Advertisement
Guest User

Untitled

a guest
Nov 11th, 2019
203
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.13 KB | None | 0 0
  1. Theorem “Relation inclusion”:
  2. R ⊆ S ≡ (∀ x • ∀ y ❙ x ⦗ R ⦘ y • x ⦗ S ⦘ y)
  3. Proof:
  4. R ⊆ S ≡ (∀ x • ∀ y ❙ x ⦗ R ⦘ y • x ⦗ S ⦘ y)
  5. =⟨ “Trading for ∀”⟩
  6. R ⊆ S ≡ (∀ x • ∀ y • x ⦗ R ⦘ y ⇒ x ⦗ S ⦘ y)
  7. =⟨ “Relation inclusion”⟩
  8. true
  9.  
  10.  
  11.  
  12. Theorem “Relation inclusion”:
  13. R ⊆ S ≡ (∀ x, y ❙ x ⦗ R ⦘ y • x ⦗ S ⦘ y)
  14. Proof:
  15. R ⊆ S ≡ (∀ x, y ❙ x ⦗ R ⦘ y • x ⦗ S ⦘ y)
  16. =⟨ “Nesting for ∀”⟩
  17. R ⊆ S ≡ (∀ x • ∀ y ❙ x ⦗ R ⦘ y • x ⦗ S ⦘ y)
  18. =⟨ “Relation inclusion”⟩
  19. true
  20.  
  21.  
  22. Theorem “Empty relation”: a ⦗ {} ⦘ b ≡ false
  23. Proof:
  24. a ⦗ {} ⦘ b
  25. =⟨ “Definition of `_⦗_⦘_`”⟩
  26. ⟨ a , b ⟩ ∈ {}
  27. =⟨ “Empty set” ⟩
  28. false
  29.  
  30. Lemma “Singleton relation”:
  31. a₁ ⦗ { ⟨ a₂ , b₂ ⟩ } ⦘ b₁ ≡ a₁ = a₂ ∧ b₁ = b₂
  32. Proof:
  33. a₁ ⦗ { ⟨ a₂ , b₂ ⟩ } ⦘ b₁ ≡ a₁ = a₂ ∧ b₁ = b₂
  34. =⟨ “Definition of `_⦗_⦘_`”⟩
  35. ⟨ a₁, b₁ ⟩ ∈ { ⟨ a₂ , b₂ ⟩ } ≡ a₁ = a₂ ∧ b₁ = b₂
  36. =⟨ “Pair equality”⟩
  37. ⟨ a₁, b₁ ⟩ ∈ { ⟨ a₂ , b₂ ⟩ } ≡ ⟨a₁, b₁⟩ = ⟨ a₂, b₂⟩
  38. =⟨ “Singleton set membership”⟩
  39. ⟨ a₁, b₁ ⟩ ∈ { ⟨ a₂ , b₂ ⟩ } ≡ ⟨a₁, b₁⟩ ∈ {⟨ a₂, b₂⟩}
  40. =⟨ “Reflexivity of ≡”⟩
  41. true
  42.  
  43. Lemma “Singleton relation inclusion”:
  44. { ⟨ a , b ⟩ } ⊆ R ≡ a ⦗ R ⦘ b
  45. Proof:
  46. a ⦗ R ⦘ b
  47. =⟨ “Definition of `_⦗_⦘_`”⟩
  48. ⟨ a, b ⟩ ∈ R
  49. =⟨ “Singleton set inclusion”⟩
  50. { ⟨ a , b ⟩ } ⊆ R
  51.  
  52.  
  53. Theorem “Relation complement”: a ⦗ ~ R ⦘ b ≡ ¬ (a ⦗ R ⦘ b)
  54. Proof:
  55. a ⦗ ~ R ⦘ b
  56. =⟨ “Definition of `_⦗_⦘_`”⟩
  57. ⟨ a, b ⟩ ∈ ~ R
  58. =⟨ “Complement”⟩
  59. ¬ (⟨ a, b ⟩ ∈ R)
  60. =⟨ “Definition of `_⦗_⦘_`”⟩
  61. ¬ (a ⦗ R ⦘ b)
  62.  
  63.  
  64. Theorem “Relation union”:
  65. a ⦗ R ∪ S ⦘ b ≡ a ⦗ R ⦘ b ∨ a ⦗ S ⦘ b
  66. Proof:
  67. a ⦗ R ∪ S ⦘ b
  68. =⟨ “Definition of `_⦗_⦘_`”⟩
  69. ⟨ a, b ⟩ ∈ R ∪ S
  70. =⟨ “Union”⟩
  71. ⟨ a, b ⟩ ∈ R ∨ ⟨ a, b ⟩ ∈ S
  72. =⟨ “Definition of `_⦗_⦘_`”⟩
  73. a ⦗ R ⦘ b ∨ a ⦗ S ⦘ b
  74.  
  75.  
  76.  
  77. Theorem “Relation intersection”: a ⦗ R ∩ S ⦘ b ≡ a ⦗ R ⦘ b ∧ a ⦗ S ⦘ b
  78. Proof:
  79. a ⦗ R ∩ S ⦘ b
  80. =⟨ “Definition of `_⦗_⦘_`”⟩
  81. ⟨ a, b⟩ ∈ R ∩ S
  82. =⟨ “Intersection”⟩
  83. ⟨ a, b⟩ ∈ R ∧ ⟨ a, b⟩ ∈ S
  84. =⟨ “Definition of `_⦗_⦘_`”⟩
  85. a ⦗ R ⦘ b ∧ a ⦗ S ⦘ b
  86.  
  87.  
  88. Theorem “Relation difference”: a ⦗ R - S ⦘ b ≡ a ⦗ R ⦘ b ∧ ¬ (a ⦗ S ⦘ b)
  89. Proof:
  90. a ⦗ R - S ⦘ b
  91. =⟨ “Definition of `_⦗_⦘_`”⟩
  92. ⟨ a, b ⟩ ∈ R - S
  93. =⟨ “Set difference”⟩
  94. ⟨ a, b ⟩ ∈ R ∧ ¬ (⟨ a, b ⟩ ∈ S)
  95. =⟨ “Definition of `_⦗_⦘_`”⟩
  96. a ⦗ R ⦘ b ∧ ¬ (a ⦗ S ⦘ b)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement