Advertisement
Guest User

Untitled

a guest
Sep 29th, 2023
122
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 8.08 KB | None | 0 0
  1. *******************************************************************************
  2. Revised: July 31, 2013 Moon / (Earth) 301
  3.  
  4. GEOPHYSICAL DATA (updated 2018-Aug-15):
  5. Vol. mean radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349
  6. Radius (gravity), km = 1738.0 Surface emissivity = 0.92
  7. Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066
  8. Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001
  9. V(1,0) = +0.21 Surface accel., m/s^2 = 1.62
  10. Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km
  11. Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km
  12. Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 Mean angular diameter = 31'05.2"
  13. Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Sid. rot. rate, rad/s = 0.0000026617
  14. Geometric Albedo = 0.12 Mean solar day = 29.5306 d
  15. Obliquity to orbit = 6.67 deg Orbit period = 27.321582 d
  16. Semi-major axis, a = 384400 km Eccentricity = 0.05490
  17. Mean motion, rad/s = 2.6616995x10^-6 Inclination = 5.145 deg
  18. Apsidal period = 3231.50 d Nodal period = 6798.38 d
  19. Perihelion Aphelion Mean
  20. Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7
  21. Maximum Planetary IR (W/m^2) 1314 1226 1268
  22. Minimum Planetary IR (W/m^2) 5.2 5.2 5.2
  23. ********************************************************************************
  24.  
  25.  
  26. *******************************************************************************
  27. Ephemeris / WWW_USER Fri Sep 29 12:13:59 2023 Pasadena, USA / Horizons
  28. *******************************************************************************
  29. Target body name: Moon (301) {source: DE441}
  30. Center body name: Earth (399) {source: DE441}
  31. Center-site name: Heaven on Earth Observatory, Mayhill
  32. *******************************************************************************
  33. Start time : A.D. 2023-Sep-28 00:00:00.0000 TDB
  34. Stop time : A.D. 2023-Oct-01 00:00:00.0000 TDB
  35. Step-size : 1440 minutes
  36. *******************************************************************************
  37. Center geodetic : 254.471, 32.9035384, 2.23607 {E-lon(deg),Lat(deg),Alt(km)}
  38. Center cylindric: 254.471, 5362.17112, 3446.19639 {E-lon(deg),Dxy(km),Dz(km)}
  39. Center pole/equ : ITRF93 {East-longitude positive}
  40. Center radii : 6378.137, 6378.137, 6356.752 km {Equator_a, b, pole_c}
  41. Output units : KM-S
  42. Calendar mode : Mixed Julian/Gregorian
  43. Output type : GEOMETRIC cartesian states
  44. Output format : 3 (position, velocity, LT, range, range-rate)
  45. EOP file : eop.230927.p231221
  46. EOP coverage : DATA-BASED 1962-JAN-20 TO 2023-SEP-27. PREDICTS-> 2023-DEC-20
  47. Reference frame : Ecliptic of J2000.0
  48. *******************************************************************************
  49. JDTDB
  50. X Y Z
  51. VX VY VZ
  52. LT RG RR
  53. *******************************************************************************
  54. $$SOE
  55. 2460215.500000000 = A.D. 2023-Sep-28 00:00:00.0000 TDB
  56. X = 3.470705658033574E+05 Y =-9.265520886744432E+04 Z =-2.653599067380910E+04
  57. VX=-9.011403192706635E-02 VY= 1.110259691085033E+00 VZ= 5.115987924302562E-02
  58. LT= 1.201512151373686E+00 RG= 3.602042811771854E+05 RR=-3.761888927526311E-01
  59. 2460216.500000000 = A.D. 2023-Sep-29 00:00:00.0000 TDB
  60. X = 3.612178246289230E+05 Y = 2.175102251481885E+02 Z =-1.933391485093577E+04
  61. VX=-3.538761876322111E-01 VY= 1.141964183533681E+00 VZ= 6.712048003763832E-02
  62. LT= 1.206617868501206E+00 RG= 3.617349366646974E+05 RR=-3.562710879736578E-01
  63. 2460217.500000000 = A.D. 2023-Sep-30 00:00:00.0000 TDB
  64. X = 3.525900479296140E+05 Y = 9.334101334405206E+04 Z =-1.122942013890661E+04
  65. VX=-6.159050044487818E-01 VY= 1.104174316562248E+00 VZ= 7.721989291731685E-02
  66. LT= 1.217204527827483E+00 RG= 3.649087372861304E+05 RR=-3.150496228123838E-01
  67. 2460218.500000000 = A.D. 2023-Oct-01 00:00:00.0000 TDB
  68. X = 3.221837310026606E+05 Y = 1.808849216335789E+05 Z =-2.748397019656826E+03
  69. VX=-8.568131300802702E-01 VY= 1.002000203732668E+00 VZ= 8.112992260778490E-02
  70. LT= 1.232514886108716E+00 RG= 3.694986672281219E+05 RR=-2.571795472029340E-01
  71. $$EOE
  72. *******************************************************************************
  73.  
  74. TIME
  75.  
  76. Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
  77. continuous coordinate time is equivalent to the relativistic proper time
  78. of a clock at rest in a reference frame co-moving with the solar system
  79. barycenter but outside the system's gravity well. It is the independent
  80. variable in the solar system relativistic equations of motion.
  81.  
  82. TDB runs at a uniform rate of one SI second per second and is independent
  83. of irregularities in Earth's rotation.
  84.  
  85. CALENDAR SYSTEM
  86.  
  87. Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
  88. (if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
  89. are in the Julian calendar system, which is automatically extended for dates
  90. prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
  91. matching historical dates. The Gregorian calendar more accurately corresponds
  92. to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
  93. available if such physical events are the primary interest.
  94.  
  95. REFERENCE FRAME AND COORDINATES
  96.  
  97. Ecliptic at the standard reference epoch
  98.  
  99. Reference epoch: J2000.0
  100. X-Y plane: adopted Earth orbital plane at the reference epoch
  101. Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
  102. X-axis : ICRF
  103. Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
  104. of Earth's north pole at the reference epoch.
  105.  
  106. Symbol meaning:
  107.  
  108. JDTDB Julian Day Number, Barycentric Dynamical Time
  109. X X-component of position vector (km)
  110. Y Y-component of position vector (km)
  111. Z Z-component of position vector (km)
  112. VX X-component of velocity vector (km/sec)
  113. VY Y-component of velocity vector (km/sec)
  114. VZ Z-component of velocity vector (km/sec)
  115. LT One-way down-leg Newtonian light-time (sec)
  116. RG Range; distance from coordinate center (km)
  117. RR Range-rate; radial velocity wrt coord. center (km/sec)
  118.  
  119. ABERRATIONS AND CORRECTIONS
  120.  
  121. updated the code a bit but the result is not what i expected as i was looking to find the NN in aries and its way way off
  122.  
  123. import math
  124.  
  125. def calculate_longitude_of_ascending_node(h_x, h_y, h_z):
  126. # Calculate the magnitude of the specific relative angular momentum vector (|h|)
  127. h_magnitude = math.sqrt(h_x**2 + h_y**2 + h_z**2)
  128.  
  129. # Calculate the unit vector n using the cross product of r and v
  130. n_x = h_y * h_z
  131. n_y = -h_x * h_z
  132. n_z = h_x**2 + h_y**2
  133.  
  134. # Calculate the longitude of the ascending node (Ω) in radians
  135. omega = math.atan2(n_y, n_x)
  136. if omega < 0:
  137. omega += 2 * math.pi
  138.  
  139. # Convert Ω from radians to degrees, minutes, and seconds
  140. omega_deg = math.degrees(omega)
  141. omega_deg_int = int(omega_deg)
  142. omega_min = (omega_deg - omega_deg_int) * 60
  143. omega_min_int = int(omega_min)
  144. omega_sec = (omega_min - omega_min_int) * 60
  145.  
  146. return omega_deg_int, omega_min_int, omega_sec
  147.  
  148. # Example usage:
  149. # Use the provided position data
  150. x = 3.470705658033574E+05
  151. y = -9.265520886744432E+04
  152. z = -2.653599067380910E+04
  153. vx = -9.011403192706635E-02
  154. vy = 1.110259691085033E+00
  155. vz = 5.115987924302562E-02
  156.  
  157. # Calculate h_x, h_y, h_z by taking the cross product of r and v
  158. h_x = y * vz - z * vy
  159. h_y = z * vx - x * vz
  160. h_z = x * vy - y * vx
  161.  
  162. # Calculate the longitude of the ascending node in DMS
  163. longitude_deg, longitude_min, longitude_sec = calculate_longitude_of_ascending_node(h_x, h_y, h_z)
  164. print(f"Longitude of Ascending Node (Ω): {longitude_deg}° {longitude_min}' {longitude_sec:.2f}\"")
  165.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement