Then:
- - rng[20*(N[0]+2)+3+(n+2)*(N[1]+2)] >= 4
- - rng[20*(N[0]+2)+3+(n+3)*(N[1]+2)] < 47
- Assuming linear RNG output, rng[0] is one of {$0C, $10, $14, $18, $1C},
- so N[1] is {15, 3, 7, 11, 15} + 4*(N[0]+2), modulo 16. The RNG output
- that sets N[1] is: (note how all 4n+3 values are available)
- | $0C | $10 | $14 | $18 | $1C |
- ----+-----+-----+-----+-----+-----+
- $0 | $37 | $3B | $3F | $43 | $47 |
- $1 | $4B | $4F | $53 | $57 | $5B |
- $2 | $5F | $63 | $67 | $6B | $6F |
- $3 | $73 | $77 | $7B | $7F | $83 |
- $4 | $87 | $8B | $8F | $93 | $97 |
- $5 | $9B | $9F | $A3 | $A7 | $AB |
- $6 | $AF | $B3 | $B7 | $BB | $BF |
- $7 | $C3 | $C7 | $CB | $CF | $D3 |
- $8 | $D7 | $DB | $DF | $E3 | $E7 |
- $9 | $EB | $EF | $F3 | $F7 | $FB |
- $A | $FF | $03 | $07 | $0B | $0F |
- $B | $13 | $17 | $1B | $1F | $23 |
- $C | $27 | $2B | $2F | $33 | $37 |
- $D | $3B | $3F | $43 | $47 | $4B |
- $E | $4F | $53 | $57 | $5B | $5F |
- $F | $63 | $67 | $6B | $6F | $73 |
- If the Killer Bee goes first, there are (excluding potential N[1]
- generators which occur with the wrong encounter) 4 possibilites for the
- N[1]-generating RNG output for it to choose Flee (which will be rerolled
- due to the level check): $FB, $FF, $07, $13. In all of these cases, the
- reroll which eventually succeeds will be in the range $20...$2F, which
- is invalid for our purposes. So we need an N[1] generator that gives us
- a first-roll attack+numb choice, which can be any of: $37, $3F, $47,
- $4B, $53, $B7, $BF, $C3, $CB, $D3, $D7, $DF, $E7, $EB, $F3.
- The Killer Bee then rolls its target. For physical attacks, one
- multi-random number is rolled for each character check (rather than
- using the same random number for all checks), so multiple rolls will be
- taken in some cases:
- Gen | Act | Target (chance list: $70/$B3/$EA/$FF)
- -----+-----+---------------------------------------
- $37 | $40 | $49
- $3F | $50 | $61
- $47 | $50 | $59
- $4B | $58 | $65
- $53 | $58 | $5D
- $B7 | $C0 | $C9->$D2->$DB
- $BF | $D0 | $E1->$F2->$03
- $C3 | $C8 | $CD->$D2->$D7
- $CB | $D8 | $E5->$F2->$FF->$0C
- $D3 | $D8 | $DD->$E2->$E7
- $D7 | $E0 | $E9->$F2->$FB->$04
- $DF | $F0 | $01
- $E7 | $F0 | $F9->$02
- $EB | $F8 | $05
- $F3 | $F8 | $FD->$02
- After a target roll, the Caterpillar will roll its action, landing on
- the following action and target RNG outputs for each N[1] generator:
- Gen | Action | Target ($70/$B3/$EA/$FF)
- -----+----------+--------------------------
- $37 | $52 | $5B
- $3F | $72 | $83->$94
- $47 | $62 | $6B
- $4B | $72 | $7F->$8C
- $53 | $62 | $67
- $B7 | $E4 | $ED->$F6->$FF->$08
- $BF | $14->$47 | $58
- $C3 | $DC->$E1 | $E6->$EB->$F0->$F5
- $CB | $19->$40 | $4D
- $D3 | $EC | $F1->$F6->$FB->$00
- $D7 | $0D->$43 | $4C
- $DF | $12->$45 | $56
- $E7 | $0B->$41 | $4A
- $EB | $12->$46 | $53
- $F3 | $07->$43 | $48
- Next, the Killer Bee's attack resolves (recall that damage uses the
- random-32 algorithm rather than the battle seed):
- Gen | Dmg | Evd | Numb
- -----+-----+-----+------
- $37 | $7B | $84 | $8D
- $3F | $B4 | $C5 | $D6
- $47 | $8B | $94 | $9D
- $4B | $AC | $B9 | $C6
- $53 | $87 | $8C | $91
- $B7 | $28 | $31 | $3A
- $BF | $78 | $89 | $9A
- $C3 | $15 | $1A | $1F (*)
- $CB | $6D | $7A | $87
- $D3 | $20 | $25 | $2A (*)
- $D7 | $6C | $75 | $7E
- $DF | $76 | $87 | $98
- $E7 | $6A | $73 | $7C
- $EB | $73 | $80 | $6D
- $F3 | $68 | $6D | $52
- From the above, we can see that we need an N[1] generator of either $C3
- or $D3 to get a numb character with the Killer Bee in the second enemy
- slot.
- In the case of the Killer Bee in the third enemy slot, the Caterpillar
- rolls first, so we need to look farther ahead to determine viable N[1]
- generators:
- Gen | Cat act. | Caterpillar target | Bee act.
- -----+----------+--------------------+----------
- $03 | $08->$44 | $49 | $4E (*)
- $07 | $10->$46 | $4F | $58 (*)
- $0B | $18->$4C | $59 | $66
- $0F | $20->$42 | $53 | $64
- $13 | $18->$40 | $45 | $4A (*)
- $17 | $20->$44 | $4D | $56 (*)
- $1B | $28->$42 | $4F | $5C (*)
- $1F | $30->$41 | $52 | $63
- $23 | $28->$41 | $46 | $4B (*)
- $27 | $30->$42 | $4B | $54 (*)
- $2B | $38->$45 | $52 | $5F (*)
- $2F | $40 | $51 | $62
- $33 | $38->$42 | $47 | $4C (*)
- $37 | $40 | $49 | $52 (*)
- $3B | $48 | $55 | $62
- $3F | $50 | $61 | $72
- $43 | $48 | $4D | $52 (*)
- $47 | $50 | $59 | $62
- $4B | $58 | $65 | $72
- $4F | $60 | $71->$82 | $93
- $53 | $58 | $5D | $62
- $57 | $60 | $69 | $72
- $5B | $68 | $75->$82 | $8F
- $5F | $70 | $81->$92 | $A3
- $63 | $68 | $6D | $72
- $67 | $70 | $79->$82 | $8B
- $6B | $78 | $85->$92 | $9F
- $6F | $80 | $91->$A2 | $B3
- $73 | $78 | $7D->$82 | $87
- $77 | $80 | $89->$92 | $9B
- $7B | $88 | $95->$A2 | $AF
- $7F | $90 | $A1->$B2 | $C3 (*)
- $83 | $88 | $8D->$92 | $97
- $87 | $90 | $99->$A2 | $AB
- $8B | $98 | $A5->$B2 | $BF
- $8F | $A0 | $B1->$C2->$D3 | $E4 (*)
- $93 | $98 | $9D->$A2 | $A7
- $97 | $A0 | $A9->$B2 | $BB
- $9B | $A8 | $B5->$C2->$CF | $DC (*)
- $9F | $B0 | $C1->$D2->$E3 | $F4 (*)
- $A3 | $A8 | $AD->$B2 | $B7
- $A7 | $B0 | $B9->$C2->$CB | $D4 (*)
- $AB | $B8 | $C5->$D2->$DF | $EC (*)
- $AF | $C0->$E2 | $F3->$04 | $15
- $B3 | $B8 | $BD->$C2->$C7 | $CC (*)
- $B7 | $C0->$E4 | $ED->$F6->$FF->$08 | $11
- $BB | $C8->$E2 | $EF->$FC->$09 | $16
- $BF | $D0->$E1 | $F2->$03 | $14
- $C3 | $C8->$E1 | $E6->$EB->$F0->$F5 | $FA (*)
- $C7 | $D0->$E2 | $EB->$F4->$FD->$06 | $0F
- $CB | $D8->$E5 | $F2->$FF->$0C | $19
- $CF | $E0 | $F1->$02 | $13
- $D3 | $D8->$E2 | $E7->$EC->$F1->$F6 | $FB (*)
- $D7 | $E0 | $E9->$F2->$FB->$04 | $0D
- $DB | $E8 | $F5->$02 | $0F
- $DF | $F0 | $01 | $12
- $E3 | $E8 | $ED->$F2->$F7->$FC | $01
- $E7 | $F0 | $F9->$02 | $0B
- $EB | $F8 | $05 | $12
- $EF | $00->$44 | $55 | $66
- $F3 | $F8 | $FD->$02 | $07
- $F7 | $00->$48 | $51 | $5A (*)
- $FB | $08->$49 | $56 | $63
- $FF | $10->$43 | $54 | $65
- From the viable generators, we then proceed to Killer Bee action
- resolution:
- Gen | Killer Bee target | Dmg | Evd | Numb
- -----+--------------------+-----+-----+------
- $03 | $53 | $73 | $78 | $7D
- $07 | $61 | $81 | $8A | $93
- $13 | $4F | $6F | $74 | $79
- $17 | $5F | $7F | $88 | $91
- $1B | $69 | $89 | $96 | $A3
- $23 | $50 | $70 | $75 | $7A
- $27 | $5D | $7D | $86 | $8F
- $2B | $6C | $8C | $99 | $A6
- $33 | $51 | $71 | $76 | $7B
- $37 | $5B | $7B | $84 | $8D
- $43 | $57 | $77 | $7C | $81
- $7F | $D4->$E5->$F6->$07 | $27 | $38 | $49
- $8F | $F5->$06 | $26 | $37 | $48
- $9B | $E9->$F6->$03 | $23 | $30 | $3D
- $9F | $05 | $25 | $36 | $47
- $A7 | $DD->$E6->$EF->$F8 | $18 | $21 | $2A (*)
- $AB | $F9->$06 | $26 | $33 | $40
- $B3 | $D1->$D6->$DB | $FB | $00 | $05 (*)
- $C3 | $FF->$04 | $24 | $29 | $2E (*)
- $D3 | $00 | $20 | $25 | $2A (*)
- $F7 | $63 | $83 | $8C | $95
- In the end, this only gives us two alternative N[1] generators, $A7 and
- $B3.
- [Appendix: Dream Ruby glitch]
- Bytes to edit:
- $0752 _or_ $0758 = $1B, $1E
- $077C..$079A (any) = $30..$3F
- $07A2+8n (any) = $43, $47, $4B, $4F
- $07BE = $51
- Bytes to avoid:
- $0724..$072A = $04..$07
- $0734..$073A = $0C..$0F
- $0740, $0742 = $12, $13
- $D6 timing on overworld (from 3rd fade-in step):
- $1E = 251 (<261)
- $30 = 481
- $31 = 491
- $34 = 501
- $37 = 591
- $38 = 601
- $39 = 611
- $3C = 621
- $3F = 711 (<721)
- $47 = 771 (<781)
- $53 = 921
- $54 = 951 (<981)
- Menu timing:
- - 9 frames until ready to accept input
- - 6 frames to select Item
- - 7 frames to draw char list
- - 23+ frames until ready to accept input
- (seems to depend on number of items held?)
- - 1+10c frames to select char 1+c
- (seems to vary within [8,12]?)
- - 11 frames until ready to select input
- (seems to vary within [9,13]?)
- - 1/3+3i frames to select item 1/2+i
- - 6 frames to draw Use/Transfer/Discard menu
- [Transfer: total time 159 + 1+10c + 1/3+3i + 1/3+3t + lengths]
- - 3 frames to select Transfer
- - 7 frames to draw target char list
- - 1/3+3t frames to select char 1/2+t
- - 7 frames to draw message window
- - 53 + len(from_name) + len(to_name) + len(item_name) frames to draw message
- - 27 frames to close menu
- [Discard: total time 150 + 1+10c + 1/3+3i + lengths]
- - 6 frames to select Discard
- - 7 frames to draw message window = 1649
- - 47 + len(char_name) + len(item_name) frames to draw message
- - 1 frame to press button to close menu
- - 27 frames to close menu
- (*) Message timing saves 1 frame for each full line.
- (*) 29 frames from pressing A to close window until frame counter starts.
- Available $D6 values: (starting frame $80, can't move immediately)
- $04 (delay 1-3)
- $0B (delay 4-6) - delay 5 has death message (E4=$07 with B9=$00)
- $0E (delay 7)
- $12 (delay 8-9) - delay >=9 shows stats window
- $15 (delay 10)
- $19 (delay 11-12) - has death meassage
- $1C (delay 13) - has death message
- * $1E (delay 14)
- $20 (delay 15) - has death message for soldier
- $24 (delay 16-19)
- $27 (delay 20) - has death message
- $28 (delay 21)
- $2C (delay 22-27)
- $30 (delay 28) - has death message (E2=$07 with B7=$60)
- * $31 (delay 29)
- * $34 (delay 30-34)
- * $37 (delay 35)
- * $38 (delay 36)
- * $3C (delay 37-42) - delay 37 has death message (07=$x7 with DC=$6B?)
- $40 (delay 43) - has death message
- $41 (delay 44) - has death message
- $44 (delay 45) - has death message
- * $47 (delay 46)
- $48 (delay 47) - has death message
- $4C (delay 48-49) - has death message
- $4D (delay 50-51) - has death message
- $50 (delay 52-55) - delay 52 has death message (F7=$07 with CC=$00)
- $53 (delay 56-57)
- $54 (delay 58-59)
- Available $D6 values after 1 damage step (given delay is total):
- $2F (delay 26) - has death message
- * $30 (delay 27)
- * $34 (delay 28-33)
- * $37 (delay 34)
- * $39 (delay 35)
- * $3C (delay 36-40)
- $3F (delay 41) - has death message (E2=$x7 with 97=$C0)
- $40 (delay 42) - has death message
- $44 (delay 43-44) - has death message
- * $47 (delay 45)
- $49 (delay 46) - has death message
- $4C (delay 47-48) - has death message
- $4D (delay 49-50) - has death message
- $50 (delay 51-54)
- $53 (delay 55)
- $54 (delay 56-57)
- Available $D6 values after 2 damage steps (given delay is total):
- $2F (delay 25) - has death message
- * $34 (delay 26-32)
- $38 (delay 33) - has death message (EE=$x7 with A3=$00)
- * $3C (delay 34-39)
- $3F (delay 40) - has death message (F7=$x7 with CC=$00)
- $41 (delay 41) - has death message
- Available $D6 values after 3 damage steps (given delay is total):
- $30 (delay 24) - has encounter
- * $31 (delay 25)
- * $34 (delay 26-30) - delays 26-28, 30 have encounter
- * $37 (delay 31) - has encounter
- * $39 (delay 32) - has encounter
- * $3C (delay 33-38) - 33 has death message (F7=$x7 with CC=$00); 34-36, 38 have encounter
- $40 (delay 39) - has death message
- Available $D6 values after 4 damage steps (given delay is total):
- $2F (delay 22) - has death message
- $30 (delay 23) - has death message (F7=$x7 with CC=$00)
- * $34 (delay 24-29)
- * $37 (delay 30)
- * $39 (delay 31)
- * $3C (delay 32-36)
- * $3F (delay 37)
- $40 (delay 38) - has death message
- $44 (delay 39-40) - has death message
- * $47 (delay 41)
- $49 (delay 42) - has death message
- - Note that death message puts $07 in $18 (at least for D6=$47) which can
- break char 3's status depending on $ED.
- [Appendix: Metal Babbles]
- Metal Babble encounter index is 9, chance is [176,190]
- Count is 2 + $C3F1(2) (thus {2, 3, retry, retry}[random() & 3])
- Post-warp seed $D92C, counter $2D, battle seed $D
- Requirements:
- - random[0] < 10
- - 176 <= random[1] <= 190
- - (random[2..2+(n-1)] & 3) >= 2
- - (random[2+n] & 3) == 1
- Usable initial seeds:
- $2DDE (32 steps, battle seed $9, Hr:Attack P1:Heal P2:Attack Wz:Attack)
- $352E (2 steps, battle seed $F, Hr:Parry P1:Heal P2:Attack Wz:Attack)
- But there appear to be no hero names that give a seed of $352E...
- [Appendix: Granite Titans]
- Min RNG counter (heals) through Granite Titans: (entry counter = value
- before RNG on map load)
- $6A68 | RbowDrop | Charlock | GTitan 1
- -------+----------+----------+----------
- $0 | $56 ( 5) | $97 ( 0) | $2C ( 5)
- $1 | $56 ( 4) | $97 ( 0) | $2E ( 4)
- $2 | $56 ( 3) | $97 ( 0) | $2E ( 3)
- $3 | $56 ( 2) | $97 ( 0) | $2C ( 2)
- $4 | $56 ( 2) | $97 ( 0) | $2E ( 2)
- $5 | $58 ( 2) | $97 ( 0) | $32 ( 2)
- $6 | $5A ( 2) | $99 ( 0) | $36 ( 2)
- $7 | $5C ( 2) | $9B ( 0) | $3A ( 2)
- $8 | $56 ( 1) | $97 ( 0) | $2C ( 1)
- $9 | $57 ( 1) | $98 ( 0) | $2E ( 1)
- $A | $56 ( 1) | $97 ( 0) | $2C ( 1)
- $B | $57 ( 1) | $98 ( 0) | $2E ( 1)
- $C | $58 ( 1) | $99 ( 0) | $30 ( 1)
- $D | $59 ( 1) | $9A ( 0) | $32 ( 1)
- $E | $5A ( 1) | $9B ( 0) | $34 ( 1)
- $F | $5B ( 1) | $9C ( 0) | $36 ( 1)
- Goal: A Pilgrim goes first and Defeats both of the Granite Titans
- Basic info:
- - Let L = most recent RNG output value at battle entry ($A4 + $1C)
- B0 = value of $6A68 + 2 at battle entry
- B1 = value of $6A68 + 2 when changed during first turn
- Then B1 = (L + 16*B0 + 1) & 15; thus for B1 = B0, L = 16n + (B0 - 1) (any n)
- - RNG advances by 5 between each battle (2 at end of battle, 1 for map
- reload, 1 for step that triggered previous set battle, 1 for next
- step) plus any randomness used for level-ups
- - Party agility is 27/33/29/28, thus turn order (if no wraparound)
- is 1/3/2/0 or 1/2/3/0
- - Enemies have 1-2 actions, pure random target choice, so:
- - 2 multi-random numbers select first action and target
- - 1 random number selects number of actions
- - If low bit is 1, 2 more multi-random numbers select second action
- and target
- - Due to sequential RNG output, exactly one of the two enemies will
- get two actions, so 6*B1+2 outputs are consumed for enemy actions
- Requirements:
- - RNG output wraps around after party member 2-4 for turn order calc
- - Thus, last output must be at least 256-5*B0 but no more than
- 255-2*B0 at turn start; 256-9*B0 <= L < 256-6*B0 at battle entry
- (note that the step that triggers the battle does not do a random
- encounter check)
- - True values of $6A68 and valid battle entry last-output ranges:
- $6A68 | Lmin | Lmax
- -------+------+------
- $0 | 238 | 243
- $1 | 229 | 237
- $2 | 220 | 231
- $3 | 211 | 225
- $4 | 202 | 219
- $5 | 193 | 213
- $6 | 184 | 207
- $7 | 175 | 201
- $8 | 166 | 195
- $9 | 157 | 189
- $A | 148 | 183
- $B | 139 | 177
- $C | 130 | 171
- $D | 121 | 165
- $E | 112 | 159
- $F | 103 | 153
- - Next multi-random number is at least 179 when Defeat is cast
- - From above, 7*B0 <= last < 10*B0 at party menu
- - Thus 7*B0+1+6*B1+2 <= last < 10*B0+1+6*B1+2 when first char acts
- - If first pilgrim, Defeat checks will be +1*B1 and +2*B1, so for a
- last-output value L at battle entry and B1 = B0, we need
- (L-256)+23*B0+3 >= 179 and (L-256)+24*B0+3 <= 255
- - Rewritten: 432-23*B0 <= L <= 508-24*B0
- - True values of $6A68 and valid battle entry last-output ranges:
- $6A68 | Lmin | Lmax
- -------+------+------
- $6 | 248 | 255
- $7 | 225 | 255
- $8 | 202 | 255
- $9 | 179 | 244
- $A | 156 | 220
- $B | 133 | 196
- $C | 100 | 172
- $D | 87 | 148
- $E | 64 | 124
- $F | 41 | 100
- - Combining with the previous tables gives:
- $6A68 | Lmin | Lmax | Valid L
- -------+------+------+---------------------------------
- $9 | 179 | 189 | 184 ($B8)
- $A | 156 | 183 | 169 ($A9)
- $B | 139 | 177 | 154 ($9A), 170 ($AA)
- $C | 130 | 171 | 139 ($8B), 155 ($9B), 171 ($AB)
- $D | 121 | 148 | 124 ($7C), 140 ($8C)
- $E | 112 | 124 | none
- - Battle end RNG output will be L+24*B0+3 (mod 256)
- - If second pilgrim, first pilgrim and wizard can influence RNG:
- - Attack = 4 + 1 (!Wz, <4: + 1 for critical damage) multi-randoms
- - Will always be 5 multi-randoms since output >= 4 after turn
- order is computed
- - Heal party: 1 multi-random
- - Heal enemy: 2 multi-random
- - Infernos: 1 (>=179: + 1 for damage) muiti-randoms * 2 enemies
- - Firebal: 1 muiti-random * 2 enemies
- - Blaze: 2 multi-random
- - IceBolt: 2 (>=77: + 1 for damage) muiti-randoms
- - Summary:
- - To advance by 1: [Pr] Heal party
- - To advance by 2: [Pr] Heal enemy
- - To advance by 3: [Pr] Heal party + [Wz] Blaze;
- [Wz] IceBolt (requires 2nd multi-random >= 77)
- - To advance by 4: [Pr] Healus
- - To advance by 5: [Pr] Attack
- - To advance by 6: [Pr] Healus + [Wz] Blaze
- - To advance by 7: [Pr] Attack + [Wz] Blaze
- - To advance by 8: [Pr] Attack + [Wz] IceBolt (requires 7th
- multi-random >= 77)
- - To advance by 10: [Pr] Attack + [Wz] Attack
- - Advances of 6 or 9 may be possible depending on Infernos
- - Turn start is further constrained since second pilgrim must
- also move early (and wizard if using his turn)
- - Valid L ranges per advance:
- $6A68 | 1,2,4,5 | 3,7,8,10
- -------+---------+------------
- $0 | 238-241 | 238-239
- $1 | 229-234 | 229-231
- $2 | 220-227 | 220-223
- $3 | 211-220 | 211-215
- $4 | 202-213 | 202-207
- $5 | 193-206 | 193-199
- $6 | 184-199 | 184-191
- $7 | 175-192 | 175-183
- $8 | 166-185 | 166-175
- $9 | 157-178 | 157-167
- $A | 148-171 | 148-159
- $B | 139-164 | 139-151
- $C | 130-157 | 130-143
- $D | 121-150 | 121-135
- $E | 112-143 | 112-127
- $F | 103-136 | 103-119
- - First Defeat check can be at any of +{1,2,3,4,5,6,7,8,11}*B1
- - +1*B1 is degenerate (same as 1st pilgrim)
- - Assuming B1 = B0 and advance = A:
- (L-256)+(23+A)*B0+3 >= 179 and (L-256)+(24+A)*B0+3 <= 255
- - Rewritten: 432-(23+A)*B0 <= L <= 508-(24+A)*B0
- - Valid L ranges for this formula are:
- $6A68| 1 | 2 | 3 | 4 | 5 | 7 | 8 | 10
- -----+-------+-------+-------+-------+-------+-------+-------+-------
- $0 |384-458|382-456|380-454|378-452|376-450|372-446|370-444|366-440
- $1 |360-433|357-430|354-427|351-424|348-421|342-415|339-412|333-406
- $2 |336-408|332-404|328-400|324-396|320-392|312-384|308-380|300-372
- $3 |312-383|307-378|302-373|297-368|292-363|282-353|277-348|267-338
- $4 |288-358|282-352|276-346|270-340|264-334|252-322|246-316|234-304
- $5 |264-333|257-326|250-319|243-312|236-305|222-291|215-284|201-270
- $6 |240-308|232-300|224-292|216-284|208-276|192-260|184-252|168-236
- $7 |216-283|207-274|198-265|189-256|180-247|162-229|153-220|135-202
- $8 |192-258|182-248|172-238|162-228|152-218|132-198|122-188|102-168
- $9 |168-233|157-222|146-211|135-200|124-189|102-167| 91-156| 69-134
- $A |144-208|132-196|120-184|108-172| 96-160| 72-136| 60-124| 36-100
- $B |120-183|107-170| 94-157| 81-144| 68-131| 42-105| 29- 92| 3- 66
- $C | 96-158| 82-144| 68-130| 54-116| 40-102| 12- 74| -2- 60|-30- 32
- $D | 72-133| 57-118| 42-103| 27- 88| 12- 73|-18- 43|-33- 28|-63- -2
- $E | 48-108| 32- 92| 16- 76| 0- 60|-16- 44|-48- 12|-64- -4|-96--36
- $F | 24- 83| 7- 66|-10- 49|-27- 32|-44- 15|-78--19|-95--36|-129--70
- - Combining with initial state validity gives:
- $6A68| 1 | 2 | 3 | 4 | 5 | 7 | 8 | 10
- -----+-------+-------+-------+-------+-------+-------+-------+-------
- $6 | --- | --- | --- | --- | --- | --- | --- |184-191
- $7 | --- | --- | --- |189-192|180-192|175-183|175-183|175-183
- $8 | --- |182-185|172-175|166-185|166-185|166-175|166-175|166-168
- $9 |168-178|157-178|157-167|157-178|157-178|157-167| --- | ---
- $A |148-171|148-171|148-159|148-171|148-160| --- | --- | ---
- $B |139-164|139-164|139-151|139-144| --- | --- | --- | ---
- $C |130-157|130-144|130-130| --- | --- | --- | --- | ---
- $D |121-133| --- | --- | --- | --- | --- | --- | ---
- - Combining with B1=B0 table gives:
- $6A68 | Valid (A) L
- -------+-------------
- $6 | none
- $7 | (5,7,8,10) 182/$B6
- $8 | (4,5,7,8,10) 167/$A7, (2,4,5) 183/$B7
- $9 | (1,2,4,5) 168/$A8
- $A | (1,2,3,4,5) 153/$99, (1,2,4) 169/$A9
- $B | (1,2) 154/$9A
- $C | (1,2) 139/$8B, (1) 155/$9B
- $D | (1) 124/$7C
- - Battle end RNG output will be L+(24+A)*B0+3 (mod 256)
- - Final table of possible battle entry RNG outputs per $6A68 value,
- with values of A for battle end RNG output L+16*B0+1+(8+A)*B1+2+2
- (mod 256)
- $6A68_in | L | A | End | $6A68_out
- ----------+-----+----+-----+-----------
- $0 | 238 | 4 | 223 | $F
- $0 | 238 | 5 | 240 | $F
- $1 | 234 | 5 | 200 | $B
- $2 | 220 | 4 | 213 | $D
- $2 | 220 | 5 | 228 | $D
- $2 | 221 | 4 | 226 | $E
- $2 | 221 | 5 | 242 | $E
- $2 | 222 | 2 | 205 | $F
- $2 | 222 | 4 | 239 | $F
- $2 | 222 | 5 | 0 | $F
- $3 | 217 | 5 | 202 | $A
- $3 | 218 | 4 | 203 | $B
- $3 | 218 | 5 | 216 | $B
- $3 | 219 | 4 | 216 | $C
- $3 | 219 | 5 | 230 | $C
- $3 | 220 | 2 | 199 | $D
- $3 | 220 | 4 | 229 | $D
- $3 | 220 | 5 | 244 | $D
- $4 | 202 | 4 | 203 | $B
- $4 | 202 | 5 | 216 | $B
- $4 | 202 | 6 | 229 | $B
- $4 | 202 | 7 | 242 | $B
- $4 | 202 | 8 | 255 | $B
- $4 | 203 | 4 | 216 | $C
- $4 | 203 | 5 | 230 | $C
- $4 | 204 | 2 | 199 | $D
- $4 | 204 | 4 | 229 | $D
- $4 | 204 | 5 | 244 | $D
- $4 | 205 | 2 | 210 | $E
- $4 | 205 | 4 | 242 | $E
- $4 | 206 | 1 | 204 | $F
- $4 | 206 | 2 | 221 | $F
- $4 | 206 | 4 | 255 | $F
- $5 | 200 | 4 | 193 | $9
- $5 | 200 | 5 | 204 | $9
- $5 | 201 | 4 | 206 | $A
- $5 | 201 | 5 | 218 | $A
- $5 | 202 | 4 | 219 | $B
- $5 | 202 | 5 | 232 | $B
- $5 | 203 | 2 | 204 | $C
- $5 | 203 | 4 | 232 | $C
- $5 | 203 | 5 | 246 | $C
- $5 | 204 | 1 | 200 | $D
- $5 | 204 | 2 | 215 | $D
- $5 | 204 | 4 | 245 | $D
- $5 | 205 | 1 | 210 | $E
- $5 | 205 | 2 | 226 | $E
- $5 | 206 | 0 | 203 | $F
- $5 | 206 | 1 | 220 | $F
- $5 | 206 | 2 | 237 | $F
- $6 | 184 | 4 | 193 | $9
- $6 | 184 | 5 | 204 | $9
- $6 | 184 | 6 | 215 | $9
- $6 | 184 | 7 | 226 | $9
- $6 | 184 | 8 | 237 | $9
- $6 | 185 | 4 | 206 | $A
- $6 | 185 | 5 | 218 | $A
- $6 | 185 | 3 | 194 | $A
- $6 | 185 | 6 | 230 | $A
- $6 | 185 | 7 | 242 | $A
- $6 | 185 | 8 | 254 | $A
- $6 | 186 | 4 | 219 | $B
- $6 | 186 | 5 | 232 | $B
- $6 | 186 | 3 | 206 | $B
- $6 | 186 | 6 | 245 | $B
- $6 | 187 | 2 | 204 | $C
- $6 | 187 | 4 | 232 | $C
- $6 | 187 | 5 | 246 | $C
- $6 | 187 | 3 | 218 | $C
- $6 | 188 | 1 | 200 | $D
- $6 | 188 | 2 | 215 | $D
- $6 | 188 | 4 | 245 | $D
- $6 | 188 | 3 | 230 | $D
- $6 | 189 | 1 | 210 | $E
- $6 | 189 | 2 | 226 | $E
- $6 | 190 | 0 | 203 | $F
- $6 | 190 | 1 | 220 | $F
- $6 | 190 | 2 | 237 | $F
- $6 | 198 | 5 | 192 | $7
- $6 | 199 | 4 | 196 | $8
- $6 | 199 | 5 | 206 | $8
- $6 | 204 | 0 | 201 | $D
- $6 | 205 | 0 | 210 | $E
- $6 | 206 | 0 | 219 | $F
- $7 | 180 | 10 | 199 | $5
- $7 | 181 | 7 | 194 | $6
- $7 | 181 | 8 | 202 | $6
- $7 | 181 | 10 | 218 | $6
- $7 | 182 | 5 | 192 | $7
- $7 | 183 | 4 | 196 | $8
- $7 | 183 | 5 | 206 | $8
- $7 | 184 | 4 | 209 | $9
- $7 | 184 | 5 | 220 | $9
- $7 | 185 | 2 | 198 | $A
- $7 | 185 | 4 | 222 | $A
- $7 | 185 | 5 | 234 | $A
- $7 | 186 | 1 | 196 | $B
- $7 | 186 | 2 | 209 | $B
- $7 | 186 | 4 | 235 | $B
- $7 | 186 | 5 | 248 | $B
- $7 | 187 | 1 | 206 | $C
- $7 | 187 | 2 | 220 | $C
- $7 | 187 | 4 | 248 | $C
- $7 | 188 | 0 | 201 | $D
- $7 | 188 | 1 | 216 | $D
- $7 | 188 | 2 | 231 | $D
- $7 | 189 | 0 | 210 | $E
- $7 | 189 | 1 | 226 | $E
- $7 | 189 | 2 | 242 | $E
- $7 | 190 | 0 | 219 | $F
- $7 | 190 | 1 | 236 | $F
- $7 | 190 | 2 | 253 | $F
- $8 | 166 | 5 | 192 | $7
- $8 | 166 | 6 | 201 | $7
- $8 | 166 | 7 | 210 | $7
- $8 | 166 | 8 | 219 | $7
- $8 | 166 | 10 | 237 | $7
- $8 | 167 | 4 | 196 | $8
- $8 | 167 | 5 | 206 | $8
- $8 | 167 | 6 | 216 | $8
- $8 | 167 | 7 | 226 | $8
- $8 | 167 | 8 | 236 | $8
- $8 | 167 | 10 | 0 | $8
- $8 | 168 | 4 | 209 | $9
- $8 | 168 | 5 | 220 | $9
- $8 | 168 | 3 | 198 | $9
- $8 | 168 | 6 | 231 | $9
- $8 | 168 | 7 | 242 | $9
- $8 | 168 | 8 | 253 | $9
- $8 | 169 | 2 | 198 | $A
- $8 | 169 | 4 | 222 | $A
- $8 | 169 | 5 | 234 | $A
- $8 | 169 | 3 | 210 | $A
- $8 | 169 | 6 | 246 | $A
- $8 | 170 | 1 | 196 | $B
- $8 | 170 | 2 | 209 | $B
- $8 | 170 | 4 | 235 | $B
- $8 | 170 | 5 | 248 | $B
- $8 | 170 | 3 | 222 | $B
- $8 | 171 | 1 | 206 | $C
- $8 | 171 | 2 | 220 | $C
- $8 | 171 | 4 | 248 | $C
- $8 | 171 | 3 | 234 | $C
- $8 | 172 | 0 | 201 | $D
- $8 | 172 | 1 | 216 | $D
- $8 | 172 | 2 | 231 | $D
- $8 | 172 | 3 | 246 | $D
- $8 | 173 | 0 | 210 | $E
- $8 | 173 | 1 | 226 | $E
- $8 | 173 | 2 | 242 | $E
- $8 | 174 | 0 | 219 | $F
- $8 | 174 | 1 | 236 | $F
- $8 | 174 | 2 | 253 | $F
- $8 | 181 | 5 | 194 | $6
- $8 | 182 | 4 | 199 | $7
- $8 | 182 | 5 | 208 | $7
- $8 | 183 | 2 | 192 | $8
- $8 | 183 | 4 | 212 | $8
- $8 | 183 | 5 | 222 | $8
- $8 | 184 | 1 | 192 | $9
- $8 | 184 | 2 | 203 | $9
- $8 | 184 | 4 | 225 | $9
- $8 | 184 | 5 | 236 | $9
- $8 | 185 | 1 | 202 | $A
- $8 | 185 | 2 | 214 | $A
- $8 | 185 | 4 | 238 | $A
- $8 | 185 | 5 | 250 | $A
- $8 | 186 | 0 | 199 | $B
- $8 | 187 | 0 | 208 | $C
- $8 | 188 | 0 | 217 | $D
- $8 | 189 | 0 | 226 | $E
- $8 | 190 | 0 | 235 | $F
- $9 | 157 | 0 | 210 | $E
- $9 | 157 | 1 | 226 | $E
- $9 | 157 | 2 | 242 | $E
- $9 | 158 | 0 | 219 | $F
- $9 | 158 | 1 | 236 | $F
- $9 | 158 | 2 | 253 | $F
- $9 | 163 | 10 | 196 | $4
- $9 | 164 | 7 | 194 | $5
- $9 | 164 | 8 | 201 | $5
- $9 | 164 | 10 | 215 | $5
- $9 | 165 | 5 | 194 | $6
- $9 | 165 | 6 | 202 | $6
- $9 | 165 | 7 | 210 | $6
- $9 | 165 | 8 | 218 | $6
- $9 | 165 | 10 | 234 | $6
- $9 | 166 | 4 | 199 | $7
- $9 | 166 | 5 | 208 | $7
- $9 | 166 | 3 | 190 | $7
- $9 | 166 | 6 | 217 | $7
- $9 | 166 | 7 | 226 | $7
- $9 | 166 | 8 | 235 | $7
- $9 | 166 | 10 | 253 | $7
- $9 | 167 | 2 | 192 | $8
- $9 | 167 | 4 | 212 | $8
- $9 | 167 | 5 | 222 | $8
- $9 | 167 | 3 | 202 | $8
- $9 | 167 | 6 | 232 | $8
- $9 | 167 | 7 | 242 | $8
- $9 | 167 | 8 | 252 | $8
- $9 | 168 | 1 | 192 | $9
- $9 | 168 | 2 | 203 | $9
- $9 | 168 | 4 | 225 | $9
- $9 | 168 | 5 | 236 | $9
- $9 | 169 | 1 | 202 | $A
- $9 | 169 | 2 | 214 | $A
- $9 | 169 | 4 | 238 | $A
- $9 | 169 | 5 | 250 | $A
- $9 | 170 | 0 | 199 | $B
- $9 | 170 | 1 | 212 | $B
- $9 | 170 | 2 | 225 | $B
- $9 | 170 | 4 | 251 | $B
- $9 | 171 | 0 | 208 | $C
- $9 | 171 | 1 | 222 | $C
- $9 | 171 | 2 | 236 | $C
- $9 | 172 | 0 | 217 | $D
- $9 | 172 | 1 | 232 | $D
- $9 | 172 | 2 | 247 | $D
- $9 | 173 | 0 | 226 | $E
- $9 | 173 | 1 | 242 | $E
- $9 | 174 | 0 | 235 | $F
- $9 | 174 | 1 | 252 | $F
- $9 | 184 | 0 | 197 | $9
- $9 | 185 | 0 | 206 | $A
- $9 | 186 | 0 | 215 | $B
- $9 | 187 | 0 | 224 | $C
- $9 | 188 | 0 | 233 | $D
- $9 | 189 | 0 | 242 | $E
- $A | 148 | 7 | 194 | $5
- $A | 148 | 8 | 201 | $5
- $A | 148 | 10 | 215 | $5
- $A | 149 | 5 | 194 | $6
- $A | 149 | 6 | 202 | $6
- $A | 149 | 7 | 210 | $6
- $A | 149 | 8 | 218 | $6
- $A | 149 | 10 | 234 | $6
- $A | 150 | 4 | 199 | $7
- $A | 150 | 5 | 208 | $7
- $A | 150 | 3 | 190 | $7
- $A | 150 | 6 | 217 | $7
- $A | 150 | 7 | 226 | $7
- $A | 150 | 8 | 235 | $7
- $A | 150 | 10 | 253 | $7
- $A | 151 | 2 | 192 | $8
- $A | 151 | 4 | 212 | $8
- $A | 151 | 5 | 222 | $8
- $A | 151 | 3 | 202 | $8
- $A | 151 | 6 | 232 | $8
- $A | 151 | 7 | 242 | $8
- $A | 151 | 8 | 252 | $8
- $A | 152 | 1 | 192 | $9
- $A | 152 | 2 | 203 | $9
- $A | 152 | 4 | 225 | $9
- $A | 152 | 5 | 236 | $9
- $A | 152 | 3 | 214 | $9
- $A | 152 | 6 | 247 | $9
- $A | 153 | 1 | 202 | $A
- $A | 153 | 2 | 214 | $A
- $A | 153 | 4 | 238 | $A
- $A | 153 | 5 | 250 | $A
- $A | 153 | 3 | 226 | $A
- $A | 154 | 0 | 199 | $B
- $A | 154 | 1 | 212 | $B
- $A | 154 | 2 | 225 | $B
- $A | 154 | 4 | 251 | $B
- $A | 154 | 3 | 238 | $B
- $A | 155 | 0 | 208 | $C
- $A | 155 | 1 | 222 | $C
- $A | 155 | 2 | 236 | $C
- $A | 155 | 3 | 250 | $C
- $A | 156 | 0 | 217 | $D
- $A | 156 | 1 | 232 | $D
- $A | 156 | 2 | 247 | $D
- $A | 157 | 0 | 226 | $E
- $A | 157 | 1 | 242 | $E
- $A | 158 | 0 | 235 | $F
- $A | 158 | 1 | 252 | $F
- $A | 164 | 4 | 189 | $5
- $A | 164 | 5 | 196 | $5
- $A | 165 | 4 | 202 | $6
- $A | 165 | 5 | 210 | $6
- $A | 166 | 2 | 197 | $7
- $A | 166 | 4 | 215 | $7
- $A | 166 | 5 | 224 | $7
- $A | 167 | 1 | 198 | $8
- $A | 167 | 2 | 208 | $8
- $A | 167 | 4 | 228 | $8
- $A | 167 | 5 | 238 | $8
- $A | 168 | 0 | 197 | $9
- $A | 168 | 1 | 208 | $9
- $A | 168 | 2 | 219 | $9
- $A | 168 | 4 | 241 | $9
- $A | 168 | 5 | 252 | $9
- $A | 169 | 0 | 206 | $A
- $A | 169 | 1 | 218 | $A
- $A | 169 | 2 | 230 | $A
- $A | 169 | 4 | 254 | $A
- $A | 170 | 0 | 215 | $B
- $A | 170 | 1 | 228 | $B
- $A | 170 | 2 | 241 | $B
- $A | 171 | 0 | 224 | $C
- $A | 171 | 1 | 238 | $C
- $A | 171 | 2 | 252 | $C
- $A | 172 | 0 | 233 | $D
- $A | 173 | 0 | 242 | $E
- $A | 174 | 0 | 251 | $F
- $A | 182 | 0 | 195 | $7
- $A | 183 | 0 | 204 | $8
- $B | 139 | 0 | 208 | $C
- $B | 139 | 1 | 222 | $C
- $B | 139 | 2 | 236 | $C
- $B | 139 | 3 | 250 | $C
- $B | 140 | 0 | 217 | $D
- $B | 140 | 1 | 232 | $D
- $B | 140 | 2 | 247 | $D
- $B | 141 | 0 | 226 | $E
- $B | 141 | 1 | 242 | $E
- $B | 142 | 0 | 235 | $F
- $B | 142 | 1 | 252 | $F
- $B | 146 | 10 | 193 | $3
- $B | 147 | 6 | 188 | $4
- $B | 147 | 7 | 194 | $4
- $B | 147 | 8 | 200 | $4
- $B | 147 | 10 | 212 | $4
- $B | 148 | 4 | 189 | $5
- $B | 148 | 5 | 196 | $5
- $B | 148 | 6 | 203 | $5
- $B | 148 | 7 | 210 | $5
- $B | 148 | 8 | 217 | $5
- $B | 148 | 10 | 231 | $5
- $B | 149 | 4 | 202 | $6
- $B | 149 | 5 | 210 | $6
- $B | 149 | 3 | 194 | $6
- $B | 149 | 6 | 218 | $6
- $B | 149 | 7 | 226 | $6
- $B | 149 | 8 | 234 | $6
- $B | 149 | 10 | 250 | $6
- $B | 150 | 2 | 197 | $7
- $B | 150 | 4 | 215 | $7
- $B | 150 | 5 | 224 | $7
- $B | 150 | 3 | 206 | $7
- $B | 150 | 6 | 233 | $7
- $B | 150 | 7 | 242 | $7
- $B | 150 | 8 | 251 | $7
- $B | 151 | 1 | 198 | $8
- $B | 151 | 2 | 208 | $8
- $B | 151 | 4 | 228 | $8
- $B | 151 | 5 | 238 | $8
- $B | 151 | 3 | 218 | $8
- $B | 151 | 6 | 248 | $8
- $B | 152 | 0 | 197 | $9
- $B | 152 | 1 | 208 | $9
- $B | 152 | 2 | 219 | $9
- $B | 152 | 4 | 241 | $9
- $B | 152 | 5 | 252 | $9
- $B | 153 | 0 | 206 | $A
- $B | 153 | 1 | 218 | $A
- $B | 153 | 2 | 230 | $A
- $B | 153 | 4 | 254 | $A
- $B | 154 | 0 | 215 | $B
- $B | 154 | 1 | 228 | $B
- $B | 154 | 2 | 241 | $B
- $B | 155 | 0 | 224 | $C
- $B | 155 | 1 | 238 | $C
- $B | 155 | 2 | 252 | $C
- $B | 156 | 0 | 233 | $D
- $B | 156 | 1 | 248 | $D
- $B | 157 | 0 | 242 | $E
- $B | 158 | 0 | 251 | $F
- $B | 163 | 4 | 192 | $4
- $B | 163 | 5 | 198 | $4
- $B | 164 | 2 | 191 | $5
- $B | 164 | 4 | 205 | $5
- $B | 164 | 5 | 212 | $5
- $B | 166 | 0 | 195 | $7
- $B | 167 | 0 | 204 | $8
- $B | 168 | 0 | 213 | $9
- $B | 169 | 0 | 222 | $A
- $B | 170 | 0 | 231 | $B
- $B | 171 | 0 | 240 | $C
- $B | 172 | 0 | 249 | $D
- $C | 130 | 10 | 193 | $3
- $C | 131 | 6 | 188 | $4
- $C | 131 | 7 | 194 | $4
- $C | 131 | 8 | 200 | $4
- $C | 131 | 10 | 212 | $4
- $C | 132 | 4 | 189 | $5
- $C | 132 | 5 | 196 | $5
- $C | 132 | 6 | 203 | $5
- $C | 132 | 7 | 210 | $5
- $C | 132 | 8 | 217 | $5
- $C | 132 | 10 | 231 | $5
- $C | 133 | 4 | 202 | $6
- $C | 133 | 5 | 210 | $6
- $C | 133 | 3 | 194 | $6
- $C | 133 | 6 | 218 | $6
- $C | 133 | 7 | 226 | $6
- $C | 133 | 8 | 234 | $6
- $C | 133 | 10 | 250 | $6
- $C | 134 | 2 | 197 | $7
- $C | 134 | 4 | 215 | $7
- $C | 134 | 5 | 224 | $7
- $C | 134 | 3 | 206 | $7
- $C | 134 | 6 | 233 | $7
- $C | 134 | 7 | 242 | $7
- $C | 134 | 8 | 251 | $7
- $C | 135 | 1 | 198 | $8
- $C | 135 | 2 | 208 | $8
- $C | 135 | 4 | 228 | $8
- $C | 135 | 5 | 238 | $8
- $C | 135 | 3 | 218 | $8
- $C | 135 | 6 | 248 | $8
- $C | 136 | 0 | 197 | $9
- $C | 136 | 1 | 208 | $9
- $C | 136 | 2 | 219 | $9
- $C | 136 | 4 | 241 | $9
- $C | 136 | 5 | 252 | $9
- $C | 136 | 3 | 230 | $9
- $C | 137 | 0 | 206 | $A
- $C | 137 | 1 | 218 | $A
- $C | 137 | 2 | 230 | $A
- $C | 137 | 4 | 254 | $A
- $C | 137 | 3 | 242 | $A
- $C | 138 | 0 | 215 | $B
- $C | 138 | 1 | 228 | $B
- $C | 138 | 2 | 241 | $B
- $C | 138 | 3 | 254 | $B
- $C | 139 | 0 | 224 | $C
- $C | 139 | 1 | 238 | $C
- $C | 139 | 2 | 252 | $C
- $C | 140 | 0 | 233 | $D
- $C | 140 | 1 | 248 | $D
- $C | 141 | 0 | 242 | $E
- $C | 142 | 0 | 251 | $F
- $C | 147 | 4 | 192 | $4
- $C | 147 | 5 | 198 | $4
- $C | 148 | 2 | 191 | $5
- $C | 148 | 4 | 205 | $5
- $C | 148 | 5 | 212 | $5
- $C | 149 | 1 | 194 | $6
- $C | 149 | 2 | 202 | $6
- $C | 149 | 4 | 218 | $6
- $C | 149 | 5 | 226 | $6
- $C | 150 | 0 | 195 | $7
- $C | 150 | 1 | 204 | $7
- $C | 150 | 2 | 213 | $7
- $C | 150 | 4 | 231 | $7
- $C | 150 | 5 | 240 | $7
- $C | 151 | 0 | 204 | $8
- $C | 151 | 1 | 214 | $8
- $C | 151 | 2 | 224 | $8
- $C | 151 | 4 | 244 | $8
- $C | 151 | 5 | 254 | $8
- $C | 152 | 0 | 213 | $9
- $C | 152 | 1 | 224 | $9
- $C | 152 | 2 | 235 | $9
- $C | 152 | 4 | 1 | $9
- $C | 153 | 0 | 222 | $A
- $C | 153 | 1 | 234 | $A
- $C | 153 | 2 | 246 | $A
- $C | 154 | 0 | 231 | $B
- $C | 154 | 1 | 244 | $B
- $C | 154 | 2 | 1 | $B
- $C | 155 | 0 | 240 | $C
- $C | 155 | 1 | 254 | $C
- $C | 156 | 0 | 249 | $D
- $C | 164 | 0 | 193 | $5
- $C | 165 | 0 | 202 | $6
- $C | 166 | 0 | 211 | $7
- $C | 167 | 0 | 220 | $8
- $C | 168 | 0 | 229 | $9
- $C | 169 | 0 | 238 | $A
- $C | 170 | 0 | 247 | $B
- $C | 171 | 0 | 0 | $C
- $D | 121 | 0 | 206 | $A
- $D | 121 | 1 | 218 | $A
- $D | 121 | 2 | 230 | $A
- $D | 121 | 4 | 254 | $A
- $D | 121 | 3 | 242 | $A
- $D | 122 | 0 | 215 | $B
- $D | 122 | 1 | 228 | $B
- $D | 122 | 2 | 241 | $B
- $D | 122 | 3 | 254 | $B
- $D | 123 | 0 | 224 | $C
- $D | 123 | 1 | 238 | $C
- $D | 123 | 2 | 252 | $C
- $D | 124 | 0 | 233 | $D
- $D | 124 | 1 | 248 | $D
- $D | 125 | 0 | 242 | $E
- $D | 126 | 0 | 251 | $F
- $D | 129 | 10 | 190 | $2
- $D | 130 | 6 | 189 | $3
- $D | 130 | 7 | 194 | $3
- $D | 130 | 8 | 199 | $3
- $D | 130 | 10 | 209 | $3
- $D | 131 | 4 | 192 | $4
- $D | 131 | 5 | 198 | $4
- $D | 131 | 6 | 204 | $4
- $D | 131 | 7 | 210 | $4
- $D | 131 | 8 | 216 | $4
- $D | 131 | 10 | 228 | $4
- $D | 132 | 2 | 191 | $5
- $D | 132 | 4 | 205 | $5
- $D | 132 | 5 | 212 | $5
- $D | 132 | 3 | 198 | $5
- $D | 132 | 6 | 219 | $5
- $D | 132 | 7 | 226 | $5
- $D | 132 | 8 | 233 | $5
- $D | 132 | 10 | 247 | $5
- $D | 133 | 1 | 194 | $6
- $D | 133 | 2 | 202 | $6
- $D | 133 | 4 | 218 | $6
- $D | 133 | 5 | 226 | $6
- $D | 133 | 3 | 210 | $6
- $D | 133 | 6 | 234 | $6
- $D | 133 | 7 | 242 | $6
- $D | 133 | 8 | 250 | $6
- $D | 134 | 0 | 195 | $7
- $D | 134 | 1 | 204 | $7
- $D | 134 | 2 | 213 | $7
- $D | 134 | 4 | 231 | $7
- $D | 134 | 5 | 240 | $7
- $D | 134 | 3 | 222 | $7
- $D | 134 | 6 | 249 | $7
- $D | 135 | 0 | 204 | $8
- $D | 135 | 1 | 214 | $8
- $D | 135 | 2 | 224 | $8
- $D | 135 | 4 | 244 | $8
- $D | 135 | 5 | 254 | $8
- $D | 135 | 3 | 234 | $8
- $D | 136 | 0 | 213 | $9
- $D | 136 | 1 | 224 | $9
- $D | 136 | 2 | 235 | $9
- $D | 136 | 4 | 1 | $9
- $D | 137 | 0 | 222 | $A
- $D | 137 | 1 | 234 | $A
- $D | 137 | 2 | 246 | $A
- $D | 138 | 0 | 231 | $B
- $D | 138 | 1 | 244 | $B
- $D | 138 | 2 | 1 | $B
- $D | 139 | 0 | 240 | $C
- $D | 139 | 1 | 254 | $C
- $D | 140 | 0 | 249 | $D
- $D | 145 | 5 | 186 | $2
- $D | 146 | 4 | 195 | $3
- $D | 146 | 5 | 200 | $3
- $D | 147 | 1 | 190 | $4
- $D | 147 | 2 | 196 | $4
- $D | 147 | 4 | 208 | $4
- $D | 147 | 5 | 214 | $4
- $D | 148 | 0 | 193 | $5
- $D | 148 | 1 | 200 | $5
- $D | 148 | 2 | 207 | $5
- $D | 148 | 4 | 221 | $5
- $D | 148 | 5 | 228 | $5
- $D | 149 | 0 | 202 | $6
- $D | 149 | 1 | 210 | $6
- $D | 149 | 2 | 218 | $6
- $D | 149 | 4 | 234 | $6
- $D | 149 | 5 | 242 | $6
- $D | 150 | 0 | 211 | $7
- $D | 150 | 1 | 220 | $7
- $D | 150 | 2 | 229 | $7
- $D | 150 | 4 | 247 | $7
- $D | 150 | 5 | 0 | $7
- $D | 151 | 0 | 220 | $8
- $D | 152 | 0 | 229 | $9
- $D | 153 | 0 | 238 | $A
- $D | 154 | 0 | 247 | $B
- $D | 155 | 0 | 0 | $C
- $D | 162 | 0 | 191 | $3
- $D | 163 | 0 | 200 | $4
- $D | 164 | 0 | 209 | $5
- $D | 165 | 0 | 218 | $6
- $E | 113 | 10 | 190 | $2
- $E | 114 | 6 | 189 | $3
- $E | 114 | 7 | 194 | $3
- $E | 114 | 8 | 199 | $3
- $E | 114 | 10 | 209 | $3
- $E | 115 | 4 | 192 | $4
- $E | 115 | 5 | 198 | $4
- $E | 115 | 6 | 204 | $4
- $E | 115 | 7 | 210 | $4
- $E | 115 | 8 | 216 | $4
- $E | 115 | 10 | 228 | $4
- $E | 116 | 2 | 191 | $5
- $E | 116 | 4 | 205 | $5
- $E | 116 | 5 | 212 | $5
- $E | 116 | 3 | 198 | $5
- $E | 116 | 6 | 219 | $5
- $E | 116 | 7 | 226 | $5
- $E | 116 | 8 | 233 | $5
- $E | 116 | 10 | 247 | $5
- $E | 117 | 1 | 194 | $6
- $E | 117 | 2 | 202 | $6
- $E | 117 | 4 | 218 | $6
- $E | 117 | 5 | 226 | $6
- $E | 117 | 3 | 210 | $6
- $E | 117 | 6 | 234 | $6
- $E | 117 | 7 | 242 | $6
- $E | 117 | 8 | 250 | $6
- $E | 118 | 0 | 195 | $7
- $E | 118 | 1 | 204 | $7
- $E | 118 | 2 | 213 | $7
- $E | 118 | 4 | 231 | $7
- $E | 118 | 5 | 240 | $7
- $E | 118 | 3 | 222 | $7
- $E | 118 | 6 | 249 | $7
- $E | 119 | 0 | 204 | $8
- $E | 119 | 1 | 214 | $8
- $E | 119 | 2 | 224 | $8
- $E | 119 | 4 | 244 | $8
- $E | 119 | 5 | 254 | $8
- $E | 119 | 3 | 234 | $8
- $E | 120 | 0 | 213 | $9
- $E | 120 | 1 | 224 | $9
- $E | 120 | 2 | 235 | $9
- $E | 120 | 4 | 1 | $9
- $E | 120 | 3 | 246 | $9
- $E | 121 | 0 | 222 | $A
- $E | 121 | 1 | 234 | $A
- $E | 121 | 2 | 246 | $A
- $E | 122 | 0 | 231 | $B
- $E | 122 | 1 | 244 | $B
- $E | 122 | 2 | 1 | $B
- $E | 123 | 0 | 240 | $C
- $E | 123 | 1 | 254 | $C
- $E | 124 | 0 | 249 | $D
- $E | 129 | 5 | 186 | $2
- $E | 130 | 4 | 195 | $3
- $E | 130 | 5 | 200 | $3
- $E | 131 | 1 | 190 | $4
- $E | 131 | 2 | 196 | $4
- $E | 131 | 4 | 208 | $4
- $E | 131 | 5 | 214 | $4
- $E | 132 | 0 | 193 | $5
- $E | 132 | 1 | 200 | $5
- $E | 132 | 2 | 207 | $5
- $E | 132 | 4 | 221 | $5
- $E | 132 | 5 | 228 | $5
- $E | 133 | 0 | 202 | $6
- $E | 133 | 1 | 210 | $6
- $E | 133 | 2 | 218 | $6
- $E | 133 | 4 | 234 | $6
- $E | 133 | 5 | 242 | $6
- $E | 134 | 0 | 211 | $7
- $E | 134 | 1 | 220 | $7
- $E | 134 | 2 | 229 | $7
- $E | 134 | 4 | 247 | $7
- $E | 134 | 5 | 0 | $7
- $E | 135 | 0 | 220 | $8
- $E | 135 | 1 | 230 | $8
- $E | 135 | 2 | 240 | $8
- $E | 136 | 0 | 229 | $9
- $E | 136 | 1 | 240 | $9
- $E | 136 | 2 | 251 | $9
- $E | 137 | 0 | 238 | $A
- $E | 137 | 1 | 250 | $A
- $E | 138 | 0 | 247 | $B
- $E | 139 | 0 | 0 | $C
- $E | 146 | 0 | 191 | $3
- $E | 147 | 0 | 200 | $4
- $E | 148 | 0 | 209 | $5
- $E | 149 | 0 | 218 | $6
- $E | 150 | 0 | 227 | $7
- $E | 151 | 0 | 236 | $8
- $E | 152 | 0 | 245 | $9
- $E | 153 | 0 | 254 | $A
- $F | 103 | 0 | 204 | $8
- $F | 103 | 1 | 214 | $8
- $F | 103 | 2 | 224 | $8
- $F | 103 | 4 | 244 | $8
- $F | 103 | 5 | 254 | $8
- $F | 103 | 3 | 234 | $8
- $F | 104 | 0 | 213 | $9
- $F | 104 | 1 | 224 | $9
- $F | 104 | 2 | 235 | $9
- $F | 104 | 4 | 1 | $9
- $F | 104 | 3 | 246 | $9
- $F | 105 | 0 | 222 | $A
- $F | 105 | 1 | 234 | $A
- $F | 105 | 2 | 246 | $A
- $F | 106 | 0 | 231 | $B
- $F | 106 | 1 | 244 | $B
- $F | 106 | 2 | 1 | $B
- $F | 107 | 0 | 240 | $C
- $F | 107 | 1 | 254 | $C
- $F | 108 | 0 | 249 | $D
- $F | 112 | 10 | 187 | $1
- $F | 113 | 5 | 186 | $2
- $F | 113 | 6 | 190 | $2
- $F | 113 | 7 | 194 | $2
- $F | 113 | 8 | 198 | $2
- $F | 113 | 10 | 206 | $2
- $F | 114 | 4 | 195 | $3
- $F | 114 | 5 | 200 | $3
- $F | 114 | 3 | 190 | $3
- $F | 114 | 6 | 205 | $3
- $F | 114 | 7 | 210 | $3
- $F | 114 | 8 | 215 | $3
- $F | 114 | 10 | 225 | $3
- $F | 115 | 1 | 190 | $4
- $F | 115 | 2 | 196 | $4
- $F | 115 | 4 | 208 | $4
- $F | 115 | 5 | 214 | $4
- $F | 115 | 3 | 202 | $4
- $F | 115 | 6 | 220 | $4
- $F | 115 | 7 | 226 | $4
- $F | 115 | 8 | 232 | $4
- $F | 115 | 10 | 244 | $4
- $F | 116 | 0 | 193 | $5
- $F | 116 | 1 | 200 | $5
- $F | 116 | 2 | 207 | $5
- $F | 116 | 4 | 221 | $5
- $F | 116 | 5 | 228 | $5
- $F | 116 | 3 | 214 | $5
- $F | 116 | 6 | 235 | $5
- $F | 116 | 7 | 242 | $5
- $F | 116 | 8 | 249 | $5
- $F | 117 | 0 | 202 | $6
- $F | 117 | 1 | 210 | $6
- $F | 117 | 2 | 218 | $6
- $F | 117 | 4 | 234 | $6
- $F | 117 | 5 | 242 | $6
- $F | 117 | 3 | 226 | $6
- $F | 117 | 6 | 250 | $6
- $F | 118 | 0 | 211 | $7
- $F | 118 | 1 | 220 | $7
- $F | 118 | 2 | 229 | $7
- $F | 118 | 4 | 247 | $7
- $F | 118 | 5 | 0 | $7
- $F | 118 | 3 | 238 | $7
- $F | 119 | 0 | 220 | $8
- $F | 119 | 1 | 230 | $8
- $F | 119 | 2 | 240 | $8
- $F | 119 | 3 | 250 | $8
- $F | 120 | 0 | 229 | $9
- $F | 120 | 1 | 240 | $9
- $F | 120 | 2 | 251 | $9
- $F | 121 | 0 | 238 | $A
- $F | 121 | 1 | 250 | $A
- $F | 122 | 0 | 247 | $B
- $F | 123 | 0 | 0 | $C
- $F | 128 | 4 | 185 | $1
- $F | 128 | 5 | 188 | $1
- $F | 129 | 1 | 186 | $2
- $F | 129 | 2 | 190 | $2
- $F | 129 | 4 | 198 | $2
- $F | 129 | 5 | 202 | $2
- $F | 130 | 0 | 191 | $3
- $F | 130 | 1 | 196 | $3
- $F | 130 | 2 | 201 | $3
- $F | 130 | 4 | 211 | $3
- $F | 130 | 5 | 216 | $3
- $F | 131 | 0 | 200 | $4
- $F | 131 | 1 | 206 | $4
- $F | 131 | 2 | 212 | $4
- $F | 131 | 4 | 224 | $4
- $F | 131 | 5 | 230 | $4
- $F | 132 | 0 | 209 | $5
- $F | 132 | 1 | 216 | $5
- $F | 132 | 2 | 223 | $5
- $F | 132 | 4 | 237 | $5
- $F | 132 | 5 | 244 | $5
- $F | 133 | 0 | 218 | $6
- $F | 133 | 1 | 226 | $6
- $F | 133 | 2 | 234 | $6
- $F | 133 | 4 | 250 | $6
- $F | 134 | 0 | 227 | $7
- $F | 134 | 1 | 236 | $7
- $F | 134 | 2 | 245 | $7
- $F | 135 | 0 | 236 | $8
- $F | 135 | 1 | 246 | $8
- $F | 135 | 2 | 0 | $8
- $F | 136 | 0 | 245 | $9
- $F | 136 | 1 | 0 | $9
- $F | 137 | 0 | 254 | $A
- $F | 144 | 0 | 189 | $1
- $F | 145 | 0 | 198 | $2
- $F | 146 | 0 | 207 | $3
- $F | 147 | 0 | 216 | $4
- $F | 148 | 0 | 225 | $5
- $F | 149 | 0 | 234 | $6
- $F | 150 | 0 | 243 | $7
- $F | 151 | 0 | 252 | $8
- - Sequences of 3 battles w/ up to 4 heal units between battles for initial
- battle seeds $7 and $9 (note that there are 1000s of solutions for other
- seeds >=$8); format of data is:
- - aa/aaa (A=bb) cc/ccc:d:e:fff (A=gg) hh/hhh>iii:j:k:lll (A=mm) nn/nnn
- where: - aa/aaa = $6A68 value and most recent RNG output (i.e. $A4-22)
- at beginning of first battle
- - bb = action selector for first battle
- - cc/ccc = $6A68 value / RNG output after first battle
- - d = number of heals after first battle
- - e = number of Wizard Ring uses after first battle
- - fff = RNG output at beginning of second battle
- - gg = action selector for second battle
- - hh/hhh = $6A68 value / RNG output after second battle
- - iii = RNG output after level-up for hero
- - j = number of heals after second battle
- - k = number of Wizard Ring uses after second battle
- - lll = RNG output at beginning of third battle
- - mm = action selector for third battle
- - nn/nnn = $6A68 value / RNG output after third battle
- NOTE: A>=6 requires Wz >= P2 in turn order
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:4:0:121 (A= 0) $A/222
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:4:0:121 (A= 1) $A/234
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:4:0:121 (A= 2) $A/246
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:3:1:122 (A= 0) $B/231
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:3:1:122 (A= 1) $B/244
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:3:1:122 (A= 2) $B/ 1
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:2:2:123 (A= 0) $C/240
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:2:2:123 (A= 1) $C/254
- - $7/181 (A= 7) $6/194:1:0:205 (A= 0) $E/210> 54:1:3:124 (A= 0) $D/249
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 0) $7/211
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 1) $7/220
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 2) $7/229
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 4) $7/247
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 5) $7/ 0
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 3) $7/238
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 0) $8/220
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 1) $8/230
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 2) $8/240
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 3) $8/250
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:0:2:120 (A= 0) $9/229
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:0:2:120 (A= 1) $9/240
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:0:2:120 (A= 2) $9/251
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:3:0:135 (A= 0) $8/236
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:3:0:135 (A= 1) $8/246
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:3:0:135 (A= 2) $8/ 0
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:1:136 (A= 0) $9/245
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:2:1:136 (A= 1) $9/ 0
- - $7/181 (A= 7) $6/194:0:1:206 (A= 0) $F/219> 81:1:2:137 (A= 0) $A/254
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:4:0:121 (A= 0) $A/222
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:4:0:121 (A= 1) $A/234
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:4:0:121 (A= 2) $A/246
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:3:1:122 (A= 0) $B/231
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:3:1:122 (A= 1) $B/244
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:3:1:122 (A= 2) $B/ 1
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:2:2:123 (A= 0) $C/240
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:2:2:123 (A= 1) $C/254
- - $7/181 (A= 8) $6/202:0:0:205 (A= 0) $E/210> 54:1:3:124 (A= 0) $D/249
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:4:0:121 (A= 0) $A/222
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:4:0:121 (A= 1) $A/234
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:4:0:121 (A= 2) $A/246
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:3:1:122 (A= 0) $B/231
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:3:1:122 (A= 1) $B/244
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:3:1:122 (A= 2) $B/ 1
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:2:2:123 (A= 0) $C/240
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:2:2:123 (A= 1) $C/254
- - $9/163 (A=10) $4/196:1:0:205 (A= 2) $E/210> 54:1:3:124 (A= 0) $D/249
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:2:0:121 (A= 0) $A/222
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:2:0:121 (A= 1) $A/234
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:2:0:121 (A= 2) $A/246
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:1:1:122 (A= 0) $B/231
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:1:1:122 (A= 1) $B/244
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:1:1:122 (A= 2) $B/ 1
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:0:2:123 (A= 0) $C/240
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:0:2:123 (A= 1) $C/254
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:3:0:137 (A= 0) $A/238
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:3:0:137 (A= 1) $A/250
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:2:1:138 (A= 0) $B/247
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:1:2:139 (A= 0) $C/ 0
- - $9/163 (A=10) $4/196:1:0:205 (A= 4) $E/242> 86:4:0:153 (A= 0) $A/254
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:0:103 (A= 0) $8/204
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:0:103 (A= 1) $8/214
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:0:103 (A= 2) $8/224
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:0:103 (A= 4) $8/244
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:0:103 (A= 5) $8/254
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:0:103 (A= 3) $8/234
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:2:1:104 (A= 0) $9/213
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:2:1:104 (A= 1) $9/224
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:2:1:104 (A= 2) $9/235
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:2:1:104 (A= 4) $9/ 1
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:2:1:104 (A= 3) $9/246
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:1:2:105 (A= 0) $A/222
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:1:2:105 (A= 1) $A/234
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:1:2:105 (A= 2) $A/246
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:0:3:106 (A= 0) $B/231
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:0:3:106 (A= 1) $B/244
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:0:3:106 (A= 2) $B/ 1
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:4:0:120 (A= 0) $9/229
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:4:0:120 (A= 1) $9/240
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:4:0:120 (A= 2) $9/251
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:1:121 (A= 0) $A/238
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:3:1:121 (A= 1) $A/250
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:2:2:122 (A= 0) $B/247
- - $9/163 (A=10) $4/196:0:1:206 (A= 1) $F/204> 49:1:3:123 (A= 0) $C/ 0
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:0:103 (A= 0) $8/204
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:0:103 (A= 1) $8/214
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:0:103 (A= 2) $8/224
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:0:103 (A= 4) $8/244
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:0:103 (A= 5) $8/254
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:0:103 (A= 3) $8/234
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:0:1:104 (A= 0) $9/213
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:0:1:104 (A= 1) $9/224
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:0:1:104 (A= 2) $9/235
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:0:1:104 (A= 4) $9/ 1
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:0:1:104 (A= 3) $9/246
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:2:0:120 (A= 0) $9/229
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:2:0:120 (A= 1) $9/240
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:2:0:120 (A= 2) $9/251
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:1:121 (A= 0) $A/238
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:1:1:121 (A= 1) $A/250
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:0:2:122 (A= 0) $B/247
- - $9/163 (A=10) $4/196:0:1:206 (A= 2) $F/221> 83:3:0:137 (A= 0) $A/254
- - $9/163 (A=10) $4/196:0:1:206 (A= 4) $F/255>117:0:0:120 (A= 0) $9/229
- - $9/163 (A=10) $4/196:0:1:206 (A= 4) $F/255>117:0:0:120 (A= 1) $9/240
- - $9/163 (A=10) $4/196:0:1:206 (A= 4) $F/255>117:0:0:120 (A= 2) $9/251
- - $9/163 (A=10) $4/196:0:1:206 (A= 4) $F/255>117:1:0:137 (A= 0) $A/254
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:0:121 (A= 0) $A/206
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:0:121 (A= 1) $A/218
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:0:121 (A= 2) $A/230
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:0:121 (A= 4) $A/254
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:0:121 (A= 3) $A/242
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:2:1:122 (A= 0) $B/215
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:2:1:122 (A= 1) $B/228
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:2:1:122 (A= 2) $B/241
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:2:1:122 (A= 3) $B/254
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:1:2:123 (A= 0) $C/224
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:1:2:123 (A= 1) $C/238
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:1:2:123 (A= 2) $C/252
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:0:3:124 (A= 0) $D/233
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:0:3:124 (A= 1) $D/248
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:4:0:136 (A= 0) $9/213
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:4:0:136 (A= 1) $9/224
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:4:0:136 (A= 2) $9/235
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:4:0:136 (A= 4) $9/ 1
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:1:137 (A= 0) $A/222
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:1:137 (A= 1) $A/234
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:3:1:137 (A= 2) $A/246
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:2:2:138 (A= 0) $B/231
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:2:2:138 (A= 1) $B/244
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:2:2:138 (A= 2) $B/ 1
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:1:3:139 (A= 0) $C/240
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:1:3:139 (A= 1) $C/254
- - $9/164 (A= 7) $5/194:1:0:204 (A= 2) $D/215> 73:0:4:140 (A= 0) $D/249
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:0:121 (A= 0) $A/206
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:0:121 (A= 1) $A/218
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:0:121 (A= 2) $A/230
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:0:121 (A= 4) $A/254
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:0:121 (A= 3) $A/242
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:1:122 (A= 0) $B/215
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:1:122 (A= 1) $B/228
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:1:122 (A= 2) $B/241
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:1:122 (A= 3) $B/254
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:2:0:136 (A= 0) $9/213
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:2:0:136 (A= 1) $9/224
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:2:0:136 (A= 2) $9/235
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:2:0:136 (A= 4) $9/ 1
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:1:137 (A= 0) $A/222
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:1:137 (A= 1) $A/234
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:1:137 (A= 2) $A/246
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:2:138 (A= 0) $B/231
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:2:138 (A= 1) $B/244
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:2:138 (A= 2) $B/ 1
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:3:0:151 (A= 0) $8/220
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:2:1:152 (A= 0) $9/229
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:1:2:153 (A= 0) $A/238
- - $9/164 (A= 7) $5/194:1:0:204 (A= 4) $D/245>103:0:3:154 (A= 0) $B/247
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:4:0:121 (A= 0) $A/222
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:4:0:121 (A= 1) $A/234
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:4:0:121 (A= 2) $A/246
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:3:1:122 (A= 0) $B/231
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:3:1:122 (A= 1) $B/244
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:3:1:122 (A= 2) $B/ 1
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:2:2:123 (A= 0) $C/240
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:2:2:123 (A= 1) $C/254
- - $9/164 (A= 7) $5/194:0:1:205 (A= 1) $E/210> 54:1:3:124 (A= 0) $D/249
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:3:0:121 (A= 0) $A/222
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:3:0:121 (A= 1) $A/234
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:3:0:121 (A= 2) $A/246
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:2:1:122 (A= 0) $B/231
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:2:1:122 (A= 1) $B/244
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:2:1:122 (A= 2) $B/ 1
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:1:2:123 (A= 0) $C/240
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:1:2:123 (A= 1) $C/254
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:0:3:124 (A= 0) $D/249
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:4:0:137 (A= 0) $A/238
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:4:0:137 (A= 1) $A/250
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:3:1:138 (A= 0) $B/247
- - $9/164 (A= 7) $5/194:0:1:205 (A= 2) $E/226> 70:2:2:139 (A= 0) $C/ 0
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:0:121 (A= 0) $A/206
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:0:121 (A= 1) $A/218
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:0:121 (A= 2) $A/230
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:0:121 (A= 4) $A/254
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:0:121 (A= 3) $A/242
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:2:1:122 (A= 0) $B/215
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:2:1:122 (A= 1) $B/228
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:2:1:122 (A= 2) $B/241
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:2:1:122 (A= 3) $B/254
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:1:2:123 (A= 0) $C/224
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:1:2:123 (A= 1) $C/238
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:1:2:123 (A= 2) $C/252
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:0:3:124 (A= 0) $D/233
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:0:3:124 (A= 1) $D/248
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:4:0:136 (A= 0) $9/213
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:4:0:136 (A= 1) $9/224
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:4:0:136 (A= 2) $9/235
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:4:0:136 (A= 4) $9/ 1
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:1:137 (A= 0) $A/222
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:1:137 (A= 1) $A/234
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:3:1:137 (A= 2) $A/246
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:2:2:138 (A= 0) $B/231
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:2:2:138 (A= 1) $B/244
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:2:2:138 (A= 2) $B/ 1
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:1:3:139 (A= 0) $C/240
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:1:3:139 (A= 1) $C/254
- - $9/164 (A= 8) $5/201:0:0:204 (A= 2) $D/215> 73:0:4:140 (A= 0) $D/249
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:0:121 (A= 0) $A/206
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:0:121 (A= 1) $A/218
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:0:121 (A= 2) $A/230
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:0:121 (A= 4) $A/254
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:0:121 (A= 3) $A/242
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:1:122 (A= 0) $B/215
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:1:122 (A= 1) $B/228
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:1:122 (A= 2) $B/241
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:1:122 (A= 3) $B/254
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:2:0:136 (A= 0) $9/213
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:2:0:136 (A= 1) $9/224
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:2:0:136 (A= 2) $9/235
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:2:0:136 (A= 4) $9/ 1
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:1:137 (A= 0) $A/222
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:1:137 (A= 1) $A/234
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:1:137 (A= 2) $A/246
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:2:138 (A= 0) $B/231
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:2:138 (A= 1) $B/244
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:2:138 (A= 2) $B/ 1
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:3:0:151 (A= 0) $8/220
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:2:1:152 (A= 0) $9/229
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:1:2:153 (A= 0) $A/238
- - $9/164 (A= 8) $5/201:0:0:204 (A= 4) $D/245>103:0:3:154 (A= 0) $B/247
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:4:0:121 (A= 0) $A/222
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:4:0:121 (A= 1) $A/234
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:4:0:121 (A= 2) $A/246
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:3:1:122 (A= 0) $B/231
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:3:1:122 (A= 1) $B/244
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:3:1:122 (A= 2) $B/ 1
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:2:2:123 (A= 0) $C/240
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:2:2:123 (A= 1) $C/254 (*)
- - $9/165 (A= 5) $6/194:1:0:205 (A= 0) $E/210> 54:1:3:124 (A= 0) $D/249
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 0) $7/211
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 1) $7/220
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 2) $7/229
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 4) $7/247
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 5) $7/ 0
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:0:118 (A= 3) $7/238
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 0) $8/220
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 1) $8/230
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 2) $8/240
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:1:1:119 (A= 3) $8/250
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:0:2:120 (A= 0) $9/229
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:0:2:120 (A= 1) $9/240
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:0:2:120 (A= 2) $9/251
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:3:0:135 (A= 0) $8/236
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:3:0:135 (A= 1) $8/246
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:3:0:135 (A= 2) $8/ 0
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:1:136 (A= 0) $9/245
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:2:1:136 (A= 1) $9/ 0
- - $9/165 (A= 5) $6/194:0:1:206 (A= 0) $F/219> 81:1:2:137 (A= 0) $A/254
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:4:0:121 (A= 0) $A/222
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:4:0:121 (A= 1) $A/234
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:4:0:121 (A= 2) $A/246
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:3:1:122 (A= 0) $B/231
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:3:1:122 (A= 1) $B/244
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:3:1:122 (A= 2) $B/ 1
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:2:2:123 (A= 0) $C/240
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:2:2:123 (A= 1) $C/254
- - $9/165 (A= 6) $6/202:0:0:205 (A= 0) $E/210> 54:1:3:124 (A= 0) $D/249
- [Appendix: Ortega]
- Min RNG counter (heals) up to Ortega battle entry: (note that Charlock
- B2 is low-128 encounter rate)
- $6A68 | GTitan 3 | Levelups | Charl B2 | Charl B3 | Charl B4 | Ortega
- -------+----------+----------+----------+----------+----------+----------
- $7 | $E9 (--) | $23 (--) | $3B ( 0) | $95 ( 0) | $0B ( 0) | $45 ( 1)
- $7 | $F2 (--) | $2C (--) | $44 ( 0) | $99 ( 0) | $0F ( 0) | $49 ( 1)
- $7 | $FB (--) | $35 (--) | $4D ( 0) | $9E ( 0) | $1D ( 1) | $4E ( 0)
- $7 | $04 (--) | $3E (--) | $56 ( 0) | $A2 ( 0) | $21 ( 1) | $52 ( 0)
- $7 | $0D (--) | $47 (--) | $5F ( 0) | $A7 ( 0) | $26 ( 1) | $57 ( 0)
- $7 | $16 (--) | $50 (--) | $68 ( 0) | $AB ( 0) | $2A ( 1) | $5B ( 0)
- $8 | $F2 (--) | $32 (--) | $4A ( 0) | $9C ( 0) | $12 ( 0) | $4D ( 1)
- $8 | $FC (--) | $3C (--) | $54 ( 0) | $A1 ( 0) | $21 ( 1) | $52 ( 0)
- $8 | $02 (--) | $42 (--) | $5A ( 0) | $A4 ( 0) | $24 ( 1) | $57 ( 0)
- $8 | $06 (--) | $46 (--) | $5E ( 0) | $A6 ( 0) | $26 ( 1) | $57 ( 0)
- $8 | $0C (--) | $4C (--) | $64 ( 0) | $A9 ( 0) | $29 ( 1) | $5A ( 0)
- $8 | $10 (--) | $50 (--) | $68 ( 0) | $AB ( 0) | $2B ( 1) | $5C ( 0)
- $8 | $16 (--) | $56 (--) | $6E ( 0) | $AE ( 0) | $2E ( 1) | $5F ( 0)
- $9 | $FB (--) | $41 (--) | $59 ( 0) | $A4 ( 0) | $25 ( 1) | $56 ( 0)
- $9 | $06 (--) | $4C (--) | $64 ( 0) | $A9 ( 0) | $2A ( 1) | $5B ( 0)
- $9 | $0B (--) | $51 (--) | $69 ( 0) | $AC ( 0) | $2D ( 1) | $5E ( 0)
- $9 | $11 (--) | $57 (--) | $6F ( 0) | $AF ( 0) | $30 ( 1) | $61 ( 0)
- $9 | $16 (--) | $5C (--) | $74 ( 0) | $B1 ( 0) | $32 ( 1) | $63 ( 0)
- $A | $F4 (--) | $40 (--) | $58 ( 0) | $A3 ( 0) | $25 ( 1) | $56 ( 0)
- $A | $00 (--) | $4C (--) | $64 ( 0) | $A9 ( 0) | $2B ( 1) | $5C ( 0)
- $A | $0C (--) | $58 (--) | $70 ( 0) | $AF ( 0) | $31 ( 1) | $62 ( 0)
- $A | $14 (--) | $60 (--) | $78 ( 0) | $B3 ( 0) | $35 ( 1) | $66 ( 0)
- $B | $FD (--) | $4F (--) | $67 ( 0) | $AB ( 0) | $2E ( 1) | $5F ( 0)
- $B | $0A (--) | $5C (--) | $74 ( 0) | $B1 ( 0) | $34 ( 1) | $65 ( 0)
- $B | $17 (--) | $69 (--) | $81 ( 0) | $B8 ( 0) | $3B ( 1) | $6C ( 0)
- $C | $06 (--) | $5E (--) | $76 ( 0) | $B2 ( 0) | $36 ( 1) | $67 ( 0)
- $C | $14 (--) | $6C (--) | $84 ( 0) | $B9 ( 0) | $3D ( 1) | $6E ( 0)
- $D | $0F (--) | $6D (--) | $85 ( 0) | $BA ( 0) | $3E ( 1) | $6F ( 0)
- Requirements for 2-turn kill:
- - Ortega's initial HP <= 308
- - multi_random(101) >= 92
- - 101*($A4+($6A68+2)-22) >= 92*256
- - $A4+$6A68-20 >= 92*256/101
- - $A4+$6A68 in [254,19]
- - 2nd round Ortega turn choice: multi_random() < 2+4+6+8+10
- - Pre-battle: multi_random() x 4
- - Turn 1:
- - multi_random() x 12
- - Ortega action/target choice
- - multi_random() x 4 (Hydra action/target choice x 2)
- - If Ortega action is:
- - Attack: multi_random() x 2, random_32()
- - Infermost: multi_random() x 2
- - Sleep: multi_random() x 1
- - multi_random() x 2
- - If Hydra action 1 is Attack: random_32()
- - multi_random() x 2
- - If Hydra action 2 is Attack: random_32()
- - Turn 2:
- - multi_random() x 12
- - At this point: multi_random() < 30
- - $A4+($6A68+2) < 30
- - $A4+$6A68 in [254,27]
- - We want Ortega to do Attack x 2, Hydra to do Attack x 4
- - Hydra attack selector is 0-127, 160-191
- - 1st turn resolution will be {multi_random() x 2, random_32() x 2} x 3
- - Valid battle entry $A4 per $6A68: (see full tables below)
- - $7: 227-240 (Hydra 2nd turn 2nd action: 74-87)
- - $8: 194-200 (Hydra 2/2: 80-84)
- - $9: 130 (Hydra 2/2: 71)
- - $A: none
- - $B: 69-86 (Hydra 2/2: 78-95)
- - $C: 42-45 (Hydra 2/2: 96-99), 52-53 (Hydra 2/2: 106-107),
- 210-225 (Hydra 2/2: 78-93), 226-239 (Hydra 2/2: 80-93),
- 240-242 (Hydra 2/2: 80-82)
- - $D: 181-182 (Hydra 2/2: 84-85), 183-193 (Hydra 2/2: 101-111),
- 204-208 (Hydra 2/2: 107-111), 219-222 (Hydra 2/2: 107-111)
- - Solution: $6A68 = $C, $A4 = 242
- - Best entry: $C/$14 after Granite Titans, use 3 heals and 6 WizRings
- before Ortega
- - At battle end, $A4 = 82
- ortega_hp = 400 - multi_random(101)
- hydra_hp = 550 - multi_random(138)
- ortega_focus = ubound(multi_random() / 63, 3)
- hydra_focus = ubound(multi_random() / 63, 3)
- slot_speed[4] = 100
- slot_speed[5] = 50
- for each turn:
- for i in [0,11]:
- x = slot_speed[i] / 4
- turn_speed[i] = x + multi_random(slot_speed[i] - x)
- ortega_first = (turn_speed[4] > turn_speed[5])
- // Ortega will always go first since RNG rollovers work in his favor
- ortega_chance = {2,4,6,8,10,12,14,200}
- ortega_used_actions = {0,0,0,0,0,0,0,0}
- do {
- used_chance = 0
- used_count = 0
- for i in [0,7]:
- if ortega_used_actions[i]:
- used_chance += ortega_chance[i] / (7 - used_count)
- used_count++
- index = 0
- chance = 0
- r = multi_random()
- while index < 8:
- if not ortega_used_actions[index]:
- chance += used_chance + ortega_chance[index]
- if index == 7 or r < chance: break
- index++
- ortega_action = {Infermost,Attack,Sleep,Attack,Attack,Healall,Healall,Healall,Attack}[index]
- ortega_used_action[index] = 1
- if ortega_action == Attack:
- dummy = choose_attack_target()
- else unless ortega_action == Healall:
- dummy = multi_random()
- } while (ortega_action == Healall and ortega_hp >= 200)
- hydra_action_1 = {Attack,Attack,Attack,Attack,Breath,Attack,Breath,Breath}[multi_random() / 8]
- dummy = multi_random()
- hydra_action_2 = {Attack,Attack,Attack,Attack,Breath,Attack,Breath,Breath}[multi_random() / 8]
- dummy = multi_random()
- if ortega_first: resolve(ortega_action, ortega_action==Healall ? Ortega : Hydra)
- resolve(hydra_action, Ortega)
- unless ortega_first: resolve(ortega_action, ortega_action==Healall ? Ortega : Hydra)
- choose_attack_target():
- if multi_random() <= 0x70:
- return 0
- if multi_random() <= 0xB3:
- return 1
- if multi_random() <= 0xEA:
- return 2
- if multi_random() <= 0xFF: // always true
- return 3
- resolve(action, target):
- if action == Healall:
- set target's HP to base HP
- return
- if action == Attack:
- dummy = multi_random() // Target group reselect
- dummy = multi_random() // Target enemy reselect
- dummy = random_32() // Party damage calc (discarded)
- if target == Hydra:
- damage = ((230 - 50/2) * (bound(random_32(), 102, 153) / 4)) / 64
- // Always 121
- else: // target == Ortega
- damage = ((240 - 220/2) * (bound(random_32(), 102, 153) / 4)) / 64
- // Always 77
- else if action == Infermost:
- dummy = multi_random() // Target reselect
- damage = 30 + multi_random(32)
- else if action == Breath:
- dummy = multi_random() // Target reselect
- damage = 10 + multi_random(30)
- apply_damage(target, damage)
- Ortega action table (no Healall):
- $6A68/$A4_in | $A4_add | Action
- --------------+---------+--------
- $7/ 0- 3 | +36 | Infermost
- $7/ 4- 12 | +27 | Infermost
- $7/ 13- 14 | +18 | Infermost
- $7/ 15- 18 | +18 | Attack
- $7/ 19- 24 | +18 | Sleep
- $7/ 25- 42 | +18 | Attack
- $7/ 43- 53 | +45 | Attack
- $7/ 54- 54 | +36 | Attack
- $7/ 55- 57 | +45 | Attack
- $7/ 58- 68 | +36 | Attack
- $7/ 69- 99 | +27 | Sleep
- $7/100-107 | +27 | Attack
- $7/108-165 | +36 | Attack
- $7/166-173 | +45 | Attack
- $7/174-194 | +54 | Attack
- $7/195-214 | +72 | Attack
- $7/215-223 | +63 | Attack
- $7/224-230 | +54 | Attack
- $7/231-232 | +63 | Infermost
- $7/233-241 | +54 | Infermost
- $7/242-250 | +45 | Infermost
- $7/251-255 | +36 | Infermost
- $8/ 0- 1 | +40 | Infermost
- $8/ 2- 11 | +30 | Infermost
- $8/ 12- 13 | +20 | Infermost
- $8/ 14- 17 | +20 | Attack
- $8/ 18- 23 | +20 | Sleep
- $8/ 24- 41 | +20 | Attack
- $8/ 42- 51 | +50 | Attack
- $8/ 52- 53 | +40 | Attack
- $8/ 54- 55 | +50 | Attack
- $8/ 56- 67 | +40 | Attack
- $8/ 68- 97 | +30 | Sleep
- $8/ 98-104 | +30 | Attack
- $8/105-161 | +40 | Attack
- $8/162-171 | +50 | Attack
- $8/172-191 | +60 | Attack
- $8/192-207 | +80 | Attack
- $8/208-217 | +70 | Attack
- $8/218-226 | +60 | Attack
- $8/227-227 | +70 | Infermost
- $8/228-237 | +60 | Infermost
- $8/238-247 | +50 | Infermost
- $8/248-255 | +40 | Infermost
- $9/ 0- 10 | +33 | Infermost
- $9/ 11- 12 | +22 | Infermost
- $9/ 13- 16 | +22 | Attack
- $9/ 17- 22 | +22 | Sleep
- $9/ 23- 40 | +22 | Attack
- $9/ 41- 49 | +55 | Attack
- $9/ 50- 52 | +44 | Attack
- $9/ 53- 53 | +55 | Attack
- $9/ 54- 64 | +44 | Attack
- $9/ 65- 66 | +44 | Sleep
- $9/ 67- 95 | +33 | Sleep
- $9/ 96-101 | +33 | Attack
- $9/102-157 | +44 | Attack
- $9/158-169 | +55 | Attack
- $9/170-188 | +66 | Attack
- $9/189-200 | +88 | Attack
- $9/201-211 | +77 | Attack
- $9/212-222 | +66 | Attack
- $9/223-233 | +66 | Infermost
- $9/234-244 | +55 | Infermost
- $9/245-255 | +44 | Infermost
- $A/ 0- 9 | +36 | Infermost
- $A/ 10- 11 | +24 | Infermost
- $A/ 12- 15 | +24 | Attack
- $A/ 16- 21 | +24 | Sleep
- $A/ 22- 39 | +24 | Attack
- $A/ 40- 47 | +60 | Attack
- $A/ 48- 61 | +48 | Attack
- $A/ 62- 65 | +48 | Sleep
- $A/ 66- 93 | +36 | Sleep
- $A/ 94- 98 | +36 | Attack
- $A/ 99-153 | +48 | Attack
- $A/154-167 | +60 | Attack
- $A/168-184 | +72 | Attack
- $A/185-185 | +84 | Attack
- $A/186-193 | +96 | Attack
- $A/194-205 | +84 | Attack
- $A/206-217 | +72 | Attack
- $A/218-218 | +60 | Attack
- $A/219-229 | +72 | Infermost
- $A/230-241 | +60 | Infermost
- $A/242-253 | +48 | Infermost
- $A/254-255 | +36 | Infermost
- $B/ 0- 8 | +39 | Infermost
- $B/ 9- 10 | +26 | Infermost
- $B/ 11- 14 | +26 | Attack
- $B/ 15- 20 | +26 | Sleep
- $B/ 21- 38 | +26 | Attack
- $B/ 39- 45 | +65 | Attack
- $B/ 46- 58 | +52 | Attack
- $B/ 59- 64 | +52 | Sleep
- $B/ 65- 91 | +39 | Sleep
- $B/ 92- 95 | +39 | Attack
- $B/ 96-149 | +52 | Attack
- $B/150-165 | +65 | Attack
- $B/166-178 | +78 | Attack
- $B/179-182 | +91 | Attack
- $B/183-186 | +104 | Attack
- $B/187-199 | +91 | Attack
- $B/200-212 | +78 | Attack
- $B/213-214 | +65 | Attack
- $B/215-225 | +78 | Infermost
- $B/226-238 | +65 | Infermost
- $B/239-251 | +52 | Infermost
- $B/252-255 | +39 | Infermost
- $C/ 0- 7 | +42 | Infermost
- $C/ 8- 9 | +28 | Infermost
- $C/ 10- 13 | +28 | Attack
- $C/ 14- 19 | +28 | Sleep
- $C/ 20- 37 | +28 | Attack
- $C/ 38- 43 | +70 | Attack
- $C/ 44- 55 | +56 | Attack
- $C/ 56- 63 | +56 | Sleep
- $C/ 64- 89 | +42 | Sleep
- $C/ 90- 92 | +42 | Attack
- $C/ 93-145 | +56 | Attack
- $C/146-163 | +70 | Attack
- $C/164-172 | +84 | Attack
- $C/173-193 | +98 | Attack
- $C/194-207 | +84 | Attack
- $C/208-210 | +70 | Attack
- $C/211-221 | +84 | Infermost
- $C/222-235 | +70 | Infermost
- $C/236-249 | +56 | Infermost
- $C/250-255 | +42 | Infermost
- $D/ 0- 6 | +45 | Infermost
- $D/ 7- 8 | +30 | Infermost
- $D/ 9- 12 | +30 | Attack
- $D/ 13- 18 | +30 | Sleep
- $D/ 19- 36 | +30 | Attack
- $D/ 37- 41 | +75 | Attack
- $D/ 42- 52 | +60 | Attack
- $D/ 53- 62 | +60 | Sleep
- $D/ 63- 87 | +45 | Sleep
- $D/ 88- 89 | +45 | Attack
- $D/ 90-141 | +60 | Attack
- $D/142-161 | +75 | Attack
- $D/162-166 | +90 | Attack
- $D/167-187 | +105 | Attack
- $D/188-202 | +90 | Attack
- $D/203-206 | +75 | Attack
- $D/207-217 | +90 | Infermost
- $D/218-232 | +75 | Infermost
- $D/233-247 | +60 | Infermost
- $D/248-255 | +45 | Infermost
- Ortega action table (with Healall):
- $6A68/$A4_in | $A4_add | Action
- --------------+---------+--------
- $7/ 0- 12 | +9 | Healall
- $7/ 13- 14 | +18 | Infermost
- $7/ 15- 18 | +18 | Attack
- $7/ 19- 24 | +18 | Sleep
- $7/ 25- 42 | +18 | Attack
- $7/ 43-255 | +9 | Healall
- $8/ 0- 11 | +10 | Healall
- $8/ 12- 13 | +20 | Infermost
- $8/ 14- 17 | +20 | Attack
- $8/ 18- 23 | +20 | Sleep
- $8/ 24- 41 | +20 | Attack
- $8/ 42-255 | +10 | Healall
- $9/ 0- 10 | +11 | Healall
- $9/ 11- 12 | +22 | Infermost
- $9/ 13- 16 | +22 | Attack
- $9/ 17- 22 | +22 | Sleep
- $9/ 23- 40 | +22 | Attack
- $9/ 41-255 | +11 | Healall
- $A/ 0- 9 | +12 | Healall
- $A/ 10- 11 | +24 | Infermost
- $A/ 12- 15 | +24 | Attack
- $A/ 16- 21 | +24 | Sleep
- $A/ 22- 39 | +24 | Attack
- $A/ 40-255 | +12 | Healall
- $B/ 0- 8 | +13 | Healall
- $B/ 9- 10 | +26 | Infermost
- $B/ 11- 14 | +26 | Attack
- $B/ 15- 20 | +26 | Sleep
- $B/ 21- 38 | +26 | Attack
- $B/ 39-255 | +13 | Healall
- $C/ 0- 7 | +14 | Healall
- $C/ 8- 9 | +28 | Infermost
- $C/ 10- 13 | +28 | Attack
- $C/ 14- 19 | +28 | Sleep
- $C/ 20- 37 | +28 | Attack
- $C/ 38-255 | +14 | Healall
- $D/ 0- 6 | +15 | Healall
- $D/ 7- 8 | +30 | Infermost
- $D/ 9- 12 | +30 | Attack
- $D/ 13- 18 | +30 | Sleep
- $D/ 19- 36 | +30 | Attack
- $D/ 37-255 | +15 | Healall
- Turn 1 $A4 table:
- $6A68| Entry |@Ortega|@Hydra |Hydra-1|Hydra-2|@Resolv|EntryOK| ResOK
- -----+-------+-------+-------+-------+-------+-------+-------+-------
- $7|127-130| 15- 18| 33- 36| 42- 45| 60- 63| 69- 72|127-130| 69- 72
- $7|137-154| 25- 42| 43- 60| 52- 69| 70- 87| 79- 96|137-154| 79- 96
- $7|155-165| 43- 53| 88- 98| 97-107|115-125|124-134|155-165|124-134
- $7|166-166| 54- 54| 90- 90| 99- 99|117-117|126-126|166-166|126-126
- $7|167-169| 55- 57|100-102|109-111|127-129|136-138|167-167|136-136
- $7|170-180| 58- 68| 96-107|105-116|123-134|132-143| --- | ---
- $7|212-219|100-107|127-134|136-143|154-161|163-170| --- | ---
- $7|220- 21|108-165|144-201|153-210|171-228|180-237|227-240|187-200
- $7| 22- 29|166-173|211-218|220-227|238-245|247-254| --- | ---
- $7| 30- 50|174-194|228-248|237- 1|255- 19| 8- 28| 49- 50| 27- 28
- $7| 51- 70|195-214| 11- 30| 20- 39| 38- 57| 47- 66| 51- 70| 47- 66
- $7| 71- 79|215-223| 22- 30| 31- 39| 49- 57| 58- 66| 71- 79| 58- 66
- $7| 80- 86|224-230| 22- 28| 31- 37| 49- 55| 58- 64| 80- 86| 58- 64
- $8|110-113| 14- 17| 34- 37| 44- 47| 64- 67| 74- 77|110-113| 74- 77
- $8|120-137| 24- 41| 44- 61| 54- 71| 74- 91| 84-101|120-137| 84-101
- $8|138-147| 42- 51| 92-101|102-111|122-131|132-141|138-143|132-137
- $8|148-149| 52- 53| 92- 93|102-103|122-123|132-133|148-149|132-133
- $8|150-151| 54- 55|104-105|114-115|134-135|144-145| --- | ---
- $8|152-163| 56- 67| 96-107|106-117|126-137|136-147|152-153|136-137
- $8|194-200| 98-104|128-134|138-144|158-164|168-174|196-200|170-174
- $8|201- 1|105-161|145-201|155-211|175-231|185-241|201-217|185-201
- $8| 2- 11|162-171|212-221|222-231|242-251|252- 5| --- | ---
- $8| 12- 31|172-191|232-251|242- 5| 6- 25| 16- 35| 12- 31| 16- 35
- $8| 32- 47|192-207| 16- 31| 26- 41| 46- 61| 56- 71| 32- 47| 56- 71
- $8| 48- 57|208-217| 22- 31| 32- 41| 52- 61| 62- 71| 48- 57| 62- 71
- $8| 58- 66|218-226| 22- 30| 32- 40| 52- 60| 62- 70| 58- 66| 62- 70
- $9| 93- 96| 13- 16| 35- 38| 46- 49| 68- 71| 79- 82| 93- 96| 79- 82
- $9|103-120| 23- 40| 45- 62| 56- 73| 78- 95| 89-106|103-120| 89-106
- $9|121-129| 41- 49| 96-104|107-115|129-137|140-148| --- | ---
- $9|130-132| 50- 52| 94- 96|105-107|127-129|138-140|130-130|138-138
- $9|133-133| 53- 53|108-108|119-119|141-141|152-152| --- | ---
- $9|134-144| 54- 64| 98-108|109-119|131-141|142-152| --- | ---
- $9|176-181| 96-101|129-134|140-145|162-167|173-178| --- | ---
- $9|182-237|102-157|146-201|157-212|179-234|190-245|185-194|193-202
- $9|238-249|158-169|213-224|224-235|246- 1| 1- 12| --- | ---
- $9|250- 12|170-188|236-254|247- 9| 13- 31| 24- 42| 3- 12| 33- 42
- $9| 13- 24|189-200| 21- 32| 32- 43| 54- 65| 65- 76| 13- 24| 65- 76
- $9| 25- 35|201-211| 22- 32| 33- 43| 55- 65| 66- 76| 25- 35| 66- 76
- $9| 36- 46|212-222| 22- 32| 33- 43| 55- 65| 66- 76| 36- 46| 66- 76
- $A| 76- 79| 12- 15| 36- 39| 48- 51| 72- 75| 84- 87| 76- 79| 84- 87
- $A| 86-103| 22- 39| 46- 63| 58- 75| 82- 99| 94-111| 86-103| 94-111
- $A|104-111| 40- 47|100-107|112-119|136-143|148-155| --- | ---
- $A|112-125| 48- 61| 96-109|108-121|132-145|144-157| --- | ---
- $A|158-162| 94- 98|130-134|142-146|166-170|178-182|158-162|178-182
- $A|163-217| 99-153|147-201|159-213|183-237|195-249|163-171|195-203
- $A|218-231|154-167|214-227|226-239|250- 7| 6- 19|224-231| 12- 19
- $A|232-248|168-184|240- 0|252- 12| 20- 36| 32- 48|232-248| 32- 48
- $A|249-249|185-185| 13- 13| 25- 25| 49- 49| 61- 61|249-249| 61- 61
- $A|250- 1|186-193| 26- 33| 38- 45| 62- 69| 74- 81|250- 1| 74- 81
- $A| 2- 13|194-205| 22- 33| 34- 45| 58- 69| 70- 81| 2- 13| 70- 81
- $A| 14- 25|206-217| 22- 33| 34- 45| 58- 69| 70- 81| 14- 25| 70- 81
- $A| 26- 26|218-218| 22- 22| 34- 34| 58- 58| 70- 70| 26- 26| 70- 70
- $B| 59- 62| 11- 14| 37- 40| 50- 53| 76- 79| 89- 92| 59- 62| 89- 92
- $B| 69- 86| 21- 38| 47- 64| 60- 77| 86-103| 99-116| 69- 86| 99-116
- $B| 87- 93| 39- 45|104-110|117-123|143-149|156-162| --- | ---
- $B| 94-106| 46- 58| 98-110|111-123|137-149|150-162| --- | ---
- $B|140-143| 92- 95|131-134|144-147|170-173|183-186|140-143|183-186
- $B|144-197| 96-149|148-201|161-214|187-240|200-253|144-148|200-204
- $B|198-213|150-165|215-230|228-243|254- 13| 11- 26|200-213| 13- 26
- $B|214-226|166-178|244- 0| 1- 13| 27- 39| 40- 52|214-226| 40- 52
- $B|227-230|179-182| 14- 17| 27- 30| 53- 56| 66- 69|227-230| 66- 69
- $B|231-234|183-186| 31- 34| 44- 47| 70- 73| 83- 86|231-234| 83- 86
- $B|235-247|187-199| 22- 34| 35- 47| 61- 73| 74- 86|235-247| 74- 86
- $B|248- 4|200-212| 22- 34| 35- 47| 61- 73| 74- 86|248- 4| 74- 86
- $B| 5- 6|213-214| 22- 23| 35- 36| 61- 62| 74- 75| 5- 6| 74- 75
- $C| 42- 45| 10- 13| 38- 41| 52- 55| 80- 83| 94- 97| 42- 45| 94- 97
- $C| 52- 69| 20- 37| 48- 65| 62- 79| 90-107|104-121| 52- 69|104-121
- $C| 70- 75| 38- 43|108-113|122-127|150-155|164-169| --- | ---
- $C| 76- 87| 44- 55|100-111|114-125|142-153|156-167| --- | ---
- $C|122-124| 90- 92|132-134|146-148|174-176|188-190|122-124|188-190
- $C|125-177| 93-145|149-201|163-215|191-243|205- 1|125-125|205-205
- $C|178-195|146-163|216-233|230-247| 2- 19| 16- 33|178-195| 16- 33
- $C|196-204|164-172|248- 0| 6- 14| 34- 42| 48- 56|196-204| 48- 56
- $C|205-225|173-193| 15- 35| 29- 49| 57- 77| 71- 91|205-225| 71- 91
- $C|226-239|194-207| 22- 35| 36- 49| 64- 77| 78- 91|226-239| 78- 91
- $C|240-242|208-210| 22- 24| 36- 38| 64- 66| 78- 80|240-242| 78- 80
- $D| 25- 28| 9- 12| 39- 42| 54- 57| 84- 87| 99-102| 25- 28| 99-102
- $D| 35- 52| 19- 36| 49- 66| 64- 81| 94-111|109-126| 35- 52|109-126
- $D| 53- 57| 37- 41|112-116|127-131|157-161|172-176| --- | ---
- $D| 58- 68| 42- 52|102-112|117-127|147-157|162-172| --- | ---
- $D|104-105| 88- 89|133-134|148-149|178-179|193-194| --- | ---
- $D|106-157| 90-141|150-201|165-216|195-246|210- 5| --- | ---
- $D|158-177|142-161|217-236|232-251| 6- 25| 21- 40| --- | ---
- $D|178-182|162-166|252- 0| 11- 15| 41- 45| 56- 60|178-182| 56- 60
- $D|183-203|167-187| 16- 36| 31- 51| 61- 81| 76- 96|183-203| 76- 96
- $D|204-218|188-202| 22- 36| 37- 51| 67- 81| 82- 96|204-218| 82- 96
- $D|219-222|203-206| 22- 25| 37- 40| 67- 70| 82- 85|219-222| 82- 85
- Turn 2 $A4 table:
- $6A68|Resolv1| End-1 |@Ortega|Ortg-OK|@Hydra |Hydra-1|Hydra-2| Entry
- -----+-------+-------+-------+-------+-------+-------+-------+-------
- $7| 27- 28| 17- 18|125-126| --- | | | |
- $7| 47- 66| 37- 56|145-164| --- | | | |
- $7| 58- 66| 48- 56|156-164| --- | | | |
- $7| 58- 64| 48- 54|156-162| --- | | | |
- $7| 69- 72| 59- 62|167-170| --- | | | |
- $7| 79- 96| 69- 86|177-194| --- | | | |
- $7|124-134|114-124|222-232| --- | | | |
- $7|126-126|116-116|224-224| --- | | | |
- $7|136-136|126-126|234-234| --- | | | |
- $7|187-200|177-190| 29- 42| 29- 42| 47- 60| 56- 69| 74- 87|227-240
- $8| 16- 35| 12- 31|132-151| --- | | | |
- $8| 56- 71| 52- 67|172-187| --- | | | |
- $8| 74- 77| 70- 73|190-193| --- | | | |
- $8| 84-101| 80- 97|200-217| --- | | | |
- $8|132-137|128-133|248-253| --- | | | |
- $8|170-174|166-170| 30- 34| 30- 34| 50- 54| 60- 64| 80- 84|194-200
- $8|185-201|181-197| 45- 61| --- | | | |
- $9| 33- 42| 35- 44|167-176| --- | | | |
- $9| 65- 76| 67- 78|199-210| --- | | | |
- $9| 66- 76| 68- 78|200-210| --- | | | |
- $9| 66- 76| 68- 78|200-210| --- | | | |
- $9| 79- 82| 81- 84|213-216| --- | | | |
- $9| 89-106| 91-108|223-240| --- | | | |
- $9|138-138|140-140| 16- 16| 16- 16| 38- 38| 49- 49| 71- 71|130-130
- $9|193-202|195-204| 71- 80| --- | | | |
- $A| 12- 19| 20- 27|164-171| --- | | | |
- $A| 32- 48| 40- 56|184-200| --- | | | |
- $A| 61- 61| 69- 69|213-213| --- | | | |
- $A| 70- 81| 78- 89|222-233| --- | | | |
- $A| 84- 87| 92- 95|236-239| --- | | | |
- $A| 94-111|102-119|246- 7| --- | | | |
- $A|178-182|186-190| 74- 78| --- | | | |
- $A|195-203|203-211| 91- 99| --- | | | |
- $B| 13- 26| 27- 40|183-196| --- | | | |
- $B| 40- 52| 54- 66|210-222| --- | | | |
- $B| 66- 69| 80- 83|236-239| --- | | | |
- $B| 74- 86| 88-100|244- 0| --- | | | |
- $B| 89- 92|103-106| 3- 6| --- | | | |
- $B| 99-116|113-130| 13- 30| 13- 30| 39- 56| 52- 69| 78- 95| 69- 86
- $B|183-186|197-200| 97-100| --- | | | |
- $B|200-204|214-218|114-118| --- | | | |
- $C| 16- 33| 36- 53|204-221| --- | | | |
- $C| 48- 56| 68- 76|236-244| --- | | | |
- $C| 71- 91| 91-111| 3- 23| 8- 23| 36- 51| 50- 65| 78- 93|205-242
- $C| 94- 97|114-117| 26- 29| 26- 29| 54- 57| 68- 71| 96- 99| 42- 45
- $C|104-121|124-141| 36- 53| 36- 37| 64- 65| 78- 79|106-107| 52- 53
- $C|188-190|208-210|120-122| --- | | | |
- $C|205-205|225-225|137-137| --- | | | |
- $D| 56- 60| 82- 86| 6- 10| 9- 10| 39- 40| 54- 55| 84- 85|181-182
- $D| 76- 96|102-122| 26- 46| 26- 36| 56- 66| 71- 81|101-111|183-193
- $D| 82- 96|108-122| 32- 46| 32- 36| 62- 66| 77- 81|107-111|204-208
- $D| 82- 85|108-111| 32- 35| 32- 35| 62- 65| 77- 81|107-111|219-222
- $D| 99-102|125-128| 49- 52| --- | | | |
- $D|109-126|135-152| 59- 76| --- | | | |
- [Appendix: Boss rush]
- (assumes Magic Armor, but we ended up not needing it)
- Plan, in reverse turn order:
- - Zoma turn 2: 4 high Herb hits before Zoma acts
- - Zoma turn 1: low breath damage, possibly some Herb hits
- - Gonus turn 4: high damage
- - Gonus turn 3: high damage, Surround evade
- - Gonus turn 2: high damage, Surround evade
- - Gonus turn 1: high damage, Surround hit, Surround evade
- - Bomus turn 2: high damage before Bomus acts
- - Bomus turn 1: high damage
- - Hydra turn 2: high damage before Hydra acts
- - Hydra turn 1: high damage
- Let B0 = $6A68+2 at beginning of turn, B1 = $6A68+2 after party menu
- $A4_0/$6A68_0, $A4_1/$6A68_1 similarly
- Zoma turn 2:
- - HP regen: 90 + multi_random(20)
- - Turn order: 22-6*B0 <= $A4_0 < 22-5*B0
- - B1-2 = ($A4_0+13*B0-21) & 15
- - Zoma actions: $A4 += 4*B1
- - High Herb hits: $A4_next2-22 <= 36 so $A4_next2 <= 58
- - 4 high Herb hits: $A4_0 + 13*B0+1 + 12*B1 <= 58
- - Max B0 (if B1 = 2):
- - 22-6*B0 <= $A4_0 < 22-5*B0
- - $A4_0 + 13*B0+1 + 24 <= 58 --> $A4_0 <= 33-13*B0
- - 22-6*B0 <= 33-13*B0 --> 7*B0 <= 11 --> no solutions :(
- - If we only need 1 herb, B0=2 $A4_0=11 gives B1=2 and damage=252
- *** How about letting Zoma go first with Freezing Wave?
- - Turn order: anything goes
- - B1-2 = ($A4_0+13*B0-21) & 15
- - For B1=2: B0=2 -> $A4_0=$xB; B0=3 -> $A4_0=$xE; etc.
- - Zoma actions - Freezing Wave: $A4_next-22 >= 224 so $A4_next >= 246
- - $A4_0 + 13*B0+1 + 1*B1 >= 246
- - $A4_0 + 13*B0+1 + 3*B1 <= 277 (21)
- - 4 high Herb hits: $A4_0 + 13*B0+1 + 12*B1 <= 58
- - Limits for B1: k + 1*B1 >= 246, k + 3*B1 <= 277, k + 12*B1 <= 314
- - k + 1*B1 >= 246 and k + 3*B1 <= 277 --> B1 < 16
- - k + 1*B1 >= 246 and k + 12*B1 <= 314 --> 11*B1 <= 68 --> B1 <= 6
- - k + 3*B1 <= 277 and k + 12*B1 <= 314 --> 9*B1 <= 37 --> B1 <= 4
- - Final: B1 <= 4
- - $A4_0 + 13*B0+1 + 1*B1 >= 246 --> $A4_0 >= 245 - 13*B0 - 1*B1
- - $A4_0 + 13*B0+1 + 3*B1 <= 277 --> $A4_0 <= 277 - 13*B0 - 3*B1
- - $A4_0 + 13*B0+1 + 13*B1 <= 314 --> $A4_0 <= 313 - 13*B0 - 13*B1
- - Table of valid $A4_0:
- B0 | $A4_0, B1=2 | $A4_0, B1=3 | $A4_0, B1=4 | Valid B1:$A4_0
- ----+-------------+-------------+-------------+-----------------
- 2 | $D9,$F5,$05 | $D8,$F2,$F8 | $D7,$EF,$EB | 2:DB,EB 3:DC,EC 4:DD
- 3 | $CC,$E8,$F8 | $CB,$E5,$EB | $CA,$E2,$DE | 2:CE,DE 3:CF,DF 4:D0
- 4 | $BF,$DB,$EB | $BE,$D8,$DE | $BD,$D5,$D1 | 2:C1,D1 3:C2,D2 4:C3
- etc.
- - For any $6A68_0, $A4_0 can be (in order of best to worst Herb damage):
- - $EC=236-13*$6A68_0 (236+241+246+252 = 975)
- - $DD=221-13*$6A68_0 (230+237+244+251 = 962)
- - $EB=235-13*$6A68_0 (229+232+235+239 = 935)
- - $DC=220-13*$6A68_0 (186+191+233+238 = 848)
- - $DB=219-13*$6A68_0 (178+181+185+188 = 732)
- - Solved!
- Zoma turn 1:
- - Party max HP on entry: 114+[0,8], 93+[0,4], 90+[0,4], 85+[0,4]
- - Initial HP and focus target: whatever (initial HP is constant anyway)
- - Turn order: whatever (Zoma speed = 255 and party speed < 65 so can't win)
- - B1-2 = ($A4_0+14*B0-21) & 15
- - Zoma breath damage: +1..4*B1
- - Zoma Snowstorm target: +5*B1 (whatever)
- - Zoma Snowstorm damage: +6..9*B1
- - Zoma status reset (Sphere of Light): +10,11*B1
- - [P1] herb damage: +13*B1
- - [Hr] herb damage & end of turn: +15*B1
- - Most important to keep breath damage down (100-139); Snowstorm 55-66 is meh
- (and cut by equipment)
- - [Wz] must parry (no herb) (Pilgrims use Parry bug)
- - Assuming Snowstorm=45 (parry=22), max allowable breath damage:
- - [P2]: 86-22 = 64, max breath damage = 63*2+1 = 127
- - [Hr]: 114-45 = 69, max breath damage = 68*3/2-1 = 101... uh oh
- - How low can we go?
- - 0 <= $A4-22 <= 12
- - 22 <= $A4 <= 34
- - Can we get to turn 2 from there?
- - [22,34] + 14*B1 + 13*(B1-2) = 236
- - [22,34] + 27*B1 = 262
- - floor((262-22)/27) = 8
- - 22 + 27*8 = 238
- - 34 + 27*8 = 250
- - Nope, no solution :( Need at least 1 more HP
- - If hero has 1 more HP:
- - 0 <= $A4-22 <= 25
- - 22 <= $A4 <= 47
- - 262 - 27*8 = 46 (B1 = 8)
- - 46 - B1 = 38
- - (38 - 22) & 15 = 0 => B1 = 2 => contradiction :(
- ========== Let's try again! ==========
- Zoma turn 3:
- - $6A68_0 = 1 (B0 = 3), $A4_0 = 46
- - HP regen = 90 + (46+3-22)*20/256 = 92
- - After turn order, $A4 = 85
- - B1 = 2 + ((86-22) & 15) = 2
- - Zoma actions: Attack [Hr] x 2
- - Herb users are [P1] and [P2]
- Zoma turn 2:
- - As above, $A4 = 236 - 13*$6A68 on entry
- - $A4_end = $A4_0 + 13*B0+1 + 13*B1 = 236 + 13*2+1 + 13*3 = 302 = 46
- - B1 = 3
- Zoma turn 1:
- - Revive hero; [Hr] can act as needed to consume RNG output
- - Let N = number of multi-randoms consumed by [Hr]
- - Optimal end state into turn 2: $A4_end = 236 - 13*(B1-2) = 262 - 13*B1
- - Breath reqs:
- - 0 <= $A4_end - (8+N)*B1 <= 89
- - 0 <= $A4_end - (9+N)*B1 <= 121 (always true unless wraparound)
- - Table for optimal $A4_end: (middle columns are N=0,1,2,5)
- B1 | $A4_end | -11*B1 | -12*B1 | -13*B1 | -16*B1 | Solutions
- ----+---------+--------+--------+--------+--------+-----------
- 5 | 197=$C5 | 142=8E | 137=89 | 132=84 | 117=75 | ---
- 6 | 184=$B8 | 118=76 | 112=70 | 106=6A | 88=58 | ---
- 7 | 171=$AB | 94=5E | 87=57 | 80=50 | 59=3B | 59=$3B (N=5)
- 8 | 158=$9E | 70=46 | 62=3E | 54=36 | 30=1E | ---
- 9 | 145=$91 | 46=2E | 37=25 | 28=1C | 1=01 | ---
- - $A4_0 = $A4_end - (11+N)*B1 - (14*B0+1) -- for $A4_end=171, B1=7, N=5:
- - $A4_0 = 171 - 16*7 - 14*B0 - 1
- - $A4_0 = 58 - 14*B0
- - Keep $A4_0 >= 22 or <= 21-B0*6 so party turn order isn't inverted
- - Possible values:
- - $A4_0 = 30, $6A68_0 = $0
- - $A4_0 = 202, $6A68_0 = $6
- - $A4_0 = 188, $6A68_0 = $7
- - $A4_0 = 174, $6A68_0 = $8
- - ...
- - $A4_0 = 76, $6A68_0 = $F
- - Hey, with $A4_0=30 [Hr] survives 1st round! Can we sneak back to the
- 2-turn kill?
- - Oops, attack is only 5*B1 when B1=16...
- ========== Let's try again! ==========
- Zoma turn 3:
- - As above, if needed
- Zoma turn 2:
- - As above, $A4_0 = 236 - 13*$6A68
- Zoma turn 1:
- - Party max HP on entry: 114+[0,8], 93+[0,4], 90+[0,4], 85+[0,4]
- - Initial HP and focus target: whatever (initial HP is constant anyway)
- - Turn order: whatever (Zoma speed = 255 and party speed < 65 so can't win)
- - B1-2 = ($A4_0+14*B0-21) & 15
- - Zoma breath damage: +1..4*B1
- - Zoma Snowstorm target: +5*B1 (whatever)
- - Zoma Snowstorm damage: +6..9*B1
- - Zoma status reset (Sphere of Light): +10,11*B1
- - [P1] herb damage: +13*B1
- - [Hr] herb damage & end of turn: +15*B1 = $A4_end = 236-13*$6A68_1 = 262-13*B1
- - $A4_1 = 262-28*B1
- B1 | $A4_1
- ----+-------
- 2 | $CE (invalid)
- 3 | $B2 (invalid)
- 4 | $96 (invalid)
- 5 | $7A (invalid)
- 6 | $5E (invalid)
- 7 | $42 (invalid)
- 8 | $26 (invalid)
- 9 | $0A (invalid)
- 10 | $EE
- 11 | $D2 (invalid)
- 12 | $B6 (invalid)
- 13 | $9A (invalid)
- 14 | $7E (invalid)
- 15 | $62 (invalid)
- 16 | $46 (invalid)
- 17 | $2A (invalid)
- - So $A4_1 = $EE, B1 = 10
- - Damage limit: [Hr] 113 (everyone else survives with Parry)
- - Breath damage: $A4_1+1*B1, (100 + multi_random(40)) * 2/3 + 1 = 91
- - Snowstorm damage: $A4_1+6*B1, (55 + multi_random(12)) * 2/3 + 1 = 37
- - Total damage: 128 :(
- - No double Herb, but we can actually get a 2-turn kill with a single Herb
- if damage >= 1023-(975-regen)
- - Wait, are there any valid B1/$A4_1 combos? ($A4_1 = 262-26*B1)
- B1 | $A4_1
- ----+-------
- 2 | $D2 (invalid)
- 3 | $B8 (invalid)
- 4 | $9E (invalid)
- 5 | $84 (invalid)
- 6 | $6A
- 7 | $50 (invalid)
- 8 | $36 (invalid)
- 9 | $1C (invalid)
- 10 | $02 (invalid)
- 11 | $E8 (invalid)
- 12 | $CE (invalid)
- 13 | $B4 (invalid)
- 14 | $9A (invalid)
- 15 | $80 (invalid)
- 16 | $66 (invalid)
- 17 | $4C (invalid)
- - $A4_1 = $6A
- - $A4_herb = $A4_1 + 13*B1 = $B8
- - $A4_regen = $A4_herb + B1 = $C2
- - HP regen = 90 + multi_random(20) = 103
- - Required damage = 1023-(975-103) = 151
- - Herb damage = (229 + multi_random(219)) & 255 = 111
- - Oh well, no 2-turn kill so hero can do 0*B1, 1*B1 or Attack as well:
- B1 | $A4_1/0 | $A4_1/1 | $A4_1/attack
- ----+---------+---------+--------------
- 2 | $D6** | $D4 | $B0
- 3 | $BE | $BB | $95
- 4 | $A6 | $A2 | $7A
- 5 | $8E | $89** | $5F
- 6 | $76 | $70 | $44
- 7 | $5E | $57 | $29
- 8 | $46 | $3E | $0E
- 9 | $2E | $25 | $F3
- 10 | $16 | $0C | $D8
- 11 | $FE | $F3 | $BD
- 12 | $E6 | $DA | $A2
- 13 | $CE | $C1** | $87
- 14 | $B6 | $A8 | $6C
- 15 | $9E | $8F | $51
- 16 | $86 | $76 | $36
- 17 | $6E | $5D | $1B
- - Solutions:
- - $A4_1 = $6A, $A4_0 = 78 - $6A68_0*14 (hero 2*B1)
- - To avoid party turn order wrap (ignoring [Wz]): no bad $6A68_0
- - $A4_1 = $89, $A4_0 = 108 - $6A68_0*14 (hero 1*B1)
- - To avoid party turn order wrap (ignoring [Wz]): $6A68_0 not $5
- - $A4_1 = $C1, $A4_0 = 164 - $6A68_0*14 (hero 1*B1)
- - To avoid party turn order wrap (ignoring [Wz]): $6A68_0 not $9
- - $A4_1 = $D6, $A4_0 = 185 - $6A68_0*14 (hero 0*B1)
- - To avoid party turn order wrap (ignoring [Wz]): $6A68_0 not $A, $B
- - Well, hang on, can we get better luck with a different turn 2 seed?
- B1 | $DD/2Herb | $DD/1Herb | $EB/2Herb | $EB/1Herb
- ----+-----------+-----------+-----------+-----------
- 2 | $BF | $C3 | $CD | $D1
- 3 | $A3 | $A9 | $B1 | $B7 (ok)
- 4 | $87 | $8F | $95 | $9D
- 5 | $6B | $75 | $79 (ok) | $83
- 6 | $4F | $5B | $5D | $69
- 7 | $33 | $41 | $41 | $4F
- 8 | $17 | $27 | $25 | $35
- 9 | $FB | $0D (ok) | $09 | $1B
- 10 | $DF | $F3 | $ED | $01
- 11 | $C3 | $D9 | $D1 | $E7
- 12 | $A7 | $BF | $B5 | $CD
- 13 | $8B | $A5 | $99 | $B3
- 14 | $6F | $8B | $7D | $99
- 15 | $53 (ok) | $71 | $61 | $7F
- 16 | $37 | $57 | $45 | $65
- 17 | $1B | $3D | $29 | $4B
- - Valid $A4_1: 15/$53, 9/$0D, 5/$79, 3/$B7
- - Do 1-turn Herb seeds work?
- - 9/$0D:
- - $A4_herb = $A4_1 + 13*B1 = $82
- - $A4_regen = $A4_herb + B1 = $C2
- - HP regen = 90 + multi_random(20) = 99
- - Required damage = 1023-(962-99) = 160
- - Herb damage = (229 + multi_random(219)) & 255 = 65
- - 3/$B7:
- - $A4_herb = $A4_1 + 13*B1 = $DE
- - $A4_regen = $A4_herb + B1 = $E1
- - HP regen = 90 + multi_random(20) = 105
- - Required damage = 1023-(935-105) = 193
- - Herb damage = (229 + multi_random(219)) & 255 = 144
- - No luck
- - Damage for 15/$53:
- - Breath damage: $A4_1+1*B1, (100 + multi_random(40)) * 2/3 + 1 = 75
- - Snowstorm damage: $A4_1+6*B1, (55 + multi_random(12)) * 2/3 + 1 = 42
- - Total damage: 117, might survive!
- - $A4_0 = $36-14*$6A68_0, turn order can be anything if no death
- - With this, we get 229+254 Herb damage so need only 3 Herbs next turn!
- (Hero doesn't need a second Herb)
- - Required HP at entry: [Hr]=118, [P1]=79, [P2]=80, [Wz]=61
- - Damage for 3/$B7:
- - Breath damage: $A4_1+1*B1, (100 + multi_random(40)) * 2/3 + 1 = 84
- - Snowstorm damage: $A4_1+6*B1, (55 + multi_random(12)) * 2/3 + 1 = 43
- - Total damage: 127 :(
- Gonus turn 3:
- - $A4_map = $36 - 14*$6A68_1 (possibly minus healing)
- - Level spam = $54+B1 = $56+$6A68_1
- - $A4_end = $36 - 3 - $56 - 15*$6A68_1
- = $DD - 15*$6A68_1
- - Can we work with B1=2, $A4_1=$86 to match up with old Gonus 2?
- - $A4_end = $DD
- - Attack+Attack+Blazemore: $86->$8A->$B0->$D6->$DA, need 1 WizRing
- - But hero won't get any max HP
- - May need map healing for max HP += 4
- - Max HP += 4 requires $A4_map <= $18 or $A4_map >= $E6
- - Possible $A4_1 = $A4_end - 2*B1 - N*B1 - M*(B1+1) - A*(32+3*B1), assuming
- at least 2 high attacks (hero attack + spell or 2 spells):
- B1 | $A4_end | maxHP+4 | A=0/N/M | A=1/N/M | A=2/N/M | A=3/N/M
- ----+---------+---------+---------+---------+---------+---------
- 2 | $DD | $BF/15 | $96/14/3| $66/1/15| $46/7/9 | $26/13/3
- 3 | $CE | $BC/6 | $97/5/4 | $77/6/1 | $47/3/5 | $17/4/6
- 4 | $BF | $BB/1 | $98/3/3 | $68/4/3 | $48/1/3 | $18/2/3
- 5 | $B0 | $B0/0 | $79/3/5 | $59/6/0 | $39/3/0 | $09/2/1
- 6 | $A1 | $A1/0 | $6A/6/1 | $4A/3/1 | $0A/3/3 | $DA/5/1
- 7 | $92 | $92/0 | $4B/7/1 | $2B/4/1 | $0B/1/1 | $BB/6/0
- 8 | $83 | $B3/26 | $BC/21/7| $8C/20/7| $4C/12/15| $1C/20/7
- 9 | $74 | $B7/21 | $CD/14/9| $9D/15/7| $5D/10/12| $2D/21/1
- 10 | $65 | $B1/18 | $CE/13/7| $9E/16/3| $5E/14/5| $1E/12/7
- 11 | $56 | $B1/15 | $DF/16/1| $9F/5/11| $5F/6/10| $1F/7/9
- 12 | $47 | $AB/13 | $D0/13/3| $A0/7/7 | $60/11/3| $10/12/3
- 13 | $38 | $A9/11 | $E1/8/5 | $A1/1/11| $61/8/4 | $11/13/0
- 14 | $29 | $AB/9 | $F2/8/3 | $B2/3/7 | $52/11/1| $22/7/3
- 15 | $1A | $B1/7 | $A3/16/0| $83/13/0| $63/10/0| $33/7/1
- 16 | $0B | $AB/6 | $F4/2/7 | $B4/1/7 | $64/1/7 | $14/1/7
- 17 | $FC | $A7/5 | $E5/2/7 | $B5/1/6 | $75/2/4 | $25/5/1
- - Nice-looking options:
- - $2B (7/A=1, Infermost*2 + Blazemore, 1 WizRing on map)
- - $4B (7/A=0, can use all spells, 2+ heals + 1 WizRing on map)
- - $59 (5/A=1, Infermost*2 + Blazemore, 2 heals on map)
- - $6A (6/A=0, can use all spells, 1+ heals + 1 WizRing on map)
- - Will cause party turn order split after [Hr] in Zoma turn 1
- - $4A, $77 might also be feasible
- [scratched] Gonus turn 2.5: (to heal in place of Bomus turn 2 Healus)
- - HP regen = 44 + multi_random(12)
- - Turn order = whatever
- - $A4_1 = $6A, B1 = 6
- - So $A4_2 - $A4_end = $4F
- - Party B1 budget: 4-8, 7-10+32, 10-12+64, 13+96 (174 = $AE)
- - Gonus B1 consumption: 2*B1 (action/target) + 32 + 2*B1
- - So $A4_party is effectively $A2, or $F1 with respect to $A4_2
- - Can we get to a turn 3 input?
- - Nice-looking ones are all wrong parity
- - $BB might work (WizRing+3*B1 here, 6 heals on map)
- - Nope, [P1] dies and we can't spare a Revive next turn
- - Target should be in [$16,$B5] for Surround
- - Skip [Wz] Blazemore in turn 2?
- - $A4_1 = $64, B1 = 16
- - $A4_2 - $A4_end = $E1
- - $A4_party = $B4 / $95
- - Nothing decent in range (nothing decent in $x5/$x6 in the first place)
- - [Wz] Blazemore -> Snowblast in turn 2?
- - $A4_1 = $67, B1 = 3
- - $A4_2 - $A4_end = $28
- - $A4_party = $93 / $BB
- - Nuttin
- - Infermost -> Healus in turn 2?
- - $A4_1 = $73, B1 = 15
- - $A4_2 - $A4_end = $C4
- - $A4_party = $CF / $93
- - $2B with 1*attack + 5*B1
- - Not enough damage
- - $4A with 1*attack + 6*B1 + WizRing
- - Even less damage
- - $59 with 1*attack + 7*B1 + WizRing (not reachable)
- - $6A with 2*attack + 3*B1 + WizRing (not reachable)
- - Infermost -> Healus and [Wz] Blazemore -> Snowblast in turn 2?
- - $A4_1 = $70, B1 = 12
- - $A4_2 - $A4_end = $9D
- - $A4_party = $C0 / $5D
- - $6A with a single WizRing, but we'll be way short on damage
- - Infermost -> Healus and skip [Wz] Blazemore in turn 2?
- - Losing too much damage, this isn't going to work
- - Scratch this, let's try between turns 1 and 2
- Gonus turn 2:
- - HP regen = 44 + multi_random(12)
- - Turn order = whatever
- - Party B1 consumption:
- - Attacks = A*(32+3*B1)
- - Spells = S*B1 (Infermost=[0,3], Blazemore={0,2}, Firebane=1)
- - Gonus B1 consumption: 2*B1 (action/target) + 32 + 2*B1
- - Gonus standard evade check: $A4_end - 1*B1
- - Assume check fails ($A4 not in [22,25])
- - Gonus Surround evade check: $A4_end
- - $A4_end = $4B - (1+13*B1): evade OK if B1 <= 4
- - $A4_end = $59 - (1+13*B1): evade OK if B1 <= 5
- - $A4_end = $6A - (1+13*B1): evade OK if B1 <= 6
- - Table: (omitting trivial dupes of S>=3 where S-=3, A+=1)
- B1 | $A4_2 | $A4_end | $A4_Gonus | $A4_1 | A/S
- ----+-------+---------+-----------+-------+-----
- 2 | $4B | $30 | $08 | $B6 | 2/3
- 2 | $59 | $3E | $16 | $C6 | 2/2
- 2 | $6A | $4F | $27 | --- | ---
- 3 | $4B | $23 | $F7 | --- | ---
- 3 | $59 | $31 | $05 | $C7 | 3/1
- 3 | $6A | $42 | $16 | $07 | 0/5 (2x low spell damage)
- 4 | $4B | $16 | $E6 | --- | ---
- 4 | $59 | $24 | $F4 | --- | ---
- 4 | $6A | $35 | $05 | --- | ---
- 5 | $59 | $17 | $E3 | $D9 | 0/2
- 5 | $6A | $28 | $F4 | --- | ---
- 6 | $6A | $1B | $E3 | --- | ---
- - No real good options... maybe we can pull it off with $07?
- [scratched] Gonus turn 1.5: (to heal in place of Bomus turn 2 Healus)
- - HP regen = 44 + multi_random(12)
- - Turn order = whatever
- - $A4_1 = $07, B1 = 3
- - So $A4_2 - $A4_end = $28
- - Party B1 budget: 4-8, 7-10+32, 10-12+64, 13+96 (174 = $AE)
- - Gonus B1 consumption: 2*B1 (action/target) + 32 + 2*B1
- - So $A4_party is effectively $33, or $5B with respect to $A4_2
- - Target should be in [$16,$B5] for Surround
- - Can we get to a turn 2 input?
- - Nope, too far away
- - [Wz] Blazemore -> Snowblast in turn 1?
- - $A4_1 = $F9, B1 = 5
- - $A4_2 - $A4_end = $42
- - $A4_party = $2D / $6F
- - $C6: 1*attack + 8*B1 (2*Healus?)
- - $C7: 1*attack + 7*B1 + WizRing (unreachable)
- - Skip [Wz] Blazemore in turn 1?
- - $A4_1 = $EB, B1 = 7
- - $A4_2 - $A4_end = $5C
- - $A4_party = $27 / $83
- - $C6: 1*attack + 2*B1 (2*Healmore?)
- - Not enough damage
- - I think we just need to go and re-solve Hydra or Bomus...
- - Never mind, we can just Snowblast in turn 3 and get an extra map heal!
- Gonus turn 1:
- - Party max HP on entry: 114+[0,4], 93+[0,4], 90+[0,4], 85+[0,4]
- - Gonus initial HP = whatever
- - Gonus focus target = whatever
- - Turn order = whatever (Gonus speed is 0 so always goes last)
- - Surround resistance is 70% so RNG output must be >=179 for it to hit
- - Gonus action = multi_random() // always Attack
- - Gonus target = ubound(multi_random()/63, 3)
- - [P2] Surround check: $A4_1 + 3*B1
- - [P1] Infermost damage: $A4_1 + 4*B1
- - Could move Surround here if needed for RNG
- - [Hr] Infermost damage: $A4_1 + 5*B1
- - [Wz] Blazemore damage: $A4_1 + 7*B1
- - Gonus standard evade check: $A4 + 7*B1 + 32 + 1*B1
- - Gonus Surround evade check: $A4 + 7*B1 + 32 + 2*B1 (= $A4_end)
- - Surround: $A4_1 + 4B1 - 22 >= 179 --> $A4_1 >= 201 - 4*B1
- - Party damage: $A4_1 + 7*B1 - 22 <= 255 --> $A4_1 <= 277 - 7*B1
- - Evade: $A4_1 + 9*B1 + 32 - 22 >= 256 --> $A4_1 >= 246 - 9*B1
- - Table:
- B1 | $A4_1 range | Valid $A4_1 | $A4_end | $A4_2
- ----+---------------+---------------+---------------+--------------
- 2 | 228/E4-263/07 | $E6, $F6, $06 | $18, $28, $38 | $33, $43, $53
- 3 | 219/DB-256/00 | $E7, $F7 | $22, $32 | $4A, $5A
- 4 | 210/D2-249/F9 | $D8, $E8, $F8 | $1C, $2C, $3C | $51, $61, $71
- 5 | 201/C9-242/F2 | $C9, $D9, $E9 | $16, $26, $36 | $58, $68, $78
- 6 | 192/C0-235/EB | $CA, $DA, $EA | $20, $30, $40 | $6F, $7F, $8F
- 7 | 183/B7-228/E4 | $BB, $CB, $DB | $1A, $2A, $3A | $76, $86, $96
- 8 | 174/AE-221/DD | $BC, $CC, $DC | $24, $34, $44 | $8D, $9D, $AD
- 9 | 165/A5-214/D6 | $AD, $BD, $C | $1E, $2E, $3E | $94, $A4, $B4
- 10 | 161/A1-207/CF | $AE, $BE, $CE | $28, $38, $48 | $AB, $BB, $CB
- 11 | 157/9D-200/C8 | $9F, $AF, $BF | $22, $32, $42 | $B2, $C2, $D2
- 12 | 153/99-193/C1 | $A0, $B0, $C0 | $2C, $3C, $4C | $C9, $D9, $E9
- 13 | 149/95-186/BA | $A1, $B1 | $36, $46 | $E0, $F0
- 14 | 145/91-179/B3 | $92, $A2, $B2 | $30, $40, $50 | $E7, $F7, $07
- 15 | 141/8D-172/AC | $93, $A3 | $3A, $4A | $FE, $0E
- 16 | 137/89-165/A5 | $94, $A4 | $44, $54 | $15, $25
- 17 | 133/85-158/9E | $85, $95 | $3E, $4E | $1C, $2C
- - $07 matches with turn 2
- - $A4_1 = $B2
- - We have enough damage output, yay!
- - We actually have to use plain Infernos once in turn 3 to avoid early kill
- - MP use through end: [Hr] 3, [P1] 27, [P2] 17, [Wz] 18
- Bomus turn 2:
- - HP regen = 44 + multi_random(12)
- - Turn order:
- - If party first, $A4_0 + 5*B0 - 22 <= 255, $A4_0 + 6*B0 - 22 >= 256
- - Bomus action count: 1 action --> 86 <= $A4_1 + 1*B1 - 22 <= 170
- - $6C <= $A4_1 + 1*B1 <= $C0
- - Bomus action: attack = 32 + (2+n)*B1 (depending on target),
- breath = 4*B1, Explodet = 5*B1
- - Infermost 1 resist check: $A4_1 + Bomus + 1*B1 - 22 >= 77
- - $A4_1 + 1*B1 >= 99
- - Level spam: +($106+6*B1) = 6+6*B1
- - $A4_map = $A4_1 + Bomus + 2n(Infermost)*B1 + 2 + (6+6*B1) + 1
- - $A4_map = $B2 - 1 - 14*B1
- - $A4_end = $A4_map - (2 + (6+6*B1) + 1) = $B2 - 10 - 20*B1
- - For $A4_1 = $A4_end - N*B1:
- B1 | $A4_end | $A4_1/N
- ----+---------+---------
- 2 | $80 | $76/5
- 3 | $6C | $97/71, $67/87
- 4 | $58 | $B8/40, $A8/44, $98/48, $88/52, $78/56
- 5 | $44 | $A9/31
- 6 | $30 | $9A/25
- 7 | $1C | $7B/23
- 8 | $08 | -----
- 9 | $F4 | $6D/15
- 10 | $E0 | $AE/5
- 11 | $CC | $7F/7
- 12 | $B8 | $A0/2, $70/6
- 13 | $A4 | $71/63
- 14 | $90 | $82/1
- 15 | $7C | $73/++
- 16 | $68 | -----
- 17 | $54 | $B5/++
- - For $A4_1 = $A4_end - N*B1 - 32 (1 attack, N >= 3):
- B1 | $A4_end | $A4_1/N
- ----+---------+---------
- 2 | $80 | $B6/++
- 3 | $6C | $A7/55, $77/71
- 4 | $58 | $B8/32, $A8/36, $98/40, $88/44, $78/48
- 5 | $44 | $89/31
- 6 | $30 | $AA/17, $7A/25
- 7 | $1C | $7B/55
- 8 | $08 | -----
- 9 | $F4 | $BD/31
- 10 | $E0 | $8E/5
- 11 | $CC | $AF/23
- 12 | $B8 | $C0/18
- 13 | $A4 | $81/79
- 14 | $90 | $82/17
- 15 | $7C | $73/++
- 16 | $68 | -----
- 17 | $54 | $B5/++
- - Party acts first:
- - Can use 2/$76 (5), 10/$AE (5), 11/$7F (7), 12/$70 (6)
- - Valid B0 and corresponding $A4_0 for turn order:
- B0 | $70 | $76 | $7F | $AE
- ----+-----+-----+-----+-----
- 12 | $D3 | $D9 | --- | ---
- 13 | --- | $CC | --- | ---
- 14 | --- | --- | $C8 | ---
- - Damage (Infermost+Infermost+Blazemore+Infermost)
- - 12/$70: 83+89+82+103 = 357
- - 2/$76: 82+83+78+ 86 = 329
- - 11/$7F: 87+92+83+105 = 367
- - Bomus attack:
- - Requires $A4_1 + 2*B1 - 22 < 96 (consequently B1 < 10 for 1 action)
- - $A4_1 + 2*B1 < $76
- - No solutions
- - Bomus Explodet/breath:
- - Consumes 7*B1 (Explodet), 6*B1 (breath)
- - Only 9/$6D (15) looks feasible; allows Healus
- - Bomus action with $A4_1=$6D, B1=9:
- - count = $76-$16 = $60, ok
- - action = $7F-$16 = $69 = Explodet, ok
- - Solution: $A4_1 = $6D, $A4_0 = $6C-13*B0
- - Party B1 budget 8, Infermost+Healus+Infermost+Parry (damage 206)
- - To avoid party turn order split: B0 <= 7 or B0 >= 13
- - MP use through end: [Hr] 3, [P1] 45, [P2] 26, [Wz] 18
- - To get more damage, swap Healus for Infermost and add 2x Heal on map
- Bomus turn 1:
- - Party max HP on entry: 114+[0,4], 93, 90, 85
- - Bomus initial HP = whatever
- - Bomus focus target = whatever
- - Turn order: whatever (assume Bomus goes first)
- - Bomus action count: multi_random(3)
- - For 1 action: 86 <= $A4_1+1*B1-22 <= 170, $6C <= $A4_1+1*B1 <= $C0
- - Bomus action: whatever
- - Bomus target: whatever
- - Turn 2 solutions for party acting first:
- - B1 = 12, $A4_end = $D3
- - B1 = 12, $A4_end = $D9
- - B1 = 13, $A4_end = $CC
- - B1 = 14, $A4_end = $C8
- - Assume full spell press, so party consumes 5*B1
- - What is Bomus action? $A4 after action selection for each action
- B1 | $A4_end | $A4_party | Attack |Explodet| Breath
- ----+---------+-----------+--------+--------+--------
- 12 | $D3 | $97 | $5F ok | $5B | $67
- 12 | $D9 | $9D | $65 ok | $61 | $6D
- 13 | $CC | $8B | $5A ok | $4A ok | $57
- 14 | $C8 | $82 | $46 | $3C ok | $4A
- - But all of these imply 2 actions... need >=$6C+B1 after action selection
- - Attack is bad, would target and kill hero
- - We do have a lot of damage available on turn 2; can we get away
- with 2*Infermost here?
- B1 | $A4_end | $A4_party | Attack |Explodet| Breath
- ----+---------+-----------+--------+--------+--------
- 12 | $D3 | $BB | --- | $7F ok | $8B
- 12 | $D9 | $C1 | $7D | $85 ok | $91
- 13 | $CC | $B2 | $78 | $71 | $7E
- 14 | $C8 | $AC | $70 ok | $66 | $74
- - The two Explodets work, $A4_1 = $67 or $6D
- - But those don't give the proper B1 :(
- - Okay, I guess Bomus gets to go first on turn 2 ($A4_2 = $6D)
- - Bomus action count: 1 action --> $6C <= $A4_1 + 1*B1 <= $C0
- - Bomus action ($A4 after action selection):
- - Attack: [$6C+B1,$75]
- - Explodet: [lbound($76,$6C+B1),$95], [$B6,$C0+B1]
- - Breath: [$96,$B5]
- - Last spell(s) will fail unless $6D-1-13*B1 < 0 --> B1 >= 9
- - Required $A4_1/N in $A4_1+N*B1+1 = $A4_2: (including +32 for Bomus attack)
- (2 damage spells: N>=27 for Explodet, N>=26 for breath)
- B1 | Attack |Explodet| Breath
- ----+--------+--------+--------
- 9 | ------ | $7D/55 | $8D/167
- 10 | ------ | $6E/51 | $8E/99
- 11 | ------ | $AF/87 | $9F/135
- 12 | ------ | $60/65 | $80/41
- 13 | ------ | $A1/55 | $91/135
- 14 | ------ | $A2/51 | $82/35
- 15 | ------ | $63/103| $83/135
- 16 | ------ | ------ | ------
- 17 | ------ | $A5/87 | $95/103
- - No usable options :(
- - What if [Hr] attacks? (32+3*B1, 39 damage)
- B1 | Attack |Explodet| Breath
- ----+--------+--------+--------
- 2 | ------ | $B6/75 | $A6/83
- 3 | ------ | $77/71 | $A7/55
- 4 | $68/49 | $B8/37 | $A8/41
- 5 | $69/39 | $89/39 | $99/87
- 6 | ------ | $7A/35 | $8A/75
- 7 | ------ | $AB/23 | $9B/135
- 8 | ------ | $6C/28 | $9C/54
- 9 | ------ | $AD/103| $8D/135
- 10 | ------ | $AE/67 | $9E/43
- 11 | ------ | $6F/43 | $9F/155
- 12 | ------ | $60/41 | $90/37
- 13 | ------ | $71/135| $81/55
- 14 | ------ | $62/35 | $82/51
- 15 | ------ | $63/135| $83/167
- 16 | ------ | ------ | ------
- 17 | ------ | $A5/55 | $95/71
- - Only usable option is 8/$6C (28, party budget = 8)
- - Attack+Infermost+Infermost+Herb, 232 damage
- - MP use through end: [Hr] 3, [P1] 54, [P2] 35, [Wz] 18
- - HP regen = 44
- - Required initial HP for turn 2 Healus = 206+232-44 = 383 or less
- - $A4-22 at initial HP calculation >= 174
- - $A4_1 - 1 - 13*B0 < 22
- - -13*B0 < 22 + 1 - 108
- - 13*B0 > 85
- - B0 >= 7
- - To avoid [Wz]/Bomus turn order split: B0 < 11 or B0 > 12
- - Valid inputs:
- B0 | $A4_0
- ----+-------
- 7 | $09
- 8 | $FB
- 9 | $ED
- 10 | $DF
- 13 | $B5
- 14 | $A7
- 15 | $99
- 16 | $8B
- 17 | $7D
- - Actually, high B0 won't work because $A4 gets too low, oops
- - $A4_1+256 - 1 - 13*B0 - 22 >= 174
- - -13*B0 >= 174 - (108 + 255 - 22)
- - 13*B0 <= 167
- - B0 <= 12
- - Splits party turn order, oops ([Hr] Infermost damage goes low)
- Hydra turn 4:
- - HP regen = 90 + multi_random(20)
- - Turn order:
- - Don't need [Wz] to act
- - $A4_0 + 4*B0 - 22 <= 255, $A4_0 + 6*B0 - 22 >= 256
- - Level spam: +($53+B1)
- - Bomus preconditions:
- - $A4_map = $4F - 14*$6A68_1
- - $6A68_1 in {$5, $6, $7, $8, $B, $C, $D, $E, $F}
- - $A4_end = $4F - 14*$6A68_1 - (2 + $53+($6A68_1+2) + 1)
- - 3*Infermost (+ Hydra AI), Nx Heal and Mx WizRing on map:
- $A4_1 = $A4_end - (7+N)*B1 - M*(B1+1)
- - Can add 3*B1 with IceBolt (if [Wz] acts and Hydra HP allows),
- 3*B1 with Healus
- - Will need at least 3x WizRing for [P1] MP
- - Minimum N/M for valid $A4_1:
- B1 | $A4_end | N | M | $A4_1
- ----+---------+---+---+-------
- 7 | $AC | 0 | 4 | $5B
- 8 | $9D | 1 | 9 | $0C
- 9 | $8E | 4 | 3 | $0D
- | | 0 | 5 | $1D
- 10 | $7F | 1 | 3 | $0E
- 13 | $52 | 0 | 5 | $B1
- 14 | $43 | 7 | 3 | $52
- 15 | $34 | 8 | 3 | $23
- 16 | $25 | 0 |17 | $C4
- 17 | $16 | 0 | 5 | $45
- - To satisfy turn order:
- - $A4_1 - 1 - 9*B0 < 22, $A4_1 - 1 - 7*B0 >= 22
- - 9*B0 > $A4_1 - 23, 7*B0 <= $A4_1 - 23
- - Table:
- $A4_1 | B0_min | B0_max
- -------+--------+--------
- $5B | 8 | 9
- $0C | 28 | 35
- $0D | 28 | 35
- $1D | 30 | 37
- $0E | 28 | 35
- $B1 | 18 | 22
- $52 | 7 | 8
- $23 | 30 | 38
- $C4 | 20 | 24
- $45 | 6 | 6
- - Damage table:
- $A4_1 | B1 | 3*Infermost
- -------+----+----------------
- $45 | 17 | 90+94+98 = 282
- $52 | 14 | 90+93+97 = 280
- $5B | 7 | 84+86+87 = 257
- - Solutions:
- B0 | $A4_1 | $A4_0 | N/M | Wz? | Regen
- ----+-------+-------+-----+-----+-------
- 6 | $45 | $F6 | 0/5 | Y | 107
- 7 | $52 | $F6 | 7/3 | N | 108
- 8 | $52 | $E9 | 7/3 | Y | 107
- 8 | $5B | $F2 | 0/4 | N | 107
- 9 | $5B | $E5 | 0/4 | Y | 106
- - MP use through Hydra: [Hr] 0, [P1] 9, [P2] 9, [Wz] 0
- Hydra turn 3:
- - HP regen = 90 + multi_random(20)
- - Turn order: whatever (assume Hydra goes first)
- - Note: Hydra resolution consumes 4*B1 for breath, 1*B1+32 for attack
- - Valid outputs:
- B1 | $A4_end | Damage (damage - regen for rest of battle)
- ----+---------+--------
- 6 | $F6 | 175
- 7 | $F6 | 172
- 8 | $E9 | 173
- 8 | $F2 | 150
- 9 | $E5 | 151
- - B1=8 has wrong parity (even with WizRing) so we can scratch it off right now
- - Assuming 3*Infermost, pre-party $A4 is:
- B1 | $A4_end | $A4_party
- ----+---------+-----------
- 6 | $F6 | $E4
- 7 | $F6 | $E1
- 9 | $E5 | $CA
- - How much more party B1 needed to make it double breath?
- B1 |$A4_party|Max Breath2|Breath1|Target2|Action2|Target1|Action1
- ----+---------+-----------+-------+-------+-------+-------+-------
- 6 | $E4 | $E4 | $CC | $AE | $A8 | $A2 | $9C
- 7 | $E1 | $4E | $33 | $17 | $10 | $09 | $02
- 9 | $CA | $5E | $3A | $16 | $0D | $04 | $FB
- - Let's see if we can make B1=6 work, because the others are horrible
- - $A4_1 table:
- B1 | $A4_end | $A4_1/N
- ----+---------+---------
- 6 | $F6 | $9C/16 (off by +2)
- - No luck, guess we need to have some attacks...
- - $A4_1 table again, without and with WizRing:
- B1 | $A4_end | M=0 | M=1
- ----+---------+-------+-------
- 6 | $F6 | $EA/2 | -----
- 7 | $F6 | $9B/13| $9B/4
- 9 | $E5 | $9D/8 | $5D/14
- - What sort of action sequences can we get? (N excluding action selection)
- B1 | $A4_1 |Action1|Target1|Action2|Target2| N/A |$A4_party|PartyB1
- ----+-------+-------+-------+-------+-------+-----+---------+-------
- 6 | $9A | $A0 | $A6 | $AC | $B2 | 8/0 | $E2 | --
- 6 | $8A | $90 | $96 | $9C | $A2 | 5/1 | $EC | --
- 6 | $7A | $80 | $86 | $8C | $92 | 5/1 | $DE | 4
- 7 | $9B | $A2 | $A9 | $B0 | $B7 | 8/0 | $EF | 1
- 7 | $5B | $62 | $69 | $70 | $77 | 2/2 | $C5 | 7
- 9 | $9D | $A6 | $AF | $B8 | $C1 | 5/1 | $0E | --
- 9 | $7D | $86 | $8F | $98 | $A1 | 5/1 | $EE | --
- 9 | $5D | $66 | $6F | $78 | $81 | 2/2 | $D3 | 2
- - I like 6/$7A, can we make that work?
- - Party B1 = 4, so Infermost+Infermost+Infermost+Herb
- - Damage: 108+109+112 = 329, to end of battle = 504
- - Hey, can we get back down to 3 turns? or even 2?
- - Erp, wait, this is a double attack death... why did I think otherwise?
- - Can still do Revive+Infermost+Infermost+Blaze
- - Damage: 108+112 = 220, to end of battle = 395
- - MP use through Hydra: [Hr] 0, [P1] 18, [P2] 29, [Wz] 2
- - Other possibilities need Revive:
- - 7/$5B would give a Healus: Revive+Healus+Infermost+Blaze
- - Damage: 112, just barely outdamages regen; total = 284
- - MP use through Hydra: [Hr] 0, [P1] 27, [P2] 29, [Wz] 2
- - Vivify doesn't work here
- - Only 3 WizRings after battle, this is probably not enough
- - 9/$5D: Revive+Infermost+Infermost+Parry
- - Damage: 106+108 = 214, total = 365
- - MP use through end: [Hr] 0, [P1] 18, [P2] 29, [Wz] 0
- - B0 required to avoid turn order split:
- - 7/$5B: B0 <= 6 or B0 >= 10
- - 9/$5D: B0 <= 6 or B0 >= 11
- - 6/$7A: B0 <= 9 or B0 >= 15
- - $A4_0 table:
- B0 | $5B | $5D | $7A
- ----+-----+-----+-----
- 2 | $40 | $42 | $5F
- 3 | $33 | $35 | $52
- 4 | $26 | $28 | $45
- 5 | $19 | $1B | $38
- 6 | $0C | $0E | $2B
- 7 | --- | --- | $1E
- 8 | --- | --- | $11
- 9 | --- | --- | $04
- 10 | $D8 | --- | ---
- 11 | $CB | $CD | ---
- 12 | $BE | $C0 | ---
- 13 | $B1 | $B3 | ---
- 14 | $A4 | $A6 | ---
- 15 | $97 | $99 | $B6
- 16 | $8A | $8C | $A9
- 17 | $7D | $7F | $9C
- Hydra turn 2:
- - HP regen = 90 + multi_random(20)
- - Turn order: whatever (assume Hydra goes first)
- - Valid outputs:
- B1 | $A4_end | Damage (damage - regen for rest of battle)
- ----+---------+--------
- 2 | $40 | 194
- 2 | $42 | 296
- 2 | $5F | 300
- 3 | $33 | 195
- 3 | $35 | 297
- 3 | $52 | 300
- 4 | $26 | 196
- 4 | $28 | 298
- 4 | $45 | 301
- 5 | $19 | 197
- 5 | $1B | 299
- 5 | $38 | 302
- 6 | $0C | 178
- 6 | $0E | 280
- 6 | $2B | 303
- 7 | $1E | 304
- 8 | $11 | 305
- 9 | $04 | 286
- 10 | $D8 | 181
- 11 | $CB | 182
- 11 | $CD | 284
- 12 | $BE | 183
- 12 | $C0 | 285
- 13 | $B1 | 184
- 13 | $B3 | 286
- 14 | $A4 | 185
- 14 | $A6 | 287
- 15 | $97 | 186
- 15 | $99 | 288
- 15 | $B6 | 292
- 16 | $8A | 187
- 16 | $8C | 289
- 16 | $A9 | 293
- 17 | $7D | 188
- 17 | $7F | 290
- 17 | $9C | 294
- - B1=8, B1=16 have wrong parity in all cases
- - Ignoring WizRing since we already have so many cases (hopefully at least
- one of them will work...)
- - Valid $A4_1 with N*B1 + A*32 (N >= 15-3*A):
- B1 | $A4_end | A=0 | A=1 | A=2
- ----+---------+--------+--------+--------
- 2 | $40 | $16/21 | $06/13 | $E6/13 (low MP recovery)
- 2 | $42 | $16/22 | $06/14 | $E6/14
- 2 | $5F | ------ | ------ | ------
- 3 | $33 | $F7/20 | $D7/20 | $B7/20 (low MP recovery)
- 3 | $35 | $E7/26 | $C7/26 | $D7/10
- 3 | $52 | $07/25 | $E7/25 | $F7/ 9
- 4 | $26 | ------ | ------ | ------ (low MP recovery)
- 4 | $28 | $E8/16 | $D8/12 | $B8/12
- 4 | $45 | ------ | ------ | ------
- 5 | $19 | $C9/16 | $A9/16 | $89/16 (low MP recovery)
- 5 | $1B | $99/26 | $79/26 | $A9/10
- 5 | $38 | $D9/19 | $B9/19 | $99/19
- 6 | $0C | $9A/19 | $7A/19 | $8A/11 (low MP recovery)
- 6 | $0E | $8A/22 | $9A/14 | $7A/14
- 6 | $2B | ------ | ------ | ------
- 7 | $1E | $8B/21 | $6B/21 | $4B/21
- 9 | $04 | $7D/15 | $5D/15 | $3D/15
- 10 | $D8 | $2E/17 | $0E/17 | $3E/ 9 (low MP recovery)
- 11 | $CB | $EF/20 | $CF/20 | $AF/20 (low MP recovery)
- 11 | $CD | $AF/26 | $8F/26 | $1F/10
- 12 | $BE | ------ | ------ | ------ (low MP recovery)
- 12 | $C0 | $00/16 | $10/12 | $F0/12
- 13 | $B1 | $E1/16 | $C1/16 | $A1/16 (low MP recovery)
- 13 | $B3 | $61/26 | $41/26 | $F1/10
- 14 | $A4 | $D2/15 | $B2/15 | $92/15 (low MP recovery)
- 14 | $A6 | $C2/30 | $C2/14 | $A2/14
- 15 | $97 | $F3/28 | $C3/12 | $A3/12 (low MP recovery)
- 15 | $99 | $13/26 | $F3/26 | $C3/10
- 15 | $B6 | $03/29 | $D3/13 | $B3/13
- 17 | $7D | $E5/24 | $C5/24 | $A5/24 (low MP recovery)
- 17 | $7F | $C5/26 | $A5/26 | $95/10
- 17 | $9C | $15/23 | $F5/23 | $D5/23
- - Any A=0 with N in [18,21] (for Healus) that will give us double breath?
- B1 |$A4_end| $A4_1/N |Action1|Target1|Action2|Target2|Breath1|Breath2
- ----+-------+---------+-------+-------+-------+-------+-------+-------
- 3 | $33 | $F7/20 | $FA | $FD | $00 | $03 | $0F | $1B
- 4 | $28 | $D8/20 | $DC | $E0 | $E4 | $E8 | $F8 | $08
- 5 | $38 | $D9/19 | $DE | $E3 | $E8 | $ED | $01 | $15
- 6 | $0C | $9A/19 | $A0 | $A6 | $AC | $B2 | $CA | $E2
- 7 | $1E | $8B/21 | $92 | not breath
- 11 | $CB | $EF/20 | $FA | $05 | $10 | $1B | $47 | $73
- - Options:
- - 3/$F7: N=8, Healus+2*Infermost+Blaze
- - Damage: 64+66 = 130 (total = 325)
- - Turn order split impossible
- - 4/$D8: N=8, Healus+2*Infermost+Blaze
- - Damage: 117+62 = 189 (total = 487) (Healus 2nd for high Infermost dmg)
- - Turn order split impossible
- - 5/$D9: N=7, Healus+2*Infermost+Firebal
- - Damage: 65+66 = 131 (total = 433)
- - Turn order split impossible
- - 6/$9A: N=7, Healus+2*Infermost+Firebal
- - Damage: 114+116 = 230 (total = 408)
- - To avoid turn order split: B0 <= 11
- - 11/$EF: N=8, Healus+2*Infermost+Blaze
- - Damage: 94+97 = 191 (total = 406)
- - Turn order split impossible
- - No turn 1 solution for any of those, sigh. How about we skip the Healus?
- B1 |$A4_end| $A4_1/N |Action1|Target1|Action2|Target2|Breath1|Breath2
- ----+-------+---------+-------+-------+-------+-------+-------+-------
- 4 | $28 | $E8/16 | $EC | $F0 | $F4 | $F8 | $08 | $18
- 5 | $19 | $C9/16 | $CE | not breath
- 9 | $04 | $7D/15 | $86 | $8F | $98 | not breath
- 10 | $D8 | $2E/17 | $38 | not breath
- 12 | $C0 | $00/16 | $0C | $18 | $24 | not breath
- 13 | $B1 | $E1/16 | $EE | $FB | $08 | $15 | $49 | $7D
- 14 | $A4 | $D2/15 | $E0 | $EE | $FC | $0A | $42 | $7A
- - Options:
- - 4/$E8: N=4, 3*Infermost+Herb
- - Damage: 61+62+63 = 186 (total = 484)
- - Turn order split impossible
- - MP use through Hydra: [Hr] 0, [P1] 27, [P2] 38, [Wz] 0
- - 13/$E1: N=4, 3*Infermost+Herb
- - Damage: 87+90+93 = 270 (total = 454)
- - Turn order split impossible
- - MP use through end: [Hr] 0, [P1] 36, [P2] 38, [Wz] 2
- - 14/$D2: N=4, 3*Infermost+Parry
- - Damage: 86+90+93 = 269 (total = 454)
- - Turn order split impossible
- - Won't work because [P1] dies to the first hit next turn
- - Still no luck! Guess we need to look into attack options... can we
- find one with an evade?
- - If first action: $16 <= $A4_1+5*B1+32 < $1A, $F6 <= $A4_1+5*B1 < $FA
- - 14/$B2
- - If after breath: $16 <= $A4_1+9*B1+32 < $1A, $F6 <= $A4_1+9*B1 < $FA
- - None
- - If after attack: $16 <= $A4_1+6*B1+64 < $1A, $D6 <= $A4_1+6*B1 < $DA
- - None
- - Well, let's see what we have...
- - 14/$B2: N=6
- - 2*Infermost+IceBolt+Infermost: 76+80+29+93 = 278 (total = 463)
- - MP use through Hydra: [Hr] 0, [P1] 36, [P2] 38, [Wz] 5
- - Healus+2*Infermost+Parry: 90+93 = 183 (total = 368)
- - MP use through Hydra: [Hr] 0, [P1] 36, [P2] 47, [Wz] 2
- - To avoid turn order split: B1 <= 14
- - Come to think of it, we might be able to squeeze out another
- evade somewhere by forcing a turn order split
- - Sigh, $A4_2=$5B is unusable due to not enough MP recovery
- - Any evade from turn order split?
- - If first action:
- - 4/$D8 (split after [P1])
- - If after breath:
- - None
- - If after attack:
- - 4/$B8 (split after [Hr])
- - 5/$A9 (split after [P2])
- - Do actions match up?
- B1 |$A4_end| $A4_1/N | Party |Action1|Target1|Action2|Target2
- ----+-------+---------+-------+-------+-------+-------+-------
- 4 | $28 | $D8/12 | $E0 | $E4 | not attack
- 4 | $28 | $B8/12 | $BC | $C0 | $C4 | $C8 | $CC
- 5 | $1B | $A9/10 | $B8 | $BD | $C2 | $C7 | $CC
- - Will we have enough MP recovery?
- - All three lead into $5D, which gets us to 4 WizRings... just
- barely enough if we distribute MP correctly?
- - Do any of those work?
- - 4/$D8: N=3, but can't force turn order split
- - 4/$B8: N=6, requires B0=15 or B0=16
- - 5/$A9: N=4, requires B0=17
- - I guess look at options with non-evaded attacks in them? (skipping low MP)
- B1 |$A4_end| $A4_1/A/N |Action1|Target1|Action2|Target2|Resolv1|Resolv2
- ----+-------+-----------+-------+-------+-------+-------+-------+-------
- 4 | $28 | $B8/2/12 | $BC | $C0 | $C4 | $C8 = 2x attack death
- 6 | $0E | $7A/2/14 | $80 | $86 | $8C | $92 = 2x attack death
- 9 | $04 | $5D/1/15 | $66 | $6F | $78 | $81 = 2x attack death
- 9 | $04 | $3D/2/15 | $46 | $4F | $58 | $61 | $8A | $B3
- 11 | $CD | $1F/2/10 | $2A | $35 | $40 | $4B = 2x attack death
- 12 | $C0 | $10/1/12 | $1C | $28 | $34 | $40 = 2x attack death
- - Well, let's look at 9/$3D...
- - 9/$3D: N=9
- - Healus+Infermost+IceBolt+Infermost: 107+33+115 = 255 (total = 541)
- - MP use through Hydra: [Hr] 0, [P1] 27, [P2] 47, [Wz] 2
- - Put Healus on [P2] for better MP balance (avoids being just 2 MP
- short after Hydra); also gives higher Infermost damage, which
- looks nicer even though we don't need it
- - To avoid turn order split: B1 <= 3 or B1 >= 6
- Hydra turn 1:
- - Party max HP on entry: 114, 93, 90, 85
- - Party max MP on entry: 32, 63, 71, 92
- - Hydra initial HP = whatever (if $A4_0 = $EC, then 435)
- - Hydra focus target = whatever
- - $6A68_0 = $C (B0 = 14), $A4_0 >= $EC (on entering Charlock B5)
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - $A4_1 = $A4_0 - $3B ($A4_0=$EC: $A4_1=$B1)
- - Probably need 2 Infermosts, so we can't expect to spend >9*B1
- - Need [Wz] parry if attacked
- - Table through Hydra action resolution: (odd $A4_0 = with WizRing use)
- $A4_0 | $A4_1 | B1 | HydA1 |HydT1| HydA2 |HydT2|HyRes
- -------+-------+----+-------+-----+-------+-----+-----
- $EC | $B1 | 13 | $BE/A | $CB | $D8/B | $E5 | $46
- $EE | $B3 | 15 | $C2/A | $D1 | $E0/B | $EF | $5A
- $F0 | $B5 | 17 | $C6/A | $D7 | $E8/B | $F9 | $6E
- $F2 | $B7 | 3 | $BA/A | $BD | $C0/A | double attack death
- $F4 | $B9 | 5 | $BE/A | $C3 | $C8/A | double attack death
- $F6 | $BB | 7 | $C2/A | $C9 | $D0/A | $D7 | $25
- $F8 | $BD | 9 | $C6/A | $CF | $D8/B | $E1 | $2E
- $FA | $BF | 11 | $CA/A | $D5 | $E0/B | $EB | $42
- $FB | $C0 | 12 | $CC/A | $D8 | $E4/B | $F0 | $4C
- $FC | $C1 | 13 | $CE/A | $DB | $E8/B | $F5 | $56
- $FD | $C2 | 14 | $D0/A | $DE | $EC/B | $FA | $60
- $FE | $C3 | 15 | $D2/A | $E1 | $F0/B | $FF | $6A
- $FF | $C4 | 16 | $D4/A | $E4 | $F4/B | $04 | $74
- $00 | $C5 | 17 | $D6/B | $E7 | $F8/B | $09 | $91
- $01 | $C6 | 2 | $C8/A | $CA | $CC/A | double attack death
- $02 | $C7 | 3 | $CA/A | $CD | $D0/A | double attack death
- $03 | $C8 | 4 | $CC/A | $D0 | $D4/A | $D8 | $20
- $04 | $C9 | 5 | $CE/A | $D3 | $D8/A | $DD | $27
- $05 | $CA | 6 | $D0/A | $D6 | $DC/B | $E2 | $20
- $06 | $CB | 7 | $D2/A | $D9 | $E0/B | $E7 | $2A
- $07 | $CC | 8 | $D4/A | $DC | $E4/B | $EC | $34
- $08 | $CD | 9 | $D6/B | $DF | $E8/B | $F1 | $39
- $09 | $CE | 10 | $D8/B | $E2 | $EC/B | $F6 | $46
- $0A | $CF | 11 | $DA/B | $E5 | $F0/B | $FB | $53
- $0B | $D0 | 12 | $DC/B | $E8 | $F4/B | $00 | $60
- $0C | $D1 | 13 | $DE/B | $EB | $F8/B | $05 | $6D
- $0D | $D2 | 14 | $E0/B | $EE | $FC/B | $0A | $7A
- $0E | $D3 | 15 | $E2/B | $F1 | $00/B | $0F | $87
- $0F | $D4 | 16 | $E4/B | $F4 | $04/B | $14 | $94
- $10 | $D5 | 17 | $E6/B | $F7 | $08/B | $19 | $A1
- $11 | $D6 | 2 | $D8/B | $DA | $DC/B | $DE | $EE
- $12 | $D7 | 3 | $DA/B | $DD | $E0/B | $E3 | $FB
- $13 | $D8 | 4 | $DC/B | $E0 | $E4/B | $E8 | $08
- $14 | $D9 | 5 | $DE/B | $E3 | $E8/B | $ED | $15
- $15 | $DA | 6 | $E0/B | $E6 | $EC/B | $F2 | $22
- $16 | $DB | 7 | $E2/B | $E9 | $F0/B | $F7 | $2F
- $17 | $DC | 8 | $E4/B | $EC | $F4/B | $FC | $3C
- $18 | $DD | 9 | $E6/B | $EF | $F8/B | $01 | $49
- $19 | $DE | 10 | $E8/B | $F2 | $FC/B | $06 | $56
- $1A | $DF | 11 | $EA/B | $F5 | $00/B | $0B | $63
- $1B | $E0 | 12 | $EC/B | $F8 | $04/B | $10 | $70
- $1C | $E1 | 13 | $EE/B | $FB | $08/B | $15 | $7D
- $1D | $E2 | 14 | $F0/B | $FE | $0C/B | $1A | $8A
- $1E | $E3 | 15 | $F2/B | $01 | $10/B | $1F | $97
- $1F | $E4 | 16 | $F4/B | $04 | $14/B | $24 | $A4
- $20 | $E5 | 17 | $F6/B | $07 | $18/A | hero attack death
- $21 | $E6 | 2 | $E8/B | $EA | $EC/B | $EE | $FE
- $22 | $E7 | 3 | $EA/B | $ED | $F0/B | $F3 | $0B
- $23 | $E8 | 4 | $EC/B | $F0 | $F4/B | $F8 | $18
- $24 | $E9 | 5 | $EE/B | $F3 | $F8/B | $FD | $25
- $25 | $EA | 6 | $F0/B | $F6 | $FC/B | $02 | $32
- $26 | $EB | 7 | $F2/B | $F9 | $00/B | $07 | $3F
- $27 | $EC | 8 | $F4/B | $FC | $04/B | $0C | $4C
- $28 | $ED | 9 | $F6/B | $FF | $08/B | $11 | $59
- $29 | $EE | 10 | $F8/B | $02 | $0C/B | $16 | $66
- $2A | $EF | 11 | $FA/B | $05 | $10/B | $1B | $73
- $2B | $F0 | 12 | $FC/B | $08 | $14/B | $20 | $80
- - Possible $A4_2: $9A (B1<=11), $D8, $D9, $EF, $F7
- - Table of differences:
- $A4_0 | B1 | HyRes | $9A | $D8 | $D9 | $EF | $F7
- -------+----+-------+---------+---------+---------+---------+---------
- $EC | 13 | $46 | ------- |$E8=17+11|$E9=17+12|$FF=19+ 8|$07= 0+ 7
- $EE | 15 | $5A | ------- |$BA=12+ 6|$BB=12+ 7|$D1=13+14|$D9=14+ 7
- $F0 | 17 | $6E | ------- |$8C= 8+ 4|$8D= 8+ 5|$A3= 9+10|$AB=10+ 1
- $F2 | double attack death
- $F4 | double attack death
- $F6 | 7 | $25 |$19= 3+ 4|$57=12+ 3|$58=12+ 4|$6E=15+ 5|$76=16+ 6
- $F8 | 9 | $2E |$F6=27+ 3|$34= 5+ 7|$35= 5+ 8|$4B= 8+ 3|$53= 9+ 2
- $FA | 11 | $42 |$C8=18+ 2|$06= 0+ 6|$07= 0+ 7|$1D= 2+ 7|$25= 3+ 4
- $FB | 12 | $4C | ------- |$EF=19+11|$F0=20+ 0|$06= 0+ 6|$0E= 1+ 2
- $FC | 13 | $56 | ------- |$D8=16+ 8|$D9=16+ 9|$EF=18+ 5|$F7=19+ 0
- $FD | 14 | $60 | ------- |$C1=13+11|$C2=13+12|$D8=15+ 6|$E0=16+ 0
- $FE | 15 | $6A | ------- |$AA=11+ 5|$AB=11+ 6|$C1=12+13|$C9=13+ 6
- $FF | 16 | $74 | ------- |$93= 9+ 3|$94= 9+ 4|$AA=10+10|$B2=11+ 2
- $00 | 17 | $91 | ------- |$69= 6+ 3|$6A= 6+ 4|$80= 7+ 9|$88= 8+ 0
- $01 | double attack death
- $02 | double attack death
- $03 | 4 | $20 |$45=17+ 1|$83=32+ 3|$84=33+ 0|$9A=38+ 2|$A2=40+ 2
- $04 | 5 | $27 |$31= 9+ 4|$6F=22+ 1|$70=22+ 2|$86=26+ 4|$8E=28+ 2
- $05 | 6 | $20 |$2B= 7+ 1|$69=17+ 3|$6A=17+ 4|$80=21+ 2|$88=22+ 4
- $06 | 7 | $2A |$14= 2+ 6|$52=11+ 5|$53=11+ 6|$69=15+ 0|$71=16+ 1
- $07 | 8 | $34 |$FD=31+ 5|$3B= 7+ 3|$3C= 7+ 4|$52=10+ 2|$5A=11+ 2
- $08 | 9 | $39 |$EB=26+ 1|$29= 4+ 5|$2A= 4+ 6|$40= 7+ 1|$48= 8+ 0
- $09 | 10 | $46 |$D1=20+ 9|$0F= 1+ 5|$10= 1+ 6|$26= 3+ 8|$2E= 4+ 6
- $0A | 11 | $53 |$B7=16+ 7|$F5=22+ 3|$F6=22+ 4|$0C= 1+ 1|$14= 1+ 9
- $0B | 12 | $60 | ------- |$DB=18+ 3|$DC=18+ 4|$F2=20+ 2|$FA=20+10
- $0C | 13 | $6D | ------- |$C1=14+11|$C2=14+12|$D8=16+ 8|$E0=17+ 3
- $0D | 14 | $7A | ------- |$A7=11+13|$A8=12+ 0|$BE=13+ 8|$C6=14+ 2
- $0E | 15 | $87 | ------- |$8D= 9+ 6|$8E= 9+ 7|$A4=10+14|$AC=11+ 7
- $0F | 16 | $94 | ------- |$73= 7+ 3|$74= 7+ 4|$8A= 8+10|$92= 9+ 2
- $10 | 17 | $A1 | ------- |$59= 5+ 4|$5A= 5+ 5|$70= 6+10|$78= 7+ 1
- $11 | 2 | $EE |$91=72+ 1|$CF=**+ 1|$D0=**+ 0|$E6=**+ 0|$EE=**+ 0
- $12 | 3 | $FB |$77=39+ 2|$B5=60+ 1|$B6=60+ 2|$CC=68+ 0|$D4=70+ 2
- $13 | 4 | $08 |$5D=23+ 1|$9B=38+ 3|$9C=39+ 0|$B2=44+ 2|$BA=46+ 2
- $14 | 5 | $15 |$43=13+ 2|$81=25+ 4|$82=26+ 0|$98=30+ 2|$A0=32+ 0
- $15 | 6 | $22 |$29= 6+ 5|$67=17+ 1|$68=17+ 2|$7E=21+ 0|$86=22+ 2
- $16 | 7 | $2F |$0F= 2+ 1|$4D=11+ 0|$4E=11+ 1|$64=14+ 2|$6C=15+ 3
- $17 | 8 | $3C |$F5=30+ 5|$33= 6+ 3|$34= 6+ 4|$4A= 9+ 2|$52=10+ 2
- $18 | 9 | $49 |$DB=24+ 3|$19= 2+ 7|$1A= 2+ 8|$30= 5+ 3|$38= 6+ 2
- $19 | 10 | $56 |$C1=19+ 3|$FF=25+ 5|$00= 0+ 0|$16= 2+ 2|$1E= 3+ 0
- $1A | 11 | $63 |$A7=15+ 2|$E5=20+ 9|$E6=20+10|$FC=22+10|$04= 0+ 4
- $1B | 12 | $70 | ------- |$CB=16+11|$CC=17+ 0|$E2=18+10|$EA=19+ 6
- $1C | 13 | $7D | ------- |$B1=13+ 8|$B2=13+ 9|$C8=15+ 5|$D0=16+ 0
- $1D | 14 | $8A | ------- |$97=10+11|$98=10+12|$AE=12+ 6|$B6=13+ 0
- $1E | 15 | $97 | ------- |$7D= 8+ 5|$7E= 8+ 6|$94= 9+13|$9C=10+ 6
- $1F | 16 | $A4 | ------- |$63= 6+ 3|$64= 6+ 4|$7A= 7+10|$82= 8+ 2
- $20 | hero attack death
- $21 | 2 | $FE |$81=64+ 1|$BF=95+ 1|$C0=96+ 0|$D6=**+ 0|$DE=**+ 0
- $22 | 3 | $0B |$67=34+ 1|$A5=55+ 0|$A6=55+ 1|$BC=62+ 2|$C4=65+ 1
- $23 | 4 | $18 |$4D=19+ 1|$8B=34+ 3|$8C=35+ 0|$A2=40+ 2|$AA=42+ 2
- $24 | 5 | $25 |$33=10+ 1|$71=22+ 3|$72=22+ 4|$88=27+ 1|$90=28+ 4
- $25 | 6 | $32 |$19= 4+ 1|$57=14+ 3|$58=14+ 4|$6E=18+ 2|$76=19+ 4
- $26 | 7 | $3F |$FF=36+ 3|$3D= 8+ 5|$3E= 8+ 6|$54=12+ 0|$5C=13+ 1
- $27 | 8 | $4C |$E5=28+ 5|$23= 4+ 3|$24= 4+ 4|$3A= 7+ 2|$42= 8+ 2
- $28 | 9 | $59 |$CB=22+ 5|$09= 1+ 0|$0A= 1+ 1|$20= 3+ 5|$28= 4+ 4
- $29 | 10 | $66 |$B1=17+ 7|$EF=23+ 9|$F0=24+ 0|$06= 0+ 6|$0E= 1+ 4
- $2A | 11 | $73 |$97=13+ 8|$D5=19+ 4|$D6=19+ 5|$EC=21+ 5|$F4=22+ 2
- $2B | 12 | $80 | ------- |$BB=15+ 7|$BC=15+ 8|$D2=17+ 6|$DA=18+ 2
- - First usable entry looks like $00
- - Initial HP = 550 - ($00+14-$16)*138/256 = 417
- - Turn 2 regen = 91, subsequent damage-regen = 325, so need 183 damage
- - Healus + Infermost*2 + Blaze?
- - Damage: 92+60 = 152 (Healus second) or 108+60 = 168 (Healus first)
- - Not enough damage
- - $08, required B1 is 8 so same story (plus initial HP rolls over)
- - How about $08 as 7+1?
- - Need 6*B1 from 3 chars
- - Won't work, not enough damage for initial HP = 550
- - $05 has 7+1 for $9A
- - Initial HP = 550 - ($05+14-$16)*138/256 = 414
- - Turn 2 regen = 94, subsequent damage-regen = 408, so need 100 damage
- - WizRing + Healus + Infermost + Firebal
- - Infermost damage = 63 if before Healus, 69 if after
- - Not enough damage
- - Are there no viable solutions out of all those possibilities?!
- - Let's go back and look at those double attack deaths, Hydra has low HP
- so we might be able to get away with a single Infermost...
- $A4_0 | $A4_1 | B1 | HydA1 |HydT1| HydA2 |HydT2|HyRes
- -------+-------+----+-------+-----+-------+-----+-----
- $F2 | $B7 | 3 | $BA/A | $BD | $C0/A | $C3 | $09
- $F4 | $B9 | 5 | $BE/A | $C3 | $C8/A | $CD | $17
- $01 | $C6 | 2 | $C8/A | $CA | $CC/A | $CE | $12
- $02 | $C7 | 3 | $CA/A | $CD | $D0/A | $D3 | $19
- - Table of differences:
- $A4_0 | B1 | HyRes | $9A | $D8 | $D9 | $EF | $F7
- -------+----+-------+---------+---------+---------+---------+---------
- $F2 | 3 | $09 |$69=35+ 0|$A7=55+ 2|$A8=56+ 0|$BE=63+ 1|$C6=66+ 0
- $F4 | 5 | $17 |$41=13+ 0|$7F=25+ 2|$80=25+ 3|$96=30+ 0|$9E=31+ 3
- $01 | 2 | $12 |$6D=54+ 1|$AB=85+ 1|$AC=86+ 0|$C2=97+ 0|$CA=**+ 0
- $02 | 3 | $19 |$59=29+ 2|$97=50+ 1|$98=50+ 2|$AE=58+ 0|$B6=60+ 2
- - Nope, too much B1 needed... sigh
- - Okay, let's try with the non-Healus turn 2 options: (* double attack death)
- $A4_0 | B1 | HyRes | $E1 | $E8
- -------+----+-------+---------+---------
- $EC | 13 | $46 |$F1=18+ 7|$F8=19+ 1
- $EE | 15 | $5A |$C3=13+ 0|$CA=13+ 7
- $F0 | 17 | $6E |$95= 8+13|$9C= 9+ 3
- $F2* | 3 | $09 |$B0=58+ 2|$B7=61+ 0
- $F4* | 5 | $17 |$88=27+ 1|$8F=28+ 3
- $F6 | 7 | $25 |$60=13+ 5|$67=14+ 5
- $F8 | 9 | $2E |$3D= 6+ 7|$44= 7+ 5
- $FA | 11 | $42 |$0F= 1+ 4|$16= 2+ 0
- $FB | 12 | $4C |$F8=20+ 8|$FF=21+ 3
- $FC | 13 | $56 |$E1=17+ 4|$E8=17+11
- $FD | 14 | $60 |$CA=14+ 6|$D1=14+13
- $FE | 15 | $6A |$B3=11+14|$BA=12+ 6
- $FF | 16 | $74 |$9C= 9+12|$A3=10+ 3
- $00 | 17 | $91 |$72= 6+12|$79= 7+ 2
- $01* | 2 | $12 |$B4=90+ 0|$BB=93+ 1
- $02* | 3 | $19 |$A0=53+ 1|$A7=55+ 2
- $03 | 4 | $20 |$8C=35+ 0|$93=36+ 3
- $04 | 5 | $27 |$78=24+ 0|$7F=25+ 2
- $05 | 6 | $20 |$72=19+ 0|$79=20+ 1
- $06 | 7 | $2A |$5B=13+ 0|$62=14+ 0
- $07 | 8 | $34 |$44= 8+ 4|$4B= 9+ 3
- $08 | 9 | $39 |$32= 5+ 5|$39= 6+ 3
- $09 | 10 | $46 |$18= 2+ 4|$1F= 3+ 1
- $0A | 11 | $53 |$FE=23+ 1|$05= 0+ 5
- $0B | 12 | $60 |$E4=19+ 0|$EB=19+ 7
- $0C | 13 | $6D |$CA=15+ 7|$D1=16+ 1
- $0D | 14 | $7A |$B0=12+ 8|$B7=13+ 1
- $0E | 15 | $87 |$96=10+ 0|$9D=10+ 7
- $0F | 16 | $94 |$7C= 7+12|$83= 8+ 3
- $10 | 17 | $A1 |$62= 5+13|$69= 6+ 3
- $11 | 2 | $EE |$D8=**+ 0|$DF=**+ 1
- $12 | 3 | $FB |$BE=63+ 1|$C5=65+ 2
- $13 | 4 | $08 |$A4=41+ 0|$AB=42+ 3
- $14 | 5 | $15 |$8A=27+ 3|$91=29+ 0
- $15 | 6 | $22 |$70=18+ 4|$77=19+ 5
- $16 | 7 | $2F |$56=12+ 2|$5D=13+ 2
- $17 | 8 | $3C |$3C= 7+ 4|$43= 8+ 3
- $18 | 9 | $49 |$22= 3+ 7|$29= 4+ 5
- $19 | 10 | $56 |$08= 0+ 8|$0F= 1+ 5
- $1A | 11 | $63 |$EE=21+ 7|$F5=22+ 3
- $1B | 12 | $70 |$D4=17+ 8|$DB=18+ 3
- $1C | 13 | $7D |$BA=14+ 4|$C1=14+11
- $1D | 14 | $8A |$A0=11+ 6|$A7=11+13
- $1E | 15 | $97 |$86= 8+14|$8D= 9+ 6
- $1F | 16 | $A4 |$6C= 6+12|$73= 7+ 3
- $20 | hero attack death
- $21 | 2 | $FE |$C8=**+ 0|$CF=**+ 1
- $22 | 3 | $0B |$AE=58+ 0|$B5=60+ 1
- $23 | 4 | $18 |$94=37+ 0|$9B=38+ 3
- $24 | 5 | $25 |$7A=24+ 2|$81=25+ 4
- $25 | 6 | $32 |$60=16+ 0|$67=17+ 1
- $26 | 7 | $3F |$46=10+ 0|$4D=11+ 0
- $27 | 8 | $4C |$2C= 5+ 4|$33= 6+ 3
- $28 | 9 | $59 |$12= 2+ 0|$19= 2+ 7
- $29 | 10 | $66 |$F8=24+ 8|$FF=25+ 5
- $2A | 11 | $73 |$DE=20+ 2|$E5=20+ 9
- $2B | 12 | $80 |$C4=16+ 4|$CB=16+11
- - $FA?
- - Initial HP = 550 - ($FA+14-$16)*138/256 = 420
- - Turn 2 regen = 96, subsequent damage-regen = 484, so need 32 damage
- - Infermost+Heal should do it
- - Hydra attack is a dodge!!
- - MP use through Hydra: [Hr] 0, [P1] 30, [P2] 38, [Wz] 0
- - Oops, no luck because we don't have enough HP for Bomus and can't
- Healall on the map
- - $28?
- - Initial HP = 550 - ($28+14-$16)*138/256 = 533
- - Turn 2 regen = 97, subsequent damage-regen = 454, so need 176 damage
- - 2*Infermost damage: 77+79 = 156, just short
- - Can we do 2*Infermost on $FA and grab a Healmore somewhere else?
- - 2*Infermost damage: 72+75 = 147, 115 overkill
- - Won't work, need to heal both [Hr] and [Wz] and we can only replace
- one Infermost
- - Okay, found an evade (and it leads into turn 3 Healus), let's try that...
- $A4_0 | B1 | HyRes | $B2
- -------+----+-------+---------
- $EC | 13 | $46 |$C2=14+12
- $EE | 15 | $5A | -------
- $F0 | 17 | $6E | -------
- $F2* | 3 | $09 |$81=43+ 0
- $F4* | 5 | $17 |$59=17+ 4
- $F6 | 7 | $25 |$31= 7+ 0
- $F8 | 9 | $2E |$0E= 1+ 5
- $FA | 11 | $42 |$E0=20+ 4
- $FB | 12 | $4C |$C9=16+ 9
- $FC | 13 | $56 |$B2=13+ 9
- $FD | 14 | $60 |$9B=11+ 1
- $FE | 15 | $6A | -------
- $FF | 16 | $74 | -------
- $00 | 17 | $91 | -------
- $01* | 2 | $12 |$85=66+ 1
- $02* | 3 | $19 |$71=37+ 2
- $03 | 4 | $20 |$5D=23+ 1
- $04 | 5 | $27 |$49=14+ 3
- $05 | 6 | $20 |$43=11+ 1
- $06 | 7 | $2A |$2C= 6+ 2
- $07 | 8 | $34 |$15= 2+ 5
- $08 | 9 | $39 |$03= 0+ 3
- $09 | 10 | $46 |$E9=23+ 3
- $0A | 11 | $53 |$CF=18+ 9
- $0B | 12 | $60 |$B5=15+ 1
- $0C | 13 | $6D |$9B=11+12
- $0D | 14 | $7A |$81= 9+ 3
- $0E | 15 | $87 | -------
- $0F | 16 | $94 | -------
- $10 | 17 | $A1 | -------
- $11 | 2 | $EE |$A9=84+ 1
- $12 | 3 | $FB |$8F=47+ 2
- $13 | 4 | $08 |$75=29+ 1
- $14 | 5 | $15 |$5B=18+ 1
- $15 | 6 | $22 |$41=10+ 5
- $16 | 7 | $2F |$27= 5+ 4
- $17 | 8 | $3C |$0D= 1+ 5
- $18 | 9 | $49 |$F3=27+ 0
- $19 | 10 | $56 |$D9=21+ 7
- $1A | 11 | $63 |$BF=17+ 4
- $1B | 12 | $70 |$A5=13+ 9
- $1C | 13 | $7D |$8B=10+ 9
- $1D | 14 | $8A |$71= 8+ 1
- $1E | 15 | $97 | -------
- $1F | 16 | $A4 | -------
- $20 | hero attack death
- $21 | 2 | $FE |$99=76+ 1
- $22 | 3 | $0B |$7F=42+ 1
- $23 | 4 | $18 |$65=25+ 1
- $24 | 5 | $25 |$4B=15+ 0
- $25 | 6 | $32 |$31= 8+ 1
- $26 | 7 | $3F |$17= 3+ 2
- $27 | 8 | $4C |$FD=31+ 5
- $28 | 9 | $59 |$E3=25+ 2
- $29 | 10 | $66 |$C9=20+ 1
- $2A | 11 | $73 |$AF=15+10
- $2B | 12 | $80 |$95=12+ 5
- - $F6?
- - Initial HP = 550 - ($F6+14-$16)*138/256 = 422
- - Turn 2 regen = 95, subsequent damage-regen = 463, so need 54 damage
- - Need 7*B0
- - Infermost+Healus+Parry+Blaze?
- - MP use through end: [Hr] 0, [P1] 54, [P2] 38, [Wz] 7
- - Erp, [Wz] dies... but I guess we can Parry+Revive
- - Infermost+Healus+Revive+Blaze?
- - MP use through end: [Hr] 0, [P1] 54, [P2] 58, [Wz] 4
- - Not enough MP, will Vivify work? Yes
- - Infermost+Healus+Vivify+Firebal?
- - MP use through end: [Hr] 0, [P1] 54, [P2] 48, [Wz] 6
- - We're short [P1] 45 and [P2] 12 MP through the end, but we can
- only recover 16+17+18 after the battle :(
- - Found a few evades with turn splits:
- $A4_0 | B1 | HyRes | $A9 | $B8
- -------+----+-------+---------+---------
- $EE | 15 | $5A | ------- |$E2=15+ 1
- $F0 | 17 | $6E |$5D= 5+ 8| -------
- $FE | 15 | $6A | ------- |$D2=14+ 0
- $FF | 16 | $74 | ------- |$BB=11+11
- $00 | 17 | $91 |$3A= 3+ 7| -------
- $0E | 15 | $87 | ------- |$B5=12+ 1
- $0F | 16 | $94 | ------- |$9B= 9+11
- $10 | 17 | $A1 |$2A= 2+ 8| -------
- $1E | 15 | $97 | ------- |$A5=11+ 0
- $1F | 16 | $A4 | ------- |$8B= 8+11
- - Nope, too much B1 to consume (could get a single Infermost with $1E,
- but max HP rolls over)
- - How about this one with two attacks?
- $A4_0 | B1 | HyRes | $3D
- -------+----+-------+---------
- $EC | 13 | $46 |$4D= 5+12
- $EE | 15 | $5A |$1F= 2+ 1
- $F0 | 17 | $6E |$F1=14+ 3
- $F2* | 3 | $09 |$0C= 4+ 0
- $F4* | 5 | $17 | -------
- $F6 | 7 | $25 |$BC=26+ 6
- $F8 | 9 | $2E |$99=17+ 0
- $FA | 11 | $42 |$6B= 9+ 8
- $FB | 12 | $4C |$54= 7+ 0
- $FC | 13 | $56 |$3D= 4+ 9
- $FD | 14 | $60 |$26= 2+10
- $FE | 15 | $6A |$0F= 1+ 0
- $FF | 16 | $74 |$F8=15+ 8
- $00 | 17 | $91 |$CE=12+ 2
- $01* | 2 | $12 |$10= 8+ 0
- $02* | 3 | $19 |$FC=84+ 0
- $03 | 4 | $20 | -------
- $04 | 5 | $27 | -------
- $05 | 6 | $20 |$CE=34+ 2
- $06 | 7 | $2A |$B7=26+ 1
- $07 | 8 | $34 |$A0=20+ 0
- $08 | 9 | $39 |$8E=15+ 7
- $09 | 10 | $46 |$74=11+ 6
- $0A | 11 | $53 |$5A= 8+ 2
- $0B | 12 | $60 |$40= 5+ 4
- $0C | 13 | $6D |$26= 2+12
- $0D | 14 | $7A |$0C= 0+12
- $0E | 15 | $87 |$F2=16+ 2
- $0F | 16 | $94 |$D8=13+ 8
- $10 | 17 | $A1 |$BE=11+ 3
- $11 | 2 | $EE |$34=26+ 0
- $12 | 3 | $FB |$1A= 8+ 2
- $13 | 4 | $08 | -------
- $14 | 5 | $15 | -------
- $15 | 6 | $22 |$CC=34+ 0
- $16 | 7 | $2F |$B2=25+ 3
- $17 | 8 | $3C |$98=19+ 0
- $18 | 9 | $49 |$7E=14+ 0
- $19 | 10 | $56 |$64=10+ 0
- $1A | 11 | $63 |$4A= 6+ 8
- $1B | 12 | $70 |$30= 4+ 0
- $1C | 13 | $7D |$16= 1+ 9
- $1D | 14 | $8A |$FC=18+ 0
- $1E | 15 | $97 |$E2=15+ 1
- $1F | 16 | $A4 |$C8=12+ 8
- $20 | hero attack death
- $21 | 2 | $FE |$24=18+ 0
- $22 | 3 | $0B |$0A= 3+ 1
- $23 | 4 | $18 | -------
- $24 | 5 | $25 | -------
- $25 | 6 | $32 |$BC=31+ 2
- $26 | 7 | $3F |$A2=23+ 1
- $27 | 8 | $4C |$88=17+ 0
- $28 | 9 | $59 |$6E=12+ 2
- $29 | 10 | $66 |$54= 8+ 4
- $2A | 11 | $73 |$3A= 5+ 3
- $2B | 12 | $80 |$20= 2+ 8
- - $FB?
- - Initial HP = 550 - ($FB+14-$16)*138/256 = 420
- - Turn 2 regen = 101, subsequent damage-regen = 541, so don't need damage
- - Too bad we can't get that $A4_0 in turn 1... or can we?
- - B0=14 gives $A4_0=$78, initial HP would be 490
- - Requires +$8C from map entry = 10 heals = ~25 seconds >>> 1 turn, hmm
- - Need 7*B0
- - Infermost+Healus+Vivify+Firebal?
- - Fails because 2nd attack is breath and doesn't hit dead [Wz]
- - $FE?
- - Initial HP = 550 - ($FE+14-$16)*138/256 = 418
- - Need 1*B0
- - Heal+Healall+2*Parry?
- - Heal [Hr] because takes hit next turn
- - Healall [Wz] because took hit this turn
- - MP use through Hydra: [Hr] 0, [P1] 43, [P2] 38, [Wz] 2
- - Would work, but...
- - Oops, $3D leaves Bomus with too much HP
- - Never mind, looks like we can fudge stuff to get 4 map heals
- - DO YOU BELIEVE IN SOLUTIONS? YES!!
- [OBSOLETE Appendix: Boss rush] (from before Zoma fix)
- Gonus turn 3:
- - $6A68 at end (for Zoma) can be anything except 1-5
- - We get $E from $A4_1 = $94
- - Battle stops after Blazemore + Infermost with $A4_end = 228+2
- - Level-up: $A4_lvup = $A4_end + 84 + B1 = $A4_end + 100 = 74
- - Required $A4_0 for Zoma 1 is 90
- - OH NO! Map load puts us 1 step too far ahead, diff is only 15 so we
- can't heal to the target
- - How about attacking?
- - B1 = 16, evade = 0, so each attack is effectively 5 multi_randoms
- - Remaining HP is 142, so need at least one Blazemore or Infermost
- - Options:
- - Blazemore+Infermost = 3 = -15 (original result)
- - Infermost+Infermost = 2 = -31
- - Infermost+Attack = 6 = -223
- - Blazemore+Attack = 7 = -209
- - Infermost+Attack*2 = 11 = -143
- - Blazemore+Attack*2 = 12 = -129
- - Infermost+Attack*3 = 16 = -65
- - Blazemore+Attack*3 = 17 = -47
- - Our only options are adding +16 or +17, ie +0 or +1 mod 16, and
- no matter what we do we need to get up to +15 mod 16
- - Guess the only option is to go back to the last map...
- - ... but we can't do that either because it resets the battles!!
- ARGH!!
- - Well, hang on a sec... we don't necessarily need max damage from
- round 3, just enough to win the battle (and Surround is irrelevant)
- - Postponed until we figure out how much healing we need after Bomus
- --> will need 4*Healmore
- - We can take any turn 1 match in turn 2 table, so possible incoming $A4
- values are: ($A4_req = Zoma 1 $A4_0 requirement minus battle end,
- level-up, and map load)
- T1 $A4_1 | T2 $A4_1 | B0 | $A4_0 | $A4_1 | B1 | $A4_req
- ----------+----------+----+-------+-------+----+---------
- $DC | $AD | 9 | $1E | $94 | 16 | $F3
- $BD | $A4 | 16 | $54 | $25 | 17 | $E4
- $BE | $BB | 7 | $1A | $76 | 2 | $C5
- $CE | $CB | 7 | $2A | $86 | 2 | $C5
- $B0 | $D9 | 5 | $26 | $68 | 4 | ---
- $C0 | $E9 | 5 | $36 | $78 | 4 | ---
- $A2 | $F7 | 3 | $32 | $5A | 6 | ---
- (How about that, turn 3 B1 = turn 1 B1 + constant!)
- - B1=4, B1=6 fail Zoma turn 1 precondition
- - B1=16 has a bad remainder (see above)
- - Solutions:
- - B1=17: $E4-($25+2*17) = 9*17+4 = Infermost x2 + Blazemore + Heal + 4*WizRing
- - B1=2: $C5-($86+2*2) = $26+10*2+1 = Healus x2 + Attack ($26) + Firebane + WizRing
- - If that's not enough damage, Healus + Attack + Infernos + Blazemore + 2*Heal + WizRing
- - This gives hero a max HP boost of 4 (otherwise 0)
- Gonus turn 2-3:
- - HP regen = 44 + multi_random(12)
- - Turn order = whatever
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - [P2] Infermost damage: $A4_1 + 3*B1
- - [P1] Infermost damage: $A4_1 + 4*B1
- - [Wz] Blazemore damage: $A4_1 + 6*B1
- - [Hr] Infermost damage: $A4_1 + 7*B1
- - Gonus standard evade check: $A4 + 7*B1 + 32 + 1*B1
- - Gonus Surround evade check: $A4 + 7*B1 + 32 + 2*B1 (= $A4_end)
- - [Hr] damage: $A4_1 + 7*B1 - 22 <= 255 --> $A4_1 <= 277 - 7*B1
- - Evade: $A4_1 + 9*B1 + 32 - 22 >= 256 --> $A4_1 >= 246 - 9*B1
- - Table:
- B1 | $A4_1 range | Valid $A4_1 | $A4_end | $A4_2
- ----+---------------+---------------+---------------+--------------
- 2 | 228/E4-263/07 | $E6, $F6, $06 | $18, $28, $38 | $33, $43, $53
- 3 | 219/DB-256/00 | $E7, $F7 | $22, $32 | $4A, $5A
- 4 | 210/D2-249/F9 | $D8, $E8, $F8 | $1C, $2C, $3C | $51, $61, $71
- 5 | 201/C9-242/F2 | $C9, $D9, $E9 | $16, $26, $36 | $58, $68, $78
- 6 | 192/C0-235/EB | $CA, $DA, $EA | $20, $30, $40 | $6F, $7F, $8F
- 7 | 183/B7-228/E4 | $BB, $CB, $DB | $1A, $2A, $3A | $76, $86, $96
- 8 | 174/AE-221/DD | $BC, $CC, $DC | $24, $34, $44 | $8D, $9D, $AD
- 9 | 165/A5-214/D6 | $AD, $BD, $CD | $1E, $2E, $3E | $94, $A4, $B4
- 10 | 156/9C-207/CF | $9E ... $CE | $18 ... $48 | $9B ... $CB
- 11 | 147/93-200/C8 | $9F, $AF, $BF | $22, $32, $42 | $B2, $C2, $D2
- 12 | 138/8A-193/C1 | $90 ... $C0 | $1C ... $4C | $B9 ... $E9
- 13 | 129/81-186/BA | $81 ... $B1 | $16 ... $46 | $C0 ... $F0
- 14 | 120/78-179/B3 | $82 ... $B2 | $20 ... $50 | $D7 ... $07
- 15 | 111/6F-172/AC | $73 ... $A3 | $1A ... $4A | $DE ... $0E
- 16 | 102/66-165/A5 | $74 ... $A4 | $24 ... $54 | $F5 ... $25
- 17 | 93/5D-158/9E | $65 ... $95 | $1E ... $4E | $FC ... $2C
- - Any cyclable inputs?
- - No, because of odd/even flip
- - Any sequences?
- - $A4_1 / $A4_2 matches: $94, $A4, $AD, $B2, $BB, $C0, $C9, $CB,
- $D9, $E7, $E9, $F7
- - Including turn 1: $A4, $AD, $BB, $CB, $D9, $E9, $F7
- - Sequences: $AD -> $94, $C0 -> $E9
- - (irrelevant, see new turn 1 notes)
- Gonus turn 1:
- - Party max HP on entry: 114+[0,4], 93+[0,4], 90+[0,4], 85+[0,4]
- - Gonus initial HP = whatever
- - Gonus focus target = whatever
- - Turn order = whatever (Gonus speed is 0 so always goes last)
- - Surround resistance is 70% so RNG output must be >=179 for it to hit
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Gonus action = multi_random() // always Attack
- - Gonus target = ubound(multi_random()/63, 3)
- - [P2] Surround check: $A4_1 + 3*B1
- - [P1] Infermost damage: $A4_1 + 4*B1
- - [Hr] Infermost damage: $A4_1 + 5*B1
- - [Wz] Blazemore damage: $A4_1 + 7*B1
- - Gonus standard evade check: $A4 + 7*B1 + 32 + 1*B1
- - Gonus Surround evade check: $A4 + 7*B1 + 32 + 2*B1 (= $A4_end)
- - Surround: $A4_1 + 3*B1 - 22 >= 179 --> $A4_1 >= 201 - 3*B1
- - [Wz] damage: $A4_1 + 7*B1 - 22 <= 255 --> $A4_1 <= 277 - 7*B1
- - Evade: $A4_1 + 9*B1 + 32 - 22 >= 256 --> $A4_1 >= 246 - 9*B1
- - Table:
- B1 | $A4_1 range | Valid $A4_1 | $A4_end | $A4_2
- ----+---------------+---------------+---------------+--------------
- 2 | 228/E4-263/07 | $E6, $F6, $06 | $18, $28, $38 | $33, $43, $53
- 3 | 219/DB-256/00 | $E7, $F7 | $22, $32 | $4A, $5A
- 4 | 210/D2-249/F9 | $D8, $E8, $F8 | $1C, $2C, $3C | $51, $61, $71
- 5 | 201/C9-242/F2 | $C9, $D9, $E9 | $16, $26, $36 | $58, $68, $78
- 6 | 192/C0-235/EB | $CA, $DA, $EA | $20, $30, $40 | $6F, $7F, $8F
- 7 | 183/B7-228/E4 | $BB, $CB, $DB | $1A, $2A, $3A | $76, $86, $96
- 8 | 177/B1-221/DD | $BC, $CC, $DC | $24, $34, $44 | $8D, $9D, $AD
- 9 | 174/AE-214/D6 | $BD, $CD | $2E, $3E | $A4, $B4
- 10 | 171/AB-207/CF | $AE, $BE, $CE | $28, $38, $48 | $AB, $BB, $CB
- 11 | 168/A8-200/C8 | $AF, $BF | $32, $42 | $C2, $D2
- 12 | 165/A5-193/C1 | $B0, $C0 | $3C, $4C | $D9, $E9
- 13 | 162/A2-186/BA | $B1 | $46 | $F0
- 14 | 159/9F-179/B3 | $A2, $B2 | $40, $50 | $F7, $07
- 15 | 156/9C-172/AC | $A3 | $4A | $0E
- 16 | 153/99-165/A5 | $A4 | $54 | $25
- 17 | 150/96-158/9E | (none) | (none) | (none)
- - For turn 2, $A4_2 must be one of: $A4, $AD, $BB, $CB, $D9, $E9, $F7
- - So $A4_1 must be one of (resp) $BD, $DC, $BE, $CE, $B0, $C0, $A2
- - Solved! $DC -> $AD -> $94 ^W^W^W^W^W^W Postponed, see above
- - Need only a sequence of 2, so we can use any of the following:
- $DC/$AD, $BD/$A4, $BE/$BB, $CE/$CB, $B0/$D9, $C0/$E9, $A2/$F7
- - Only matches to turn 2/3 table are $A4_1 = $BD or $CE
- - Valid inputs:
- B0 | $A4_1 | $A4_0 | Derived B0
- ----+-------+-------+------------
- 2 | $BD | $A0 | 12
- | $CE | $B1 | 13
- 3 | $BD | $92 | 14
- | $CE | $A3 | 15
- 4 | $BD | $84 | 16
- | $CE | $95 | 17
- 5 | $BD | $76 | 2
- | $CE | $87 | 3
- 6 | $BD | $68 | 4
- | $CE | $79 | 5
- 7 | $BD | $5A | 6
- | $CE | $6B | 7
- 8 | $BD | $4C | 8
- | $CE | $5D | 9
- 9 | $BD | $3E | 10
- | $CE | $4F | 11
- 10 | $BD | $30 | 12
- | $CE | $41 | 13
- 11 | $BD | $22 | 14
- | $CE | $33 | 15
- 12 | $BD | $14 | 16
- | $CE | $25 | 17
- 13 | $BD | $06 | 2
- | $CE | $17 | 3
- 14 | $BD | $F8 | 4
- | $CE | $09 | 5
- 15 | $BD | $EA | 6
- | $CE | $FB | 7
- 16 | $BD | $DC | 8
- | $CE | $ED | 9
- 17 | $BD | $CE | 10
- | $CE | $DF | 11
- - Solutions:
- - $A4_0 = $6B, $6A68_0 = $5
- - $A4_0 = $4C, $6A68_0 = $6
- Bomus turn 2:
- - HP regen = 44 + multi_random(12)
- - Turn order:
- - Don't need [Wz] to act
- - $A4_0 + 4*B0 <= 21, $A4_0 + 6*B0 >= 22
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Infermost 1 resist check: $A4_1 + 1*B1 - 22 >= 77
- - $A4_1 + 1*B1 >= 99
- - Level spam: +($106+6*B1)
- - $A4_map = $A4_1 + 2n(Infermost)*B1 + 2 + (6+6*B1) + 1
- - $6A68_1 = $5:
- - B1 = 7
- - $6B = $A4_1 + 2n(Infermost)*7 + 2 + (6+6*7) + 1
- - $6B = $A4_1 + 2n(Infermost)*7 + 51
- - $38 = $A4_1 + 2n(Infermost)*7
- - Needs hero attacking last for the kill:
- - $38 = $A4_1 + 2n(Infermost)*7 + 32 + 3*7
- - $03 = $A4_1 + 2n(Infermost)*7
- - n=1: $A4_1 = $F5 => $6A68_1 = $F --> invalid
- - Need 10+16x with heals/WizRings on map
- - x=3: 10+16x=42 = 6xHeal (could also use Healus)
- - $03 - 42 = $A4_1 + 2*7
- - $A4_1 = $03 - 56 = -53 = 203 ($CB)
- - $A4_0 = 203 - 13*B0
- - Can't satisfy turn order :(
- - $6A68_1 = $6:
- - B1 = 8
- - $4C = $A4_1 + 2n(Infermost)*8 + 2 + (6+6*8) + 1
- - $4C = $A4_1 + 2n(Infermost)*8 + 57
- - $13 = $A4_1 + 2n(Infermost)*8
- - n=1: $A4_1 = $03 => $6A68_1 = $D --> need 7x WizRing + 1x Heal to fix parity
- - $A4_1 = $C6 (198)
- - With B1=8, can use 2x Heal (or more Infermost) to shift high digit
- - $A4_1 - 9*B0 < 22, $A4_1 - 7*B0 >= 22
- - Table:
- B0 | Heals | $A4_1 | $A4_0 | [P2] | [Wz] | Bomus
- ----+-------+-------+-------+------+------+-------
- 2 | 20 | $26 | $0C | $14 | $16 | $18
- 3 | -- | --- | --- | --- | --- | ---
- 4 | 18 | $36 | $02 | $12 | $16 | $1A
- 5 | -- | --- | --- | --- | --- | ---
- 6 | 16 | $46 | $F8 | $10 | $16 | $1C
- 7 | -- | --- | --- | --- | --- | ---
- 8 | 14 | $56 | $EE | $0E | $16 | $1E
- 9 | 12 | $66 | $F1 | $15 | $1E | $27
- 10 | 12 | $66 | $E4 | $0C | $16 | $20
- 11 | 10 | $76 | $E7 | $13 | $1E | $29
- 12 | 10 | $76 | $DA | $0A | $16 | $22
- 13 | 8 | $86 | $DD | $11 | $1E | $2B
- 14 | 8 | $86 | $D0 | $08 | $16 | $24
- 15 | 6 | $96 | $D3 | $0F | $1E | $2D
- 16 | 6 | $96 | $C6 | $06 | $16 | $26
- 17 | 4 | $A6 | $C9 | $0D | $1E | $2F
- - Solved! (sort of)
- Bomus turn 1:
- - Party max HP on entry: 114+[0,4], 93, 90, 85
- - Bomus initial HP = whatever
- - Bomus focus target = whatever
- - Turn order: whatever (assume Bomus goes first)
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Bomus action count: multi_random(3)
- - For 1 action: 86 <= $A4_1 + 1*B1 - 22 <= 170
- - Bomus action: whatever
- - Bomus target: whatever
- - From turn 2: $6A68_1 = $F --> B1 = 17
- - 91 <= $A4_1 <= 175
- - $A4_end = 201 ($C9); $A4_1 = $x5 (for 1 action: $65 $75 $85 $95 $A5)
- - $A4_end - $A4_1 = 17x + 32y
- - x = 4: Bomus attack + Heal (not very useful...)
- - x = 20: Bomus Explodet + Healus + Infermost + critical + Blazemore
- - critical will not occur
- - or: Bomus Explodet x2 + Infermost x2 + attack
- - will give $A4_1 = $55
- - first action: $66 = Explodet, ok
- - second action: $CC = Attack, bad
- - $6A68_1 = $E --> B1 = 16
- - Requires $A4_end = $C6 but $A4_1 = $x4, can't do that with B1=16
- - $6A68_1 = $D --> B1 = 15
- - $A4_end = $D3; $A4_1 = $x3
- - $A4_end - $A4_1 = 15x + 32y
- - x = 16: Bomus breath + Infermost x2 + Attack + Blazemore
- - y = 1, $A4_1 = $C3
- - Infermost 1: $A4_1 + 7*B1 = $2C, bad
- - This is probably not going to work without an obscene number
- of post-battle heals...
- - $6A68_1 = $C --> B1 = 14
- - $A4_end = $D0; $A4_1 = $x2
- - $A4_end - $A4_1 = 14x + 32y
- - x = 17: Bomus Explodet + Infermost x2 + Attack + Blazemore
- - y = 1, $A4_1 = $C2
- - Same story as above
- - $6A68_1 = $B --> B1 = 13
- - $A4_end = $DD; $A4_1 = $x1
- - $A4_end - $A4_1 = 13x + 32y
- - x = 5 + 16n, bad
- - $6A68_1 = $A --> need 11x Heal @ 160 frames, 7x WizRing @ 190 frames
- - Too slow, maybe we should let Bomus act on turn 2?
- ========== Let's try again! ==========
- Bomus turn 2:
- - HP regen = 44 + multi_random(12)
- - Turn order: whatever (assume Bomus goes first)
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Bomus action count: 1 action --> 86 <= $A4_1 + 1*B1 - 22 <= 170
- - Bomus action: attack = 32 + 2*B1, breath = 4*B1, Explodet = 5*B1
- - Infermost 1 resist check: $A4_1 + Bomus + 1*B1 - 22 >= 77
- - $A4_1 + 1*B1 >= 99
- - Level spam: +($106+6*B1)
- - $A4_map = $A4_1 + Bomus + 2n(Infermost)*B1 + 2 + (6+6*B1) + 1
- - Take $6A68_1 = $5 ($6 has bad parity, from above)
- - B1 = 7
- - 101 <= $A4_1 <= 185 (for 1 Bomus action)
- - $A4_map = $6B
- - $A4_end = $6B - (2 + (6+6*7) + 1) = $6B - 51 = $38
- - Needs hero attacking last b/c magic resistance, or heals on map
- - Bomus attack:
- - Requires $A4_1 + 2*B1 - 22 < 96 --> 101 ($65) <= $A4_1 < 104 ($68)
- - None of those give $6A68_1 = $5
- - Bomus Explodet:
- - $38 = $A4_1 + 7*7 + n*7
- - $07 = $A4_1 + n*7
- - n=4 (2x Infermost): $A4_1 = $EB --> $6A68_1 = $5
- - Need 8x Heal, 1x WizRing (sum = $40) for final magic success
- - Must have at least 5 Heal/WizRing uses on map
- - Can use 1 Healus in battle
- - Bomus action with $A4_1 = $AB:
- - count = $B2-$16 = $9C, ok
- - action = $B9-$16 = $A3 = Explodet, ok
- - $A4_0 = $AB - 13*B0
- - Infermost damage (assume Healus first):
- - #1 = $F8 = 112
- - #2 = $06 = 116
- - Total damage 228
- - Table:
- B0 | $A4_1 | $A4_0 | Derived B0
- ----+-------+-------+------------
- 2 | $AB | $90 | 2
- 3 | $AB | $83 | 5
- 4 | $AB | $76 | 8
- 5 | $AB | $69 | 11
- 6 | $AB | $5C | 14
- 7 | $AB | $4F | 17
- 8 | $AB | $42 | 4
- 9 | $AB | $35 | 7
- 10 | $AB | $28 | 10
- 11 | $AB | $1B | 13
- 12 | $AB | $0E | 16
- 13 | $AB | $01 | 3
- 14 | $AB | $F4 | 6
- 15 | $AB | $E7 | 9
- 16 | $AB | $DA | 12
- 17 | $AB | $CD | 15
- - Solved?
- - $A4_0 = $90, B0 = 2
- - $A4_0 = $28, B0 = 10
- Bomus turn 1:
- - Party max HP on entry: 114+[0,4], 93, 90, 85
- - Bomus initial HP = whatever
- - Bomus focus target = whatever
- - Turn order: whatever (assume Bomus goes first)
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Bomus action count: multi_random(3)
- - For 1 action: 86 <= $A4_1 + 1*B1 - 22 <= 170
- - Bomus action: whatever
- - Bomus target: whatever
- - From turn 2: $6A68_1 = $8 --> B1 = 10
- - 98 <= $A4_1 <= 182
- - $A4_end = $28; $A4_1 = $xE (for 1 action: $6E $7E $8E $9E $AE)
- - Final spell will fail; could attack instead (x+3 y+1)
- - $A4_end - $A4_1 = 10x + 32y
- - If $6E, diff = 186 --> x=9 y=3, x too low
- - If $7E, diff = 170 --> x=17 y=0
- - x = 17: Bomus Explodet + Healus + Infermost x2 + Blazemore (1 fail)
- - Bomus action: $7E + 2*10 = $92, -22 = $7C = Explodet, OK
- - Can't get just 1 fail! [Wz] goes before [Hr], counter wraps
- between Blazemore damage and resist check
- - Need to end turn with [Hr] attack, so y must be >= 1
- - If $8E, diff = 154 --> x=9 y=2, x too low
- - If $9E, diff = 138 --> bad parity, can't get y=4
- - If $AE, diff = 122 --> x=9 y=1, x too low
- - Suppose we let Bomus attack twice?
- - Can't happen... need an increment of at least 97, but worst case
- (selected 4th party member) is 10 + 4*10 + 32 + 10 = 92
- - Suppose Bomus does 2 other actions? (could survive w/Parry)
- - $A4_1 = $BE, assume wrap: diff = 362, x=33 y=1, x too high
- - $A4_1 = $CE: diff = 346, x=25 y=3
- - Bomus action count = $D8-$16 = 2
- - Bomus action 1 = $E2-$16 = Attack
- - Bomus target 1 = $EC-$16 = not player 1
- - Bomus target 1 = $F4-$16 = not player 1
- - Bomus target 1 = $00-$16 = player 3
- - Bomus damage 1 = $20
- - Bomus attack 1 player evade = $2A
- - Bomus action 2 = $34-$16 = breath
- - Bomus damage 2 = $22, $2C, $34, $40
- - x=11 so far, can't reach 25
- - $A4_1 = $DE: diff = 314, x=25 y=2
- - $A4_1 = $EE: diff = 298, x=17 y=4
- - $A4_1 = $FE: diff = 282, x=25 y=1
- - $A4_1 = $0E: diff = 266, x=17 y=3
- - Bomus action count = $18-$16 = 2
- - Bomus action 1 = $22-$16 = breath
- - Bomus damage 1 = $2C, $36, $40, $4A
- - Bomus action 2 = $54-$16 = Explodet, can't get to y=3
- - $A4_1 = $1E: diff = 250, x=25 y=0
- - $A4_1 = $2E: diff = 234, x=17 y=2
- - Bomus action count = $38-$16 = 2
- - Bomus action 1 = $42-$16 = Explodet
- - Bomus target 1 = $4C (unused)
- - Bomus damage 1 = $56, $60, $6A, $74
- - Bomus action 2 = $7E-$16 = Explodet, [Wz] must parry so no y=2
- - $A4_1 = $3E: diff = 218, x=9 y=4
- - $A4_1 = $4E: diff = 202, x=17 y=1
- - Bomus action count = $58-$16 = 2
- - Bomus action 1 = $62-$16 = Attack
- - Bomus target 1 = $6C-$16 = player 1, hero dies :(
- - $A4_1 = $5E: diff = 186, x=9 y=3
- - Okay, let's try $6A68_1 = $0 --> B1 = 2
- - 106 <= $A4_1 <= 190
- - $A4_end = $90; $A4_1 = $x6 (for 1 action: $76 $86 $96 $A6 $B6)
- - All spells will pass resistance check
- - $A4_end - $A4_1 = 2x + 32y
- - Need $A4_1 to be reasonably close but not too close to $A4_end
- - So $76 is the only remotely possible thing
- - $A4_1 = $76: diff = 26, x=13 y=0
- - Bomus action count = $78-$16 = 1
- - Bomus action 1 = $7A-$16 = Explodet
- - Bomus target 1 = $7C (ignored)
- - Bomus damage 1 = $7E, $80, $82, $84
- - Infermost 1 = $86, $88
- - Infermost 2 = $8A, $8C
- - Infermost 3 = $8E, $90
- - Total damage = 86+87+88 = 261
- - $A4_1 = $76 (118)
- - $A4_0 = 118 - 1 - 14*B0 = 89 - 14*$6A68_0
- - Table:
- B0 | $A4_1 | $A4_0 | Derived B0
- ----+-------+-------+------------
- 2 | $76 | $59 | 3
- 3 | $76 | $4B | 5
- 4 | $76 | $3D | 7
- 5 | $76 | $2F | 9
- 6 | $76 | $21 | 11
- 7 | $76 | $13 | 13
- 8 | $76 | $05 | 15
- 9 | $76 | $F7 | 17
- 10 | $76 | $E9 | 3
- 11 | $76 | $DB | 5
- 12 | $76 | $CD | 7
- 13 | $76 | $BF | 9
- 14 | $76 | $B1 | 11
- 15 | $76 | $A3 | 13
- 16 | $76 | $95 | 15
- 17 | $76 | $87 | 17
- - Solved! (hopefully)
- - $A4_0 = $87, $6468_0 = $F (initial HP = 393)
- - Wait a sec, what is this "derived B0" I've been doing? B0 is determined
- in the previous turn! Have I been overly limiting the possible solutions?
- - Any $A4_0 and corresponding B0 in the table should work!
- - Let's go back and try the other B1s...
- - B1 = 3 ($6A68_1 = 1):
- - 105 <= $A4_1 <= 189
- - $A4_end = $83; $A4_1 = $x7 (for 1 action: $77 $87 $97 $A7 $B7)
- - $A4_end - $A4_1 = 3x + 32y
- - $A4_1 = $B7: x=huge, so this won't work, and probably other small B1 too
- - B1 = 7 ($6A68_1 = 5):
- - 101 <= $A4_1 <= 185
- - $A4_end = $4F; $A4_1 = $xB (for 1 action: $6B $7B $8B $9B $AB)
- - $A4_end - $A4_1 = 7x + 32y
- - $A4_1 = $6B: diff = 228, x=28 y=1
- - $A4_1 = $7B: diff = 212, x=12 y=4
- - $A4_1 = $8B: diff = 196, x=28 y=0
- - $A4_1 = $9B: diff = 180, x=12 y=3
- - $A4_1 = $AB: diff = 164, x=-4 y=6
- - B1 = 8 ($6A68_1 = 6):
- - 100 <= $A4_1 <= 184
- - $A4_end = $42; $A4_1 = $xC (for 1 action: $6C $7C $8C $9C $AC)
- - $A4_end - $A4_1 = 8x + 32y
- - Bad parity, no solution (for any B1=4n)
- - B1 = 9 ($6A68_1 = 7):
- - 99 <= $A4_1 <= 183
- - $A4_end = $35; $A4_1 = $xD (for 1 action: $6D $7D $8D $9D $AD)
- - $A4_end - $A4_1 = 9x + 32y
- - $A4_1 = $6D: diff = 200, x=8 y=4
- - $A4_1 = $7D: diff = 184, x=-8 y=8
- - B1 = 11 ($6A68_1 = 9):
- - 97 <= $A4_1 <= 181
- - $A4_end = $1B; $A4_1 = $xF (for 1 action: $6F $7F $8F $9F $AF)
- - $A4_end - $A4_1 = 11x + 32y
- - $A4_1 = $6F: diff = 172, x=4 y=4
- - $A4_1 = $7F: diff = 156, x-12 y=9
- - B1 = 13 ($6A68_1 = 11):
- - 95 <= $A4_1 <= 179
- - $A4_end = $01; $A4_1 = $x1 (for 1 action: $61 $71 $81 $91 $A1 $B1)
- - $A4_end - $A4_1 = 13x + 32y
- - $A4_1 = $61: diff = 160, x=0 y=5
- - $A4_1 = $71: diff = 144, x=-16 y=11
- - B1 = 14 ($6A68_1 = 12):
- - 94 <= $A4_1 <= 178
- - $A4_end = $F4; $A4_1 = $x2 (for 1 action: $62 $72 $82 $92 $A2 $B2)
- - $A4_end - $A4_1 = 14x + 32y
- - $A4_1 = $62: diff = 146, x=-1 y=4
- - $A4_1 = $62: diff = 130, x=7 y=1
- - B1 = 15 ($6A68_1 = 13):
- - 93 <= $A4_1 <= 177
- - $A4_end = $E7; $A4_1 = $x3 (for 1 action: $63 $73 $83 $93 $A3)
- - $A4_end - $A4_1 = 15x + 32y
- - $A4_1 = $63: diff = 132, x=-4 y=6
- - $A4_1 = $73: diff = 116, x=12 y=-2
- - B1 = 17 ($6A68_1 = 15):
- - 91 <= $A4_1 <= 175
- - $A4_end = $CD; $A4_1 = $x5 (for 1 action: $65 $75 $85 $95 $A5)
- - $A4_end - $A4_1 = 17x + 32y
- - $A4_1 = $65: diff = 104, x=8 y=-1
- - $A4_1 = $75: diff = 88, x=-8 y=7
- - No other solutions. Oh well, we tried...
- - Solution (for reference): $A4_0 = $87, $6468_0 = $F (initial HP = 393)
- Hydra turn 2:
- - HP regen = 44 + multi_random(12)
- - Turn order:
- - Don't need [Wz] to act
- - $A4_0 + 4*B0 - 22 <= 255, $A4_0 + 6*B0 - 22 >= 256
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Level spam: +($53+B1)
- - Bomus preconditions:
- - $A4_map = $59 - 14*$6A68_1
- - $A4_end = $59 - 14*$6A68_1 - ($53+($6A68_1+2))
- - Infermost*3, Nx Heal on map: $A4_1 = $A4_end - (6+N)*B1
- - Minimum N for valid $A4_1:
- B1 | $A4_end | N | $A4_1
- ----+---------+---+-------
- 2 | $04 | 1 | $F6
- 3 | $F5 | 4 | $E7
- 4 | $E6 | - | ---
- 5 | $D7 | 0 | $B9
- 6 | $C8 | 7 | $7A
- 7 | $B9 |12 | $3B
- 8 | $AA | - | ---
- 9 | $9B | 8 | $1D
- 10 | $8C | 5 | $1E
- 11 | $7D | 4 | $0F
- 12 | $6E | - | ---
- 13 | $5F | 0 | $11
- 14 | $50 | 3 | $D2
- 15 | $41 |12 | $33
- 16 | $32 | - | ---
- 17 | $23 | 8 | $35
- - To satisfy turn order:
- - $A4_1 - 1 - 9*B0 < 22, $A4_1 - 1 - 7*B0 >= 22
- - 9*B0 > $A4_1 - 23, 7*B0 <= $A4_1 - 23
- - Table:
- $A4_1 | B0_min | B0_max
- -------+--------+--------
- $F6 | 25 | 31
- $E7 | 24 | 29
- $B9 | 18 | 23
- $7A | 11 | 14
- $3B | 4 | 5
- $1D | 30 | 37
- $1E | 30 | 37
- $0F | 28 | 35
- $11 | 28 | 35
- $D2 | 21 | 26
- $33 | 4 | 4
- $35 | 4 | 4
- - Damage table:
- $A4_1 | B1 | 3*Infermost
- -------+----+-------------
- $7A | 6 | 90+ 91+ 93
- $3B | 7 | 76+ 78+ 80
- $33 | 15 | 84+ 87+ 91
- $35 | 17 | 87+ 91+ 95
- - Solutions:
- B0 | $A4_1 | $A4_0
- ----+-------+-------
- 4 | $33 | $FE
- 4 | $35 | $00
- 4 | $3B | $06
- 5 | $3B | $F9
- 11 | $7A | $EA
- 12 | $7A | $DD
- 13 | $7A | $D0
- 14 | $7A | $C3
- Hydra turn 1:
- - Party max HP on entry: 114, 93, 90, 85
- - Hydra initial HP = whatever
- - Hydra focus target = whatever
- - $6A68_0 = $C (B0 = 14), $A4_0 >= $EC (on entering Charlock B5)
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - $A4_1 = $A4_0 - $3B ($A4_0=$EC: $A4_1=$B1)
- - Low B1 would be good for damage rolls
- - ... well, actually not because Hydra attacks roll the counter over
- - Table through Hydra action resolution: (odd $A4_0 = with WizRing use)
- $A4_0 | $A4_1 | B1 | HydA1 | HydT1 | HydA2 | HydT2 | HyRes
- -------+-------+----+-------+-------+-------+-------+-------
- $EC | $B1 | 13 | $BE/A | $CB | $D8/B | $E5 | $46
- $EE | $B3 | 15 | $C2/A | $D1 | $E0/B | $EF | $5A
- $F0 | $B5 | 17 | $C6/A | $D7 | $E8/B | $F9 | $6E
- $F2 | $B7 | 3 | $BA/A | $BD | $C0/A | double attack death
- $F4 | $B9 | 5 | $BE/A | $C3 | $C8/A | double attack death
- $F6 | $BB | 7 | $C2/A | $C9 | $D0/A | $D7 | $25
- $F8 | $BD | 9 | $C6/A | $CF | $D8/B | $E1 | $2E
- $FA | $BF | 11 | $CA/A | $D5 | $E0/B | $EB | $42
- $FB | $C0 | 12 | $CC/A | $D8 | $E4/B | $F0 | $4C
- $FD | $C2 | 14 | $D0/A | $DE | $EC/B | $FA | $60
- $FF | $C4 | 16 | $D4/A | $E4 | $F4/B | $04 | $74
- $01 | $C6 | 2 | $C8/A | $CA | $CC/A | double attack death
- $03 | $C8 | 4 | $CC/A | $D0 | $D4/A | $D8 | $20
- $04 | $C9 | 5 | $CD/A | $D3 | $D8/B | $DD | $16
- $05 | $CA | 6 | $D0/A | $D6 | $DC/B | $E2 | $20
- $07 | $CC | 8 | $D4/A | $DC | $E4/B | $EC | $34
- $09 | $CE | 10 | $D8/B | $E2 | $EC/B | $F6 | $46
- - B1=12, B1=14 don't work because of wrong parity
- - Unless we swap an Infermost for a WizRing...
- - B1=12 works if we can add $91 = 145 = 11*B1 + 1*WizRing... too much B1
- - B1=14 works if we can add $63 = 99 = 6*B1 + 3*WizRing... too much WizRing
- - B1=13: add $7D = 125... nope
- - B1=11: add $A8 = 168... nope
- - No solution? Maybe we need 3 turns...
- - Well, let's look at double-breath cases:
- $A4_0 | $A4_1 | B1 | HydA1 | HydT1 | HydA2 | HydT2 | HyRes
- -------+-------+----+-------+-------+-------+-------+-------
- $08 | $CD | 9 | $D6/B | $DF | $E8/B | $F1 | $39
- $09 | $CE | 10 | $D8/B | $E2 | $EC/B | $F6 | $46
- $0A | $CF | 11 | $DA/B | $E5 | $F0/B | $FB | $53
- $0B | $D0 | 12 | $DC/B | $E8 | $F4/B | $00 | $60
- $0C | $D1 | 13 | $DE/B | $EB | $F8/B | $05 | $6D
- $0D | $D2 | 14 | $E0/B | $EE | $FC/B | $0A | $7A
- $0E | $D3 | 15 | $E2/B | $F1 | $00/B | $0F | $87
- $0F | $D4 | 16 | $E4/B | $F4 | $04/B | $14 | $94
- $10 | $D5 | 17 | $E6/B | $F7 | $08/B | $19 | $A1
- $11 | $D6 | 2 | $D8/B | $DA | $DC/B | $DE | $EE
- $12 | $D7 | 3 | $DA/B | $DD | $E0/B | $E3 | $FB
- $13 | $D8 | 4 | $DC/B | $E0 | $E4/B | $E8 | $08
- $14 | $D9 | 5 | $DE/B | $E3 | $E8/B | $ED | $15
- $15 | $DA | 6 | $E0/B | $E6 | $EC/B | $F2 | $22
- $16 | $DB | 7 | $E2/B | $E9 | $F0/B | $F7 | $2F
- $17 | $DC | 8 | $E4/B | $EC | $F4/B | $FC | $3C
- $18 | $DD | 9 | $E6/B | $EF | $F8/B | $01 | $49
- $19 | $DE | 10 | $E8/B | $F2 | $FC/B | $06 | $56
- $1A | $DF | 11 | $EA/B | $F5 | $00/B | $0B | $63
- $1B | $E0 | 12 | $EC/B | $F8 | $04/B | $10 | $70
- $1C | $E1 | 13 | $EE/B | $FB | $08/B | $15 | $7D
- $1D | $E2 | 14 | $F0/B | $FE | $0C/B | $1A | $8A
- $1E | $E3 | 15 | $F2/B | $01 | $10/B | $1F | $97
- $1F | $E4 | 16 | $F4/B | $04 | $14/B | $24 | $A4
- $20 | $E5 | 17 | $F6/B | $07 | $18/A | not double breath
- $21 | $E6 | 2 | $E8/B | $EA | $EC/B | $EE | $FE
- $22 | $E7 | 3 | $EA/B | $ED | $F0/B | $F3 | $0B
- $23 | $E8 | 4 | $EC/B | $F0 | $F4/B | $F8 | $18
- $24 | $E9 | 5 | $EE/B | $F3 | $F8/B | $FD | $25
- $25 | $EA | 6 | $F0/B | $F6 | $FC/B | $02 | $32
- $26 | $EB | 7 | $F2/B | $F9 | $00/B | $07 | $3F
- $27 | $EC | 8 | $F4/B | $FC | $04/B | $0C | $4C
- $28 | $ED | 9 | $F6/B | $FF | $08/B | $11 | $59
- $29 | $EE | 10 | $F8/B | $02 | $0C/B | $16 | $66
- $2A | $EF | 11 | $FA/B | $05 | $10/B | $1B | $73
- $2B | $F0 | 12 | $FC/B | $08 | $14/B | $20 | $80
- - B1=11 (target $EA): $0A($53), $1A($63), $2A($73)
- - B1=13 (target $D0): $0C($6D), $1C($7D)
- - B1=4 (target $FE/$00/$06): $13($08), $23($18)
- - B1=5 (target $F9): $14($15), $24($25)
- - We got nuttin :(
- - Turn 2 Infermost damage was low, so we might have needed 3 turns anyway
- ========== Let's try again! ==========
- Hydra turn 3:
- - HP regen = 44 + multi_random(12)
- - Turn order:
- - Don't need [Wz] to act
- - $A4_0 + 4*B0 - 22 <= 255, $A4_0 + 6*B0 - 22 >= 256
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Level spam: +($53+B1)
- - Bomus preconditions:
- - $A4_map = $59 - 14*$6A68_1
- - $A4_end = $59 - 14*$6A68_1 - ($53+($6A68_1+2))
- - Infermost*3, Nx Heal on map: $A4_1 = $A4_end - (6+N)*B1
- - Can add 3*B1 with IceBolt (if [Wz] acts and Hydra HP allows),
- 2*B1 with Healus
- - Minimum N for valid $A4_1:
- B1 | $A4_end | N | $A4_1
- ----+---------+---+-------
- 2 | $04 | 1 | $F6
- 3 | $F5 | 4 | $E7
- 4 | $E6 | - | ---
- 5 | $D7 | 0 | $B9
- 6 | $C8 | 7 | $7A
- 7 | $B9 |12 | $3B
- 8 | $AA | - | ---
- 9 | $9B | 8 | $1D
- 10 | $8C | 5 | $1E
- 11 | $7D | 4 | $0F
- 12 | $6E | - | ---
- 13 | $5F | 0 | $11
- 14 | $50 | 3 | $D2
- 15 | $41 |12 | $33
- 16 | $32 | - | ---
- 17 | $23 | 8 | $35
- - To satisfy turn order:
- - $A4_1 - 1 - 9*B0 < 22, $A4_1 - 1 - 7*B0 >= 22
- - 9*B0 > $A4_1 - 23, 7*B0 <= $A4_1 - 23
- - Table:
- $A4_1 | B0_min | B0_max
- -------+--------+--------
- $F6 | 25 | 31
- $E7 | 24 | 29
- $B9 | 18 | 23
- $7A | 12 | 14
- $3B | 5 | 5
- $1D | 30 | 37
- $1E | 30 | 37
- $0F | 28 | 35
- $11 | 28 | 35
- $D2 | 21 | 26
- $33 | 4 | 4
- $35 | 4 | 4
- - Damage table:
- $A4_1 | B1 | 3*Infermost
- -------+----+-------------
- $7A | 6 | 90+ 91+ 93 = 274
- $3B | 7 | 76+ 78+ 80 = 234
- $33 | 15 | 84+ 87+ 91 = 262
- $35 | 17 | 87+ 91+ 95 = 273
- - Solutions:
- B0 | $A4_1 | $A4_0 | N | Wz? | Regen
- ----+-------+-------+----+-----+-------
- 4 | $33 | $FE | 12 | Y | 55
- 4 | $35 | $00 | 8 | Y | 55
- 5 | $3B | $F9 | 12 | Y | 54
- 12 | $7A | $DD | 7 | N | 53
- 13 | $7A | $D0 | 7 | Y | 53
- 14 | $7A | $C3 | 7 | Y | 52
- Hydra turn 2:
- - HP regen = 44 + multi_random(12)
- - Turn order: whatever (assume Hydra goes first)
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Let's aim for N <= 8 in turn 3 with [Wz] acting: 4/$35, 13/$D0, 14/$C3
- - 4/$35 is bad, magic will fail
- - (wait, never mind, Infermost never fails on Hydra, but this route is
- wrong because of HP regen anyway)
- - Assuming 3*Infermost, pre-party $A4 is:
- B1 | $A4_end | $A4_party
- ----+---------+-----------
- 13 | $D0 | $A9
- 14 | $C3 | $99
- - How much party B1 needed to make it double breath?
- B1 | Max Breath2 | Breath1 | Target2 | Action2 | Target1 | Action1
- ----+-------------+---------+---------+---------+---------+---------
- 13 | $82 | $4E | $1A | $0D | $00 | $F3
- 14 | $8B | $53 | $1B | $0D | $FF | $F1
- - B1=13 needs 6*B1, B1=14 needs 4*B1
- - $A4_1 table:
- B1 | $A4_end | $A4_1
- ----+---------+-------
- 13 | $D0 | $E6 (off by +5)
- 14 | $C3 | $E3 (off by +1)
- - B1=13 is smack in the middle of the parity sequence :(
- - Would need additional 6*B1, which would push us out of double breath
- - Might make it as far as the $80-$9F breath space, but 12*B1 is too
- much for the party to handle
- - B1=14 has wrong parity, but maybe we can WizRing out of it?
- - Need WizRing + 3*B1
- - Can't get 3*B1 from 2 pilgrims
- - Let's assume we can keep [Wz] alive, then WizRing+Infermost*2+Firebal:
- $A4_party (Breath2) = $8A, Breath1 = $52, Target2 = $1A, Action2 = $0C,
- Target1 = $FE, Action1 = $F0, $A4_1 = $E2
- - Infermost damage = $98 (90), $B4 (93) = total 183
- - Might be 90+97 depending on turn order
- - Total damage including turn 3 regen and damage: 405
- - Let's run with that:
- B0 | $A4_1 | $A4_0 | Regen
- ----+-------+-------+-------
- 2 | $E2 | $C7 | 52
- 3 | $E2 | $BA | 51
- 4 | $E2 | $AD | 51
- 5 | $E2 | $A0 | 50
- 6 | $E2 | $93 | 49
- 7 | $E2 | $86 | 49
- 8 | $E2 | $79 | 48
- 9 | $E2 | $6C | 48
- 10 | $E2 | $5F | 47
- 11 | $E2 | $52 | 46
- 12 | $E2 | $45 | 46
- 13 | $E2 | $38 | 45
- 14 | $E2 | $2B | 44
- 15 | $E2 | $1E | 44
- 16 | $E2 | $11 | 55
- 17 | $E2 | $04 | 55
- Hydra turn 1:
- - Party max HP on entry: 114, 93, 90, 85
- - Hydra initial HP = whatever (if $A4_0 = $EC, then 435)
- - Hydra focus target = whatever
- - $6A68_0 = $C (B0 = 14), $A4_0 >= $EC (on entering Charlock B5)
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - $A4_1 = $A4_0 - $3B ($A4_0=$EC: $A4_1=$B1)
- - Probably need 2 Infermosts, so we can't expect to spend >9*B1
- - Table through Hydra action resolution: (odd $A4_0 = with WizRing use)
- (also including required $A4_end and offset)
- $A4_0 | $A4_1 | B1 | HydA1 |HydT1| HydA2 |HydT2|HyRes| End | Offset
- -------+-------+----+-------+-----+-------+-----+-----+-----+----------
- $EC | $B1 | 13 | $BE/A | $CB | $D8/B | $E5 | $46 | $38 | $F2=18+6
- $EE | $B3 | 15 | $C2/A | $D1 | $E0/B | $EF | $5A | $1E | $C4=13+1
- $F0 | $B5 | 17 | $C6/A | $D7 | $E8/B | $F9 | $6E | $04 | $96= 8+14
- $F2 | $B7 | 3 | $BA/A | $BD | $C0/A | double attack death
- $F4 | $B9 | 5 | $BE/A | $C3 | $C8/A | double attack death
- $F6 | $BB | 7 | $C2/A | $C9 | $D0/A | $D7 | $25 | $86 | $61=13+6
- $F8 | $BD | 9 | $C6/A | $CF | $D8/B | $E1 | $2E | $6C | $3E= 6+8
- $FA | $BF | 11 | $CA/A | $D5 | $E0/B | $EB | $42 | $52 | $10= 1+5
- $FB | $C0 | 12 | $CC/A | $D8 | $E4/B | $F0 | $4C | $45 | $F9=20+9
- $FC | $C1 | 13 | $CE/A | $DB | $E8/B | $F5 | $56 | $38 | $E2=17+5
- $FD | $C2 | 14 | $D0/A | $DE | $EC/B | $FA | $60 | $2B | $CB=14+7
- $FE | $C3 | 15 | $D2/A | $E1 | $F0/B | $FF | $6A | $1E | $B4=12+0
- $FF | $C4 | 16 | $D4/A | $E4 | $F4/B | $04 | $74 | $11 | $9D= 9+13
- $00 | $C5 | 17 | $D6/B | $E7 | $F8/B | $09 | $91 | $04 | $73= 6+13
- $01 | $C6 | 2 | $C8/A | $CA | $CC/A | double attack death
- $02 | $C7 | 3 | $CA/A | $CD | $D0/A | double attack death
- $03 | $C8 | 4 | $CC/A | $D0 | $D4/A | $D8 | $20 | $AD | $8D=35+1
- $04 | $C9 | 5 | $CE/A | $D3 | $D8/A | $DD | $27 | $A0 | $79=24+1
- $05 | $CA | 6 | $D0/A | $D6 | $DC/B | $E2 | $20 | $93 | $73=19+1
- $06 | $CB | 7 | $D2/A | $D9 | $E0/B | $E7 | $2A | $86 | $5C=13+1
- $07 | $CC | 8 | $D4/A | $DC | $E4/B | $EC | $34 | $79 | $45= 8+5
- $08 | $CD | 9 | $D6/B | $DF | $E8/B | $F1 | $39 | $6C | $33= 5+6
- $09 | $CE | 10 | $D8/B | $E2 | $EC/B | $F6 | $46 | $5F | $19= 2+5
- $0A | $CF | 11 | $DA/B | $E5 | $F0/B | $FB | $53 | $52 | $FF=23+2
- - Any chance we can use $FE?
- - Initial HP = 550 - ($0C-$16)*138/256 = 418, need just 64 damage
- - Need 12*B0
- - Healus + Healus + Infermost + IceBolt
- - No good, [Wz] is attacked and dies :(
- - Nothing usable, maybe we need to look a bit farther...
- $A4_0 | $A4_1 | B1 | HydA1 |HydT1| HydA2 |HydT2|HyRes| End | Offset
- -------+-------+----+-------+-----+-------+-----+-----+-----+----------
- $0B | $D0 | 12 | $DC/B | $E8 | $F4/B | $00 | $60 | $45 | $E5=19+1
- $0C | $D1 | 13 | $DE/B | $EB | $F8/B | $05 | $6D | $38 | $CB=15+8
- $0D | $D2 | 14 | $E0/B | $EE | $FC/B | $0A | $7A | $2B | $B1=12+9
- $0E | $D3 | 15 | $E2/B | $F1 | $00/B | $0F | $87 | $1E | $97=10+1
- $0F | $D4 | 16 | $E4/B | $F4 | $04/B | $14 | $94 | $11 | $7D= 7+13
- $10 | $D5 | 17 | $E6/B | $F7 | $08/B | $19 | $A1 | $04 | $63= 5+14
- $11 | $D6 | 2 | $D8/B | $DA | $DC/B | $DE | $EE | $C7 | $D9=108+1
- $12 | $D7 | 3 | $DA/B | $DD | $E0/B | $E3 | $FB | $BA | $BF=63+2
- $13 | $D8 | 4 | $DC/B | $E0 | $E4/B | $E8 | $08 | $AD | $A5=41+1
- $14 | $D9 | 5 | $DE/B | $E3 | $E8/B | $ED | $15 | $A0 | $8B=27+4
- $15 | $DA | 6 | $E0/B | $E6 | $EC/B | $F2 | $22 | $93 | $71=18+5
- $16 | $DB | 7 | $E2/B | $E9 | $F0/B | $F7 | $2F | $86 | $57=12+3
- $17 | $DC | 8 | $E4/B | $EC | $F4/B | $FC | $3C | $79 | $3D= 7+5
- $18 | $DD | 9 | $E6/B | $EF | $F8/B | $01 | $49 | $6C | $23= 3+8
- $19 | $DE | 10 | $E8/B | $F2 | $FC/B | $06 | $56 | $5F | $09= 0+9
- $1A | $DF | 11 | $EA/B | $F5 | $00/B | $0B | $63 | $52 | $EF=21+8
- $1B | $E0 | 12 | $EC/B | $F8 | $04/B | $10 | $70 | $45 | $D5=17+9
- $1C | $E1 | 13 | $EE/B | $FB | $08/B | $15 | $7D | $38 | $BB=14+5
- $1D | $E2 | 14 | $F0/B | $FE | $0C/B | $1A | $8A | $2B | $A1=11+7
- $1E | $E3 | 15 | $F2/B | $01 | $10/B | $1F | $97 | $1E | $87= 9+0
- $1F | $E4 | 16 | $F4/B | $04 | $14/B | $24 | $A4 | $11 | $6D= 6+13
- $20 | $E5 | 17 | $F6/B | $07 | $18/A | hero attack death
- $21 | $E6 | 2 | $E8/B | $EA | $EC/B | $EE | $FE | $C7 | $C9=100+1
- $22 | $E7 | 3 | $EA/B | $ED | $F0/B | $F3 | $0B | $BA | $AF=58+1
- $23 | $E8 | 4 | $EC/B | $F0 | $F4/B | $F8 | $18 | $AD | $95=37+1
- $24 | $E9 | 5 | $EE/B | $F3 | $F8/B | $FD | $25 | $A0 | $7B=24+3
- $25 | $EA | 6 | $F0/B | $F6 | $FC/B | $02 | $32 | $93 | $61=16+1
- $26 | $EB | 7 | $F2/B | $F9 | $00/B | $07 | $3F | $86 | $47=10+1
- $27 | $EC | 8 | $F4/B | $FC | $04/B | $0C | $4C | $79 | $2D= 5+5
- $28 | $ED | 9 | $F6/B | $FF | $08/B | $11 | $59 | $6C | $13= 2+1
- $29 | $EE | 10 | $F8/B | $02 | $0C/B | $16 | $66 | $5F | $F9=24+9
- $2A | $EF | 11 | $FA/B | $05 | $10/B | $1B | $73 | $52 | $DF=20+3
- - Can we use $A4_0 = $1E?
- - Initial HP = 550 - ($2C-$16)*138/256 = 539
- - Turn 2 regen = 44, subsequent damage-regen = 405, so need 178 damage
- - Need 9*B0
- - Healus + Infermost + IceBolt + Infermost?
- - Healus $A4: $B2
- - Infermost: $E2 = 107
- - IceBolt: $0F = 34
- - Infermost: $1E = 61
- - Total damage = 202
- - WE HAVE A SOLUTION!
- ... Wait, Hydra regen is 90-109, not 44-55 ...
- ========== Let's try again! ==========
- Hydra turn 4:
- - HP regen = 90 + multi_random(20)
- - Turn order:
- - Don't need [Wz] to act
- - $A4_0 + 4*B0 - 22 <= 255, $A4_0 + 6*B0 - 22 >= 256
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Level spam: +($53+B1)
- - Bomus preconditions:
- - $A4_map = $59 - 14*$6A68_1
- - $A4_end = $59 - 14*$6A68_1 - ($53+($6A68_1+2))
- - Infermost*3, Nx Heal on map: $A4_1 = $A4_end - (6+N)*B1
- - Can add 3*B1 with IceBolt (if [Wz] acts and Hydra HP allows),
- 2*B1 with Healus
- - Minimum N for valid $A4_1:
- B1 | $A4_end | N | $A4_1
- ----+---------+---+-------
- 2 | $04 | 1 | $F6
- 3 | $F5 | 4 | $E7
- 4 | $E6 | - | ---
- 5 | $D7 | 0 | $B9
- 6 | $C8 | 7 | $7A
- 7 | $B9 |12 | $3B
- 8 | $AA | - | ---
- 9 | $9B | 8 | $1D
- 10 | $8C | 5 | $1E
- 11 | $7D | 4 | $0F
- 12 | $6E | - | ---
- 13 | $5F | 0 | $11
- 14 | $50 | 3 | $D2
- 15 | $41 |12 | $33
- 16 | $32 | - | ---
- 17 | $23 | 8 | $35
- - To satisfy turn order:
- - $A4_1 - 1 - 9*B0 < 22, $A4_1 - 1 - 7*B0 >= 22
- - 9*B0 > $A4_1 - 23, 7*B0 <= $A4_1 - 23
- - Table:
- $A4_1 | B0_min | B0_max
- -------+--------+--------
- $F6 | 25 | 31
- $E7 | 24 | 29
- $B9 | 18 | 23
- $7A | 12 | 14
- $3B | 5 | 5
- $1D | 30 | 37
- $1E | 30 | 37
- $0F | 28 | 35
- $11 | 28 | 35
- $D2 | 21 | 26
- $33 | 4 | 4
- $35 | 4 | 4
- - Damage table:
- $A4_1 | B1 | 3*Infermost
- -------+----+-------------
- $7A | 6 | 90+ 91+ 93 = 274
- $3B | 7 | 76+ 78+ 80 = 234
- $33 | 15 | 84+ 87+ 91 = 262
- $35 | 17 | 87+ 91+ 95 = 273
- - Solutions:
- B0 | $A4_1 | $A4_0 | N | Wz? | Regen
- ----+-------+-------+----+-----+-------
- 4 | $33 | $FE | 12 | Y | 108
- 4 | $35 | $00 | 8 | Y | 108
- 5 | $3B | $F9 | 12 | Y | 108
- 12 | $7A | $DD | 7 | N | 106
- 13 | $7A | $D0 | 7 | Y | 105
- 14 | $7A | $C3 | 7 | Y | 104
- Hydra turn 3:
- - HP regen = 90 + multi_random(20)
- - Turn order: whatever (assume Hydra goes first)
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Let's aim for N <= 8 in turn 3 with [Wz] acting: 4/$35, 13/$D0, 14/$C3
- - 4/$35 is bad, magic will fail
- - Assuming 3*Infermost, pre-party $A4 is:
- B1 | $A4_end | $A4_party
- ----+---------+-----------
- 13 | $D0 | $A9
- 14 | $C3 | $99
- - How much party B1 needed to make it double breath?
- B1 | Max Breath2 | Breath1 | Target2 | Action2 | Target1 | Action1
- ----+-------------+---------+---------+---------+---------+---------
- 13 | $82 | $4E | $1A | $0D | $00 | $F3
- 14 | $8B | $53 | $1B | $0D | $FF | $F1
- - B1=13 needs 6*B1, B1=14 needs 4*B1
- - $A4_1 table:
- B1 | $A4_end | $A4_1
- ----+---------+-------
- 13 | $D0 | $E6 (off by +5)
- 14 | $C3 | $E3 (off by +1)
- - B1=13 is smack in the middle of the parity sequence :(
- - Would need additional 6*B1, which would push us out of double breath
- - Might make it as far as the $80-$9F breath space, but 12*B1 is too
- much for the party to handle
- - B1=14 has wrong parity, but maybe we can WizRing out of it?
- - Need WizRing + 3*B1
- - Can't get 3*B1 from 2 pilgrims
- - Let's assume we can keep [Wz] alive, then WizRing+Infermost*2+Firebal:
- $A4_party (Breath2) = $8A, Breath1 = $52, Target2 = $1A, Action2 = $0C,
- Target1 = $FE, Action1 = $F0, $A4_1 = $E2
- - Infermost damage = $98 (90), $B4 (93) = total 183
- - Might be 90+97 depending on turn order
- - Total damage including turn 3 regen and damage: 352
- - Let's run with that:
- B0 | $A4_1 | $A4_0 | Regen
- ----+-------+-------+-------
- 2 | $E2 | $C7 | 103
- 3 | $E2 | $BA | 103
- 4 | $E2 | $AD | 102
- 5 | $E2 | $A0 | 101
- 6 | $E2 | $93 | 100
- 7 | $E2 | $86 | 99
- 8 | $E2 | $79 | 98
- 9 | $E2 | $6C | 97
- 10 | $E2 | $5F | 96
- 11 | $E2 | $52 | 95
- 12 | $E2 | $45 | 94
- 13 | $E2 | $38 | 93
- 14 | $E2 | $2B | 92
- 15 | $E2 | $1E | 91
- 16 | $E2 | $11 | 90
- 17 | $E2 | $04 | 109
- Hydra turn 2:
- - HP regen = 90 + multi_random(20)
- - Turn order: whatever (assume Hydra goes first)
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Double breath: (n = number of party B1 units needed)
- B1 |$A4_end| n |Breath2|Breath1|Target2|Action2|Target1|Action1| $A4_1
- ----+-------+---+-------+-------+-------+-------+-------+-------+-------
- 2 | $C7 |<14| $C7 | $BF | $B7 | $B5 | $B3 | $B1 | $AF
- 3 | $BA |0-1| $BA | $AE | $A2 | $9F | $9C | $99 | $96
- 4 | $AD |29 | $39 | $29 | $19 | $15 | $11 | $0D | $09
- 5 | $A0 |15 | $41 | $2D | $19 | $14 | $0F | $0A | $05
- 6 | $93 |12 | $4B | $33 | $1B | $15 | $0F | $09 | $03
- 7 | $86 | 8+| $4E | $32 | $16 | $0F | $08 | $01 | $FA
- 8 | $79 | 4 | $59 | $39 | $19 | $11 | $09 | $01 | $F9
- 9 | $6C |1-5| $63 | $3F | $1B | $12 | $09 | $00 | $F7
- 10 | $5F |0-2| $5F | $37 | $0F | $05 | $FB | $F1 | $E7
- 11 | $52 | 0 | $52 | $26 | $FA | $EF | $E4 | $D9 | $CE
- 12 | $45 | 1 | $3D | $0D | $DD | $D1 | $C5 | $B9 | $AD
- 13 | $38 |14 | $82 | $4E | $1A | $0D | $00 | $F3 | $E6
- 14 | $2B |11 | $91 | $59 | $21 | $13 | $05 | $F7 | $E9
- 15 | $1E | 9 | $97 | $5B | $1F | $10 | $01 | $F2 | $E3
- 16 | $11 | 7 | $A1 | $61 | $21 | $11 | $01 | $F1 | $E1
- 17 | $04 | 6 | $9E | $5A | $16 | $05 | $04 | $F3 | $E2
- - Filtering to valid $A4_1: (* = requires WizRing use)
- B1 |$A4_end| n |Breath2|Breath1|Target2|Action2|Target1|Action1| $A4_1
- ----+-------+---+-------+-------+-------+-------+-------+-------+-------
- 2*| $C7 | 4 | $BE | $B6 | $AE | $AC | $AA | $A8 | $A6
- 2*| $C7 |12 | $AE | $A6 | $9E | $9C | $9A | $98 | $96
- 4*| $AD |29 | $38 | $28 | $18 | $14 | $10 | $0C | $08
- 4*| $AD |25 | $28 | $18 | $08 | $04 | $00 | $FC | $F8
- 4*| $AD |21 | $18 | $08 | $F8 | $F4 | $F0 | $EC | $E8
- 4*| $AD |17 | $08 | $F8 | $E8 | $E4 | $E0 | $DC | $D8
- 6*| $93 |16 | $32 | $1A | $02 | $FC | $F6 | $F0 | $EA
- 9*| $6C | 2 | $59 | $35 | $11 | $08 | $FF | $F6 | $ED
- 15 | $1E | 9 | $97 | $5B | $1F | $10 | $01 | $F2 | $E3
- - Assuming at least 2*Infermost:
- - 2/$A6: 2*Infermost + WizRing + Firebal (can't heal)
- - Infermost: $C0 = 99
- - Infermost: $C2 = 100
- - Next turn regen = 103
- - Total damage to end of battle: 352 + 199 - 103 = 448
- - But we can't heal so [Wz] will die next turn (if not this one)
- - 15/$E3: 2*Infermost + Healus + IceBolt
- - Healus: $A6, $B5, $C4, $D3
- - Infermost: $E2 = 107
- - IceBolt: $00 = 34
- - Infermost: $1E = 61
- - Next turn regen = 91
- - Total damage to end of battle: 352 + 202 - 91 = 463
- - B0 table:
- B0 | $A4_1 | $A4_0 | Regen
- ----+-------+-------+-------
- 2 | $A6 | $8B | 99
- 2 | $E3 | $C8 | 103
- 3 | $A6 | $7E | 98
- 3 | $E3 | $BB | 102
- 4 | $A6 | $71 | 97
- 4 | $E3 | $AE | 101
- 5 | $A6 | $64 | 96
- 5 | $E3 | $A1 | 100
- 6 | $A6 | $57 | 95
- 6 | $E3 | $94 | 99
- 7 | $A6 | $4A | 94
- 7 | $E3 | $87 | 98
- 8 | $A6 | $3D | 93
- 8 | $E3 | $7A | 97
- 9 | $A6 | $30 | 92
- 9 | $E3 | $6D | 96
- 10 | $A6 | $23 | 91
- 10 | $E3 | $60 | 95
- 11 | $A6 | $16 | 90
- 11 | $E3 | $53 | 94
- 12 | $A6 | $09 | 109
- 12 | $E3 | $46 | 93
- 13 | $A6 | $FC | 108
- 13 | $E3 | $39 | 92
- 14 | $A6 | $EF | 108
- 14 | $E3 | $2C | 91
- 15 | $A6 | $E2 | 107
- 15 | $E3 | $1F | 90
- 16 | $A6 | $D5 | 106
- 16 | $E3 | $12 | 109
- 17 | $A6 | $C8 | 105
- 17 | $E3 | $05 | 108
- Hydra turn 1:
- - Party max HP on entry: 114, 93, 90, 85
- - Hydra initial HP = whatever (if $A4_0 = $EC, then 435)
- - Hydra focus target = whatever
- - $6A68_0 = $C (B0 = 14), $A4_0 >= $EC (on entering Charlock B5)
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - $A4_1 = $A4_0 - $3B ($A4_0=$EC: $A4_1=$B1)
- - Probably need 2 Infermosts, so we can't expect to spend >9*B1
- - Need either [Wz] parry or a heal on [Wz]
- - Let's use $A4_2 = $E3 since that both gives more damage and allows Healus
- - Table through Hydra action resolution: (odd $A4_0 = with WizRing use)
- (also including required $A4_end and offset)
- $A4_0 | $A4_1 | B1 | HydA1 |HydT1| HydA2 |HydT2|HyRes| End | Offset
- -------+-------+----+-------+-----+-------+-----+-----+-----+----------
- $EC | $B1 | 13 | $BE/A | $CB | $D8/B | $E5 | $46 | $39 | $F3=18+7
- $EE | $B3 | 15 | $C2/A | $D1 | $E0/B | $EF | $5A | $1F | $C5=13+2
- $F0 | $B5 | 17 | $C6/A | $D7 | $E8/B | $F9 | $6E | $05 | $97= 8+15
- $F2 | $B7 | 3 | $BA/A | $BD | $C0/A | double attack death
- $F4 | $B9 | 5 | $BE/A | $C3 | $C8/A | double attack death
- $F6 | $BB | 7 | $C2/A | $C9 | $D0/A | $D7 | $25 | $87 | $62=14+0
- $F8 | $BD | 9 | $C6/A | $CF | $D8/B | $E1 | $2E | $6D | $3F= 7+0
- $FA | $BF | 11 | $CA/A | $D5 | $E0/B | $EB | $42 | $53 | $11= 1+6
- $FB | $C0 | 12 | $CC/A | $D8 | $E4/B | $F0 | $4C | $46 | $FA=20+10
- $FC | $C1 | 13 | $CE/A | $DB | $E8/B | $F5 | $56 | $39 | $E3=17+6
- $FD | $C2 | 14 | $D0/A | $DE | $EC/B | $FA | $60 | $2C | $CC=14+8
- $FE | $C3 | 15 | $D2/A | $E1 | $F0/B | $FF | $6A | $1F | $B5=12+1
- $FF | $C4 | 16 | $D4/A | $E4 | $F4/B | $04 | $74 | $12 | $9E= 9+14
- $00 | $C5 | 17 | $D6/B | $E7 | $F8/B | $09 | $91 | $05 | $74= 6+14
- $01 | $C6 | 2 | $C8/A | $CA | $CC/A | double attack death
- $02 | $C7 | 3 | $CA/A | $CD | $D0/A | double attack death
- $03 | $C8 | 4 | $CC/A | $D0 | $D4/A | $D8 | $20 | $AE | $8E=35+2
- $04 | $C9 | 5 | $CE/A | $D3 | $D8/A | $DD | $27 | $A1 | $7A=24+2
- $05 | $CA | 6 | $D0/A | $D6 | $DC/B | $E2 | $20 | $94 | $74=19+2
- $06 | $CB | 7 | $D2/A | $D9 | $E0/B | $E7 | $2A | $87 | $5D=13+2
- $07 | $CC | 8 | $D4/A | $DC | $E4/B | $EC | $34 | $7A | $46= 8+6
- $08 | $CD | 9 | $D6/B | $DF | $E8/B | $F1 | $39 | $6D | $34= 5+7
- $09 | $CE | 10 | $D8/B | $E2 | $EC/B | $F6 | $46 | $60 | $1A= 2+6
- $0A | $CF | 11 | $DA/B | $E5 | $F0/B | $FB | $53 | $53 | $00= 0+0
- - Can we use $A4_0 = $F8?
- - Initial HP = 550 - ($F8+14-$16)*138/256 = 421
- - Turn 2 regen = 96, subsequent damage-regen = 463, so need 42 damage
- - Need 7*B0
- - Healus + Parry + Blaze + Infermost
- - Infermost damage is automatically >= 60, so solved?
- - More stuff in case we need it...
- $A4_0 | $A4_1 | B1 | HydA1 |HydT1| HydA2 |HydT2|HyRes| End | Offset
- -------+-------+----+-------+-----+-------+-----+-----+-----+----------
- $0B | $D0 | 12 | $DC/B | $E8 | $F4/B | $00 | $60 | $46 | $E6=19+2
- $0C | $D1 | 13 | $DE/B | $EB | $F8/B | $05 | $6D | $39 | $CC=15+9
- $0D | $D2 | 14 | $E0/B | $EE | $FC/B | $0A | $7A | $2C | $B2=12+10
- $0E | $D3 | 15 | $E2/B | $F1 | $00/B | $0F | $87 | $1F | $98=10+2
- $0F | $D4 | 16 | $E4/B | $F4 | $04/B | $14 | $94 | $12 | $7E= 7+14
- $10 | $D5 | 17 | $E6/B | $F7 | $08/B | $19 | $A1 | $05 | $64= 5+15
- $11 | $D6 | 2 | $D8/B | $DA | $DC/B | $DE | $EE | $C8 | $DA=109+0
- $12 | $D7 | 3 | $DA/B | $DD | $E0/B | $E3 | $FB | $BB | $C0=64+0
- $13 | $D8 | 4 | $DC/B | $E0 | $E4/B | $E8 | $08 | $AE | $A6=41+2
- $14 | $D9 | 5 | $DE/B | $E3 | $E8/B | $ED | $15 | $A1 | $8C=28+0
- $15 | $DA | 6 | $E0/B | $E6 | $EC/B | $F2 | $22 | $94 | $72=19+0
- $16 | $DB | 7 | $E2/B | $E9 | $F0/B | $F7 | $2F | $87 | $58=12+4
- $17 | $DC | 8 | $E4/B | $EC | $F4/B | $FC | $3C | $7A | $3E= 7+6
- $18 | $DD | 9 | $E6/B | $EF | $F8/B | $01 | $49 | $6D | $24= 4+0
- $19 | $DE | 10 | $E8/B | $F2 | $FC/B | $06 | $56 | $60 | $0A= 1+0
- $1A | $DF | 11 | $EA/B | $F5 | $00/B | $0B | $63 | $53 | $F0=21+9
- $1B | $E0 | 12 | $EC/B | $F8 | $04/B | $10 | $70 | $46 | $D6=17+10
- $1C | $E1 | 13 | $EE/B | $FB | $08/B | $15 | $7D | $39 | $BC=14+6
- $1D | $E2 | 14 | $F0/B | $FE | $0C/B | $1A | $8A | $2C | $A2=11+8
- $1E | $E3 | 15 | $F2/B | $01 | $10/B | $1F | $97 | $1F | $88= 9+1
- $1F | $E4 | 16 | $F4/B | $04 | $14/B | $24 | $A4 | $12 | $6E= 6+14
- $20 | $E5 | 17 | $F6/B | $07 | $18/A | hero attack death
- $21 | $E6 | 2 | $E8/B | $EA | $EC/B | $EE | $FE | $C8 | $CA=101+0
- $22 | $E7 | 3 | $EA/B | $ED | $F0/B | $F3 | $0B | $BB | $B0=58+2
- $23 | $E8 | 4 | $EC/B | $F0 | $F4/B | $F8 | $18 | $AE | $96=37+2
- $24 | $E9 | 5 | $EE/B | $F3 | $F8/B | $FD | $25 | $A1 | $7C=24+4
- $25 | $EA | 6 | $F0/B | $F6 | $FC/B | $02 | $32 | $94 | $62=16+2
- $26 | $EB | 7 | $F2/B | $F9 | $00/B | $07 | $3F | $87 | $48=10+2
- $27 | $EC | 8 | $F4/B | $FC | $04/B | $0C | $4C | $7A | $2E= 5+6
- $28 | $ED | 9 | $F6/B | $FF | $08/B | $11 | $59 | $6D | $14= 2+2
- $29 | $EE | 10 | $F8/B | $02 | $0C/B | $16 | $66 | $60 | $FA=25+0
- $2A | $EF | 11 | $FA/B | $05 | $10/B | $1B | $73 | $53 | $E0=20+4
- - SOLVED! For real this time!
- ... Wait, turn 4 is assuming 2*B1 for Infermost ...
- and post-battle count 2 and map count 1 is missing ...
- ========== Let's try again! ========== (sigh)
- Hydra turn 4:
- - HP regen = 90 + multi_random(20)
- - Turn order:
- - Don't need [Wz] to act
- - $A4_0 + 4*B0 - 22 <= 255, $A4_0 + 6*B0 - 22 >= 256
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Level spam: +($53+B1)
- - Bomus preconditions:
- - $A4_map = $59 - 14*$6A68_1
- - $A4_end = $59 - 14*$6A68_1 - (2 + $53+($6A68_1+2) + 1)
- - Infermost*3, Nx Heal/WizRing (incl. Mx WizRing) on map:
- $A4_1 = $A4_end - (3+N)*B1 - M
- - Can add 3*B1 with IceBolt (if [Wz] acts and Hydra HP allows),
- 3*B1 with Healus
- - Minimum N/M for valid $A4_1:
- B1 | $A4_end | N | M | $A4_1
- ----+---------+---+---+-------
- 2 | $04 | 4 | 0 | $F6
- 3 | $F5 | 2 | 2 | $E7
- 4 | $E6 | 4 | 2 | $C8
- 5 | $D7 | 3 | 0 | $B9
- 6 | $C8 | 2 | 0 | $AA
- 7 | $B9 | 8 | 1 | $6B
- 8 | $AA | 6 | 6 | $5C
- 9 | $9B | 2 | 1 | $6D
- 10 | $8C | 0 | 0 | $6E
- 11 | $7D | 4 | 1 | $2F
- 12 | $6E | 2 | 2 | $30
- 13 | $5F | 3 | 0 | $11
- 14 | $50 | 6 | 0 | $D2
- 15 | $41 |15 | 0 | $33
- 16 | $32 |14 |14 | $44
- 17 | $23 | 6 | 5 | $85
- - To satisfy turn order:
- - $A4_1 - 1 - 9*B0 < 22, $A4_1 - 1 - 7*B0 >= 22
- - 9*B0 > $A4_1 - 23, 7*B0 <= $A4_1 - 23
- - Table:
- $A4_1 | B0_min | B0_max
- -------+--------+--------
- $F6 | 25 | 31
- $E7 | 24 | 29
- $C8 | 20 | 25
- $B9 | 18 | 23
- $AA | 17 | 21
- $6B | 10 | 12
- $5C | 8 | 9
- $1D | 30 | 37
- $6D | 10 | 12
- $6E | 10 | 12
- $2F | 3 | 3
- $30 | 3 | 3
- $11 | 28 | 35
- $D2 | 21 | 26
- $33 | 4 | 4
- $44 | 6 | 6
- $85 | 13 | 15
- - Damage table:
- $A4_1 | B1 | 3*Infermost
- -------+----+-------------
- $2F | 11 | 68+ 71+ 73 = 212
- $30 | 12 | 68+ 71+ 74 = 213
- $33 | 15 | 70+ 73+ 77 = 220
- $44 | 16 | 74+ 78+ 82 = 234
- $5C | 8 | 78+ 80+ 82 = 240
- $6B | 7 | 81+ 83+ 84 = 248
- $6D | 9 | 82+ 84+ 86 = 252
- $6E | 10 | 82+ 85+ 87 = 254
- $85 | 17 | 90+ 93+ 97 = 280
- $AA | 6 | 96+ 97+ 98 = 291
- - Solutions:
- B0 | $A4_1 | $A4_0 | N/M | Wz? | Regen
- ----+-------+-------+-----+-----+-------
- 3 | $2F | $07 | 4/1 | N | 109
- 3 | $30 | $08 | 2/2 | N | 109
- 4 | $33 | $FE |15/0 | Y | 108
- 6 | $44 | $F5 |14/14| Y | 107
- 8 | $5C | $F3 | 6/6 | N | 107
- 9 | $5C | $E6 | 6/6 | Y | 106
- 10 | $6D | $EA | 2/1 | N | 107
- 10 | $6E | $EB | 0/0 | N | 107
- 11 | $6D | $DD | 2/1 | Y | 106
- 11 | $6E | $DE | 0/0 | Y | 106
- 12 | $6D | $D0 | 2/1 | Y | 105
- 12 | $6E | $D1 | 0/0 | Y | 105
- 13 | $85 | $DB | 6/5 | N | 106
- 14 | $85 | $CE | 6/5 | Y | 105
- 15 | $85 | $C1 | 6/5 | Y | 104
- 17 | $AA | $CC | 2/0 | N | 102
- (aborted due to Zoma fix)
- [EVEN MORE OBSOLETE Appendix: Boss rush] (for $6A68 = 7 after Metal Babbles)
- Reverse turn order:
- - Zoma turn 2: 4 high Herb hits before Zoma acts
- - Zoma turn 1: low breath damage, possibly some Herb hits
- - Gonus turn 4: high damage
- - Gonus turn 3: high damage, Surround evade
- - Gonus turn 2: high damage, Surround evade
- - Gonus turn 1: high damage, Surround hit, Surround evade
- - Bomus turn 2: high damage before Bomus acts
- - Bomus turn 1: high damage
- - Hydra turn 2: high damage before Hydra acts
- - Hydra turn 1: high damage
- Let B0 = $6A68+2 at beginning of turn, B1 = $6A68+2 after party menu
- Zoma turn 2:
- - HP regen: 90 + multi_random(20)
- - Turn order: 22-6*B0 <= $A4_0 < 22-5*B0
- - B1-2 = ($A4_0+13*B0-21) & 15
- - Zoma actions: $A4 += 4*B1
- - High Herb hits: $A4_next2-22 <= 36 so $A4_next2 <= 58
- - 4 high Herb hits: $A4_0 + 13*B0+1 + 12*B1 <= 58
- - Max B0 (if B1 = 2):
- - 22-6*B0 <= $A4_0 < 22-5*B0
- - $A4_0 + 13*B0+1 + 24 <= 58 --> $A4_0 <= 33-13*B0
- - 22-6*B0 <= 33-13*B0 --> 7*B0 <= 11 --> no solutions :(
- - If we only need 1 herb, B0=2 $A4_0=11 gives B1=2 and damage=252
- *** How about letting Zoma go first with Freezing Wave?
- - Turn order: anything goes
- - B1-2 = ($A4_0+13*B0-21) & 15
- - For B1=2: B0=2 -> $A4_0=$xB; B0=3 -> $A4_0=$xE; etc.
- - Zoma actions - Freezing Wave: $A4_next-22 >= 224 so $A4_next >= 246
- - $A4_0 + 13*B0+1 + 1*B1 >= 246
- - $A4_0 + 13*B0+1 + 3*B1 <= 277 (21)
- - 4 high Herb hits: $A4_0 + 13*B0+1 + 12*B1 <= 58
- - Limits for B1: k + 1*B1 >= 246, k + 3*B1 <= 277, k + 12*B1 <= 314
- - k + 1*B1 >= 246 and k + 3*B1 <= 277 --> B1 < 16
- - k + 1*B1 >= 246 and k + 12*B1 <= 314 --> 11*B1 <= 68 --> B1 <= 6
- - k + 3*B1 <= 277 and k + 12*B1 <= 314 --> 9*B1 <= 37 --> B1 <= 4
- - Final: B1 <= 4
- - $A4_0 + 13*B0+1 + 1*B1 >= 246 --> $A4_0 >= 245 - 13*B0 - 1*B1
- - $A4_0 + 13*B0+1 + 3*B1 <= 277 --> $A4_0 <= 277 - 13*B0 - 3*B1
- - $A4_0 + 13*B0+1 + 13*B1 <= 314 --> $A4_0 <= 313 - 13*B0 - 13*B1
- - Table of valid $A4_0:
- B0 | $A4_0, B1=2 | $A4_0, B1=3 | $A4_0, B1=4 | Valid B1:$A4_0
- ----+-------------+-------------+-------------+-----------------
- 2 | $D9,$F5,$05 | $D8,$F2,$F8 | $D7,$EF,$EB | 2:DB,EB 3:DC,EC 4:DD
- 3 | $CC,$E8,$F8 | $CB,$E5,$EB | $CA,$E2,$DE | 2:CE,DE 3:CF,DF 4:D0
- 4 | $BF,$DB,$EB | $BE,$D8,$DE | $BD,$D5,$D1 | 2:C1,D1 3:C2,D2 4:C3
- etc.
- - For any $6A68_0, $A4_0 can be (in order of best to worst Herb damage):
- - $EC=236-13*$6A68_0 (236+241+246+252)
- - $DD=221-13*$6A68_0 (230+237+244+251)
- - $EB=235-13*$6A68_0 (229+232+235+239)
- - $DC=220-13*$6A68_0 (186+191+233+238)
- - $DB=219-13*$6A68_0 (178+181+185+188)
- - Solved!
- Zoma turn 1:
- - Party max HP on entry: 102+[0,8], 84+[0,4], 79+[0,4], 78+[0,4]
- - Initial HP and focus target: whatever (initial HP is constant anyway)
- - Turn order: whatever (Zoma speed = 255 and party speed < 65 so can't win)
- - B1-2 = ($A4_0+14*B0-21) & 15
- - Zoma breath damage: +1..4*B1
- - Zoma Snowstorm target: +5*B1 (whatever)
- - Zoma Snowstorm damage: +6..9*B1
- - Zoma status reset (Sphere of Light): +10,11*B1
- - [P2] herb damage: +13*B1
- - [Hr] herb damage & end of turn: +15*B1
- - Most important to keep breath damage down (100-139); Snowstorm 55-66 is meh
- (and cut by equipment)
- - [Wz] must parry (no herb) (other party members use Parry bug)
- - Assuming Snowstorm=45 (parry=22), max allowable breath damage is on
- [P2]: 56*2+1=113 ([Wz] has Water Flying Cloth and is safe)
- - Thus 0 <= $A4_end - 8*B1 <= 89
- - Also need to consider wraparound:
- - 0 <= $A4_end - 9*B1 <= 121
- - Hero is prooooobably okay? (damage reduction)
- - Wait, hero can't parry... CRAP
- - 110+ damage on required seed
- - Well, wait, we can just Revive... but 1 herb is not enough to
- outdamage HP regen... sigh
- ========== Let's try again! ==========
- Zoma turn 1:
- - As above, Revive hero; [Hr] can act as needed to consume RNG output
- - Let N = number of multi-randoms consumed by [Hr]
- - Optimal end state into turn 2: $A4_end = 236 - 13*(B1-2) = 262 - 13*B1
- - Breath reqs:
- - 0 <= $A4_end - (8+N)*B1 <= 89
- - 0 <= $A4_end - (9+N)*B1 <= 121 (always true unless wraparound)
- - Table for optimal $A4_end: (middle columns are N=0,1,2,5)
- B1 | $A4_end | -11*B1 | -12*B1 | -13*B1 | -16*B1 | Solutions
- ----+---------+--------+--------+--------+--------+-----------
- 5 | 197=$C5 | 142=8E | 137=89 | 132=84 | 117=75 | ---
- 6 | 184=$B8 | 118=76 | 112=70 | 106=6A | 88=58 | ---
- 7 | 171=$AB | 94=5E | 87=57 | 80=50 | 59=3B | 59=$3B
- 8 | 158=$9E | 70=46 | 62=3E | 54=36 | 30=1E | ---
- 9 | 145=$91 | 46=2E | 37=25 | 28=1C | 1=01 | ---
- - $A4_0 = $A4_end - (11+N)*B1 - (14*B0+1) -- for $A4_end=171, B1=7, N=5:
- - $A4_0 = 171 - 16*7 - 14*B0 - 1
- - $A4_0 = 58 - 14*B0
- - Keep $A4_0 >= 22 or <= 21-B0*6 so party turn order isn't inverted
- - Possible values:
- - $A4_0 = 30, $6A68_0 = $0
- - $A4_0 = 202, $6A68_0 = $6
- - $A4_0 = 188, $6A68_0 = $7
- - $A4_0 = 174, $6A68_0 = $8
- - ...
- - $A4_0 = 76, $6A68_0 = $F
- Zoma turn 2:
- - As above, $A4 = 236 - 13*$6A68 on entry
- - $A4_end = $A4_0 + 13*B0+1 + 13*B1 = 236 + 13*2+1 + 13*3 = 302 = 46
- - B1 = 3
- Zoma turn 3:
- - $6A68_0 = 1 (B0 = 3), $A4_0 = 46
- - HP regen = 90 + (46+3-22)*20/256 = 92
- - After turn order, $A4 = 85
- - B1 = 2 + ((86-22) & 15) = 2
- - Zoma actions: Attack [Hr] x 2
- - Trivially solved! [Hr] will die, but who cares
- - Herb users are [P1] and [Wz]
- Gonus turn 3:
- - $6A68 at end (for Zoma) can be anything except 4, 5, or 6
- - We get $E from $A4_1 = $94
- - Battle stops after Blazemore + Infermost with $A4_end = 228+2
- - Level-up: $A4_lvup = $A4_end + 100 = 74
- - Required $A4_0 for Zoma 1 is 90
- - OH NO! Map load puts us 1 step too far ahead, diff is only 15 so we
- can't heal to the target
- - How about attacking?
- - B1 = 16, evade = 0, so each attack is effectively 5 multi_randoms
- - Remaining HP is 142, so need at least one Blazemore or Infermost
- - Options:
- - Blazemore+Infermost = 3 = -15 (original result)
- - Infermost+Infermost = 2 = -31
- - Infermost+Attack = 6 = -223
- - Blazemore+Attack = 7 = -209
- - Infermost+Attack*2 = 11 = -143
- - Blazemore+Attack*2 = 12 = -129
- - Infermost+Attack*3 = 16 = -65
- - Blazemore+Attack*3 = 17 = -47
- - Our only options are adding +16 or +17, ie +0 or +1 mod 16, and
- no matter what we do we need to get up to +15 mod 16
- - Guess the only option is to go back to the last map...
- - ... but we can't do that either because it resets the battles!!
- ARGH!!
- - Well, hang on a sec... we don't necessarily need max damage from
- round 3, just enough to win the battle (and Surround is irrelevant)
- - Postponed until we figure out how much healing we need after Bomus
- Gonus turn 2-3:
- - HP regen = 44 + multi_random(12)
- - Turn order = whatever
- - $A4_1 = ($A4_0 + 13*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - [P1] Infermost damage: $A4_1 + 3*B1
- - [Wz] Blazemore damage: $A4_1 + 5*B1
- - [P2] Infermost damage: $A4_1 + 6*B1
- - [Hr] Infermost damage: $A4_1 + 7*B1
- - Gonus standard evade check: $A4 + 7*B1 + 32 + 1*B1
- - Gonus Surround evade check: $A4 + 7*B1 + 32 + 2*B1 (= $A4_end)
- - [Hr] damage: $A4_1 + 7*B1 - 22 <= 255 --> $A4_1 <= 277 - 7*B1
- - Evade: $A4_1 + 9*B1 + 32 - 22 >= 256 --> $A4_1 >= 246 - 9*B1
- - Table:
- B1 | $A4_1 range | Valid $A4_1 | $A4_end | $A4_2
- ----+---------------+---------------+---------------+--------------
- 2 | 228/E4-263/07 | $E6, $F6, $06 | $18, $28, $38 | $33, $43, $53
- 3 | 219/DB-256/00 | $E7, $F7 | $22, $32 | $4A, $5A
- 4 | 210/D2-249/F9 | $D8, $E8, $F8 | $1C, $2C, $3C | $51, $61, $71
- 5 | 201/C9-242/F2 | $C9, $D9, $E9 | $16, $26, $36 | $58, $68, $78
- 6 | 192/C0-235/EB | $CA, $DA, $EA | $20, $30, $40 | $6F, $7F, $8F
- 7 | 183/B7-228/E4 | $BB, $CB, $DB | $1A, $2A, $3A | $76, $86, $96
- 8 | 174/AE-221/DD | $BC, $CC, $DC | $24, $34, $44 | $8D, $9D, $AD
- 9 | 165/A5-214/D6 | $AD, $BD, $CD | $1E, $2E, $3E | $94, $A4, $B4
- 10 | 156/9C-207/CF | $9E ... $CE | $18 ... $48 | $9B ... $CB
- 11 | 147/93-200/C8 | $9F, $AF, $BF | $22, $32, $42 | $B2, $C2, $D2
- 12 | 138/8A-193/C1 | $90 ... $C0 | $1C ... $4C | $B9 ... $E9
- 13 | 129/81-186/BA | $81 ... $B1 | $16 ... $46 | $C0 ... $F0
- 14 | 120/78-179/B3 | $82 ... $B2 | $20 ... $50 | $D7 ... $07
- 15 | 111/6F-172/AC | $73 ... $A3 | $1A ... $4A | $DE ... $0E
- 16 | 102/66-165/A5 | $74 ... $A4 | $24 ... $54 | $F5 ... $25
- 17 | 93/5D-158/9E | $65 ... $95 | $1E ... $4E | $FC ... $2C
- - Any cyclable inputs?
- - No, because of odd/even flip
- - Any sequences?
- - $A4_1 / $A4_2 matches: $94, $A4, $AD, $B2, $BB, $C0, $C9, $CB,
- $D9, $E7, $E9, $F7
- - Including turn 1: $A4, $AD, $BB, $CB, $D9, $E9, $F7
- - Sequences: $AD -> $94, $C0 -> $E9
- Gonus turn 1:
- - Party max HP on entry: 102+[0,4], 84+[0,4], 79+[0,4], 78+[0,4]
- - Turn order = whatever (Gonus speed is 0 so always goes last)
- - Surround resistance is 70% so RNG output must be >=179 for it to hit
- - $A4_1 = ($A4_0 + 14*B0 + 1); B1 = 2 + (($A4_1 - 22) & 15)
- - Gonus action = multi_random() // always Attack
- - Gonus target = ubound(multi_random()/63, 3)
- - [P1] Surround check: $A4_1 + 3*B1
- - [Wz] Blazemore damage: $A4_1 + 5*B1
- - [P2] Infermost damage: $A4_1 + 6*B1
- - [Hr] Infermost damage: $A4_1 + 7*B1
- - Gonus standard evade check: $A4 + 7*B1 + 32 + 1*B1
- - Gonus Surround evade check: $A4 + 7*B1 + 32 + 2*B1 (= $A4_end)
- - Surround: $A4_1 + 3*B1 - 22 >= 179 --> $A4_1 >= 201 - 3*B1
- - [Hr] damage: $A4_1 + 7*B1 - 22 <= 255 --> $A4_1 <= 277 - 7*B1
- - Evade: $A4_1 + 9*B1 + 32 - 22 >= 256 --> $A4_1 >= 246 - 9*B1
- - Table:
- B1 | $A4_1 range | Valid $A4_1 | $A4_end | $A4_2
- ----+---------------+---------------+---------------+--------------
- 2 | 228/E4-263/07 | $E6, $F6, $06 | $18, $28, $38 | $33, $43, $53
- 3 | 219/DB-256/00 | $E7, $F7 | $22, $32 | $4A, $5A
- 4 | 210/D2-249/F9 | $D8, $E8, $F8 | $1C, $2C, $3C | $51, $61, $71
- 5 | 201/C9-242/F2 | $C9, $D9, $E9 | $16, $26, $36 | $58, $68, $78
- 6 | 192/C0-235/EB | $CA, $DA, $EA | $20, $30, $40 | $6F, $7F, $8F
- 7 | 183/B7-228/E4 | $BB, $CB, $DB | $1A, $2A, $3A | $76, $86, $96
- 8 | 177/B1-221/DD | $BC, $CC, $DC | $24, $34, $44 | $8D, $9D, $AD
- 9 | 174/AE-214/D6 | $BD, $CD | $2E, $3E | $A4, $B4
- 10 | 171/AB-207/CF | $AE, $BE, $CE | $28, $38, $48 | $AB, $BB, $CB
- 11 | 168/A8-200/C8 | $AF, $BF | $32, $42 | $C2, $D2
- 12 | 165/A5-193/C1 | $B0, $C0 | $3C, $4C | $D9, $E9
- 13 | 162/A2-186/BA | $B1 | $46 | $F0
- 14 | 159/9F-179/B3 | $A2, $B2 | $40, $50 | $F7, $07
- 15 | 156/9C-172/AC | $A3 | $4A | $0E
- 16 | 153/99-165/A5 | $A4 | $54 | $25
- 17 | 150/96-158/9E | (none) | (none) | (none)
- - For turn 2, $A4_2 must be one of: $A4, $AD, $BB, $CB, $D9, $E9, $F7
- - So $A4_1 must be one of (resp) $BD, $DC, $BE, $CE, $B0, $C0, $A2
- - Solved! $DC -> $AD -> $94 ^W^W^W^W^W^W Postponed, see above
- Bomus turn 2:
- Bomus turn 1:
- - Party max HP on entry: 102+[0,4], 84, 79, 78
- Hydra turn 2:
- Hydra turn 1:
- - Party max HP on entry: 102, 84, 79, 78
- - $6A68_0 = $C (B0 = 14), $A4_0 >= $EC (on entering Charlock B5)
Add Comment
Please, Sign In to add comment