Guest User

Untitled

a guest
Jun 18th, 2018
73
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.06 KB | None | 0 0
  1.  
  2. \documentclass{article}
  3. \usepackage{graphicx}
  4. \begin{document}
  5.  
  6. \begin{flushright}
  7. Alex Bliskovsky\\
  8. Jacobs 4\\
  9. \end{flushright}
  10.  
  11. \section{Experimental Design}
  12.  
  13. The purpose of this lab was calculate the weight of an object using two spring scales which support the object at two angles.
  14.  
  15. \noindent
  16. We used the following equipment:
  17.  
  18. \begin{enumerate}
  19. \item
  20. An Unknown Weight
  21. \item
  22. Two or Three Spring Scales
  23. \item
  24. String
  25. \item
  26. Meter Stick
  27. \end{enumerate}
  28.  
  29. \begin{figure}[here]
  30. \includegraphics[scale=0.55]{Coke_Bottle_Weights}
  31. \caption{$\triangle ABC$ is formed with $\overline{AC}$ and $\overline{AB}$ as the strings with spring scales and $\overline{CB}$ as the ceiling.}
  32. \label{Setup}
  33. \end{figure}
  34.  
  35.  
  36.  
  37. \section{Observations}
  38.  
  39. \begin{tabular}{|l|l|}
  40. \hline
  41. \multicolumn{2}{|c|}{Measurements}\\
  42. \hline
  43. Component & Measurement\\
  44. \hline
  45. $h$ & 1.15 m \\
  46. $\overline{CB}$ & Unmeasured \\
  47. $\overline{CA}$ & 1.3 m \\
  48. $\overline{AB}$ & 1.86 m \\
  49. $T_1$ & 1.7 N\\
  50. $T_2$ & 1.1 N\\
  51. \hline
  52. \end{tabular}
  53. \section{Analysis}
  54.  
  55. Because the object was at rest, we knew that the sum of the forces on the object was zero. This means that $T_1 + T_2 + mg = 0$, and by algebra $T_1 + T_2 = -mg$. If our measurements are accurate, $T_{1_{horizontal}} + T_{2_{horizontal}} = 0$, because the tensions are the only things acting on the object in the horizontal direction. Calculating the components of $T$ is simple trigonometry. To calculate the components, we need a few angles.
  56.  
  57. \noindent
  58. First, let point $X$ be defined as the point where $\overline{CB}$ and $\overline{T_1+T_2}$ intersect.
  59.  
  60. \[\angle CAX = \arccos{(\frac{h}{\overline{CA}})} = \theta_1\]
  61. \[\angle XAB = \arccos{(\frac{h}{\overline{AB}})} = \theta_2\]
  62.  
  63. Next, we can calculate the vertical components of $T$:
  64.  
  65. \[T_{1_v} = T_1 \cos{\theta_1}\]
  66. \[T_{2_v} = T_2 \cos{\theta_2}\]
  67.  
  68. Because we know that $T_{1_h} + T_{2_h} = 0$, we don't need to calculate their components. As proven:
  69. \[T_{1_v} + T_{2_v} = T_1 + T_2 = -mg\]
  70.  
  71.  
  72.  
  73. \section{Error Analysis}
  74. \subsection{Sources of Error}
  75.  
  76.  
  77. \subsection{Significant Digits}
  78.  
  79. \section{Results}
  80.  
  81. \end{document}
Add Comment
Please, Sign In to add comment