Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- *******************************************************************************
- Revised: July 31, 2013 Moon / (Earth) 301
- GEOPHYSICAL DATA (updated 2018-Aug-15):
- Vol. mean radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349
- Radius (gravity), km = 1738.0 Surface emissivity = 0.92
- Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066
- Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001
- V(1,0) = +0.21 Surface accel., m/s^2 = 1.62
- Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km
- Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km
- Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 Mean angular diameter = 31'05.2"
- Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Sid. rot. rate, rad/s = 0.0000026617
- Geometric Albedo = 0.12 Mean solar day = 29.5306 d
- Obliquity to orbit = 6.67 deg Orbit period = 27.321582 d
- Semi-major axis, a = 384400 km Eccentricity = 0.05490
- Mean motion, rad/s = 2.6616995x10^-6 Inclination = 5.145 deg
- Apsidal period = 3231.50 d Nodal period = 6798.38 d
- Perihelion Aphelion Mean
- Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7
- Maximum Planetary IR (W/m^2) 1314 1226 1268
- Minimum Planetary IR (W/m^2) 5.2 5.2 5.2
- ********************************************************************************
- *******************************************************************************
- Ephemeris / WWW_USER Fri Sep 29 12:13:59 2023 Pasadena, USA / Horizons
- *******************************************************************************
- Target body name: Moon (301) {source: DE441}
- Center body name: Earth (399) {source: DE441}
- Center-site name: Heaven on Earth Observatory, Mayhill
- *******************************************************************************
- Start time : A.D. 2023-Sep-28 00:00:00.0000 TDB
- Stop time : A.D. 2023-Oct-01 00:00:00.0000 TDB
- Step-size : 1440 minutes
- *******************************************************************************
- Center geodetic : 254.471, 32.9035384, 2.23607 {E-lon(deg),Lat(deg),Alt(km)}
- Center cylindric: 254.471, 5362.17112, 3446.19639 {E-lon(deg),Dxy(km),Dz(km)}
- Center pole/equ : ITRF93 {East-longitude positive}
- Center radii : 6378.137, 6378.137, 6356.752 km {Equator_a, b, pole_c}
- Output units : KM-S
- Calendar mode : Mixed Julian/Gregorian
- Output type : GEOMETRIC cartesian states
- Output format : 3 (position, velocity, LT, range, range-rate)
- EOP file : eop.230927.p231221
- EOP coverage : DATA-BASED 1962-JAN-20 TO 2023-SEP-27. PREDICTS-> 2023-DEC-20
- Reference frame : Ecliptic of J2000.0
- *******************************************************************************
- JDTDB
- X Y Z
- VX VY VZ
- LT RG RR
- *******************************************************************************
- $$SOE
- 2460215.500000000 = A.D. 2023-Sep-28 00:00:00.0000 TDB
- X = 3.470705658033574E+05 Y =-9.265520886744432E+04 Z =-2.653599067380910E+04
- VX=-9.011403192706635E-02 VY= 1.110259691085033E+00 VZ= 5.115987924302562E-02
- LT= 1.201512151373686E+00 RG= 3.602042811771854E+05 RR=-3.761888927526311E-01
- 2460216.500000000 = A.D. 2023-Sep-29 00:00:00.0000 TDB
- X = 3.612178246289230E+05 Y = 2.175102251481885E+02 Z =-1.933391485093577E+04
- VX=-3.538761876322111E-01 VY= 1.141964183533681E+00 VZ= 6.712048003763832E-02
- LT= 1.206617868501206E+00 RG= 3.617349366646974E+05 RR=-3.562710879736578E-01
- 2460217.500000000 = A.D. 2023-Sep-30 00:00:00.0000 TDB
- X = 3.525900479296140E+05 Y = 9.334101334405206E+04 Z =-1.122942013890661E+04
- VX=-6.159050044487818E-01 VY= 1.104174316562248E+00 VZ= 7.721989291731685E-02
- LT= 1.217204527827483E+00 RG= 3.649087372861304E+05 RR=-3.150496228123838E-01
- 2460218.500000000 = A.D. 2023-Oct-01 00:00:00.0000 TDB
- X = 3.221837310026606E+05 Y = 1.808849216335789E+05 Z =-2.748397019656826E+03
- VX=-8.568131300802702E-01 VY= 1.002000203732668E+00 VZ= 8.112992260778490E-02
- LT= 1.232514886108716E+00 RG= 3.694986672281219E+05 RR=-2.571795472029340E-01
- $$EOE
- *******************************************************************************
- TIME
- Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
- continuous coordinate time is equivalent to the relativistic proper time
- of a clock at rest in a reference frame co-moving with the solar system
- barycenter but outside the system's gravity well. It is the independent
- variable in the solar system relativistic equations of motion.
- TDB runs at a uniform rate of one SI second per second and is independent
- of irregularities in Earth's rotation.
- CALENDAR SYSTEM
- Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
- (if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
- are in the Julian calendar system, which is automatically extended for dates
- prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
- matching historical dates. The Gregorian calendar more accurately corresponds
- to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
- available if such physical events are the primary interest.
- REFERENCE FRAME AND COORDINATES
- Ecliptic at the standard reference epoch
- Reference epoch: J2000.0
- X-Y plane: adopted Earth orbital plane at the reference epoch
- Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
- X-axis : ICRF
- Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
- of Earth's north pole at the reference epoch.
- Symbol meaning:
- JDTDB Julian Day Number, Barycentric Dynamical Time
- X X-component of position vector (km)
- Y Y-component of position vector (km)
- Z Z-component of position vector (km)
- VX X-component of velocity vector (km/sec)
- VY Y-component of velocity vector (km/sec)
- VZ Z-component of velocity vector (km/sec)
- LT One-way down-leg Newtonian light-time (sec)
- RG Range; distance from coordinate center (km)
- RR Range-rate; radial velocity wrt coord. center (km/sec)
- ABERRATIONS AND CORRECTIONS
- updated the code a bit but the result is not what i expected as i was looking to find the NN in aries and its way way off
- import math
- def calculate_longitude_of_ascending_node(h_x, h_y, h_z):
- # Calculate the magnitude of the specific relative angular momentum vector (|h|)
- h_magnitude = math.sqrt(h_x**2 + h_y**2 + h_z**2)
- # Calculate the unit vector n using the cross product of r and v
- n_x = h_y * h_z
- n_y = -h_x * h_z
- n_z = h_x**2 + h_y**2
- # Calculate the longitude of the ascending node (Ω) in radians
- omega = math.atan2(n_y, n_x)
- if omega < 0:
- omega += 2 * math.pi
- # Convert Ω from radians to degrees, minutes, and seconds
- omega_deg = math.degrees(omega)
- omega_deg_int = int(omega_deg)
- omega_min = (omega_deg - omega_deg_int) * 60
- omega_min_int = int(omega_min)
- omega_sec = (omega_min - omega_min_int) * 60
- return omega_deg_int, omega_min_int, omega_sec
- # Example usage:
- # Use the provided position data
- x = 3.470705658033574E+05
- y = -9.265520886744432E+04
- z = -2.653599067380910E+04
- vx = -9.011403192706635E-02
- vy = 1.110259691085033E+00
- vz = 5.115987924302562E-02
- # Calculate h_x, h_y, h_z by taking the cross product of r and v
- h_x = y * vz - z * vy
- h_y = z * vx - x * vz
- h_z = x * vy - y * vx
- # Calculate the longitude of the ascending node in DMS
- longitude_deg, longitude_min, longitude_sec = calculate_longitude_of_ascending_node(h_x, h_y, h_z)
- print(f"Longitude of Ascending Node (Ω): {longitude_deg}° {longitude_min}' {longitude_sec:.2f}\"")
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement