Need a unique gift idea?
A Pastebin account makes a great Christmas gift
SHARE
TWEET

Untitled

a guest Jun 14th, 2018 55 Never
Upgrade to PRO!
ENDING IN00days00hours00mins00secs
 
  1. {
  2.   "cells": [
  3.     {
  4.       "metadata": {
  5.         "trusted": true
  6.       },
  7.       "cell_type": "code",
  8.       "source": "import numpy as np\nimport tensorflow as tf\nfrom edward.models import Normal\n\nfrom time import time\nfrom tqdm import tqdm\n\nimport matplotlib.pyplot as plt\n%matplotlib inline",
  9.       "execution_count": 1,
  10.       "outputs": [
  11.         {
  12.           "output_type": "stream",
  13.           "text": "/Users/svpcadmin/.pyenv/versions/3.6.4/envs/env3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n  from ._conv import register_converters as _register_converters\n",
  14.           "name": "stderr"
  15.         }
  16.       ]
  17.     },
  18.     {
  19.       "metadata": {
  20.         "trusted": true
  21.       },
  22.       "cell_type": "code",
  23.       "source": "sample_num=int(input())",
  24.       "execution_count": 2,
  25.       "outputs": [
  26.         {
  27.           "output_type": "stream",
  28.           "name": "stdout",
  29.           "text": "1000000\n"
  30.         }
  31.       ]
  32.     },
  33.     {
  34.       "metadata": {
  35.         "trusted": true,
  36.         "scrolled": true
  37.       },
  38.       "cell_type": "code",
  39.       "source": "# 基本的な使い方\ndef sampling(N):\n    x = Normal(loc=0.0, scale=1.0)\n    sess = tf.Session()\n    return np.array([sess.run(x) for _ in tqdm(range(N))])\n\n# テンソルでまとめて書いたver\ndef sampling_as_tensor(N):\n    x=Normal(loc=tf.zeros(N),scale=tf.ones(N))\n    sess = tf.Session()\n    return sess.run(x)",
  40.       "execution_count": 3,
  41.       "outputs": []
  42.     },
  43.     {
  44.       "metadata": {
  45.         "trusted": true
  46.       },
  47.       "cell_type": "code",
  48.       "source": "start=time()\na=sampling(sample_num)\nprint(time()-start)",
  49.       "execution_count": 4,
  50.       "outputs": [
  51.         {
  52.           "output_type": "stream",
  53.           "text": "100%|██████████| 1000000/1000000 [01:51<00:00, 8982.35it/s]",
  54.           "name": "stderr"
  55.         },
  56.         {
  57.           "output_type": "stream",
  58.           "text": "111.43240809440613\n",
  59.           "name": "stdout"
  60.         },
  61.         {
  62.           "output_type": "stream",
  63.           "text": "\n",
  64.           "name": "stderr"
  65.         }
  66.       ]
  67.     },
  68.     {
  69.       "metadata": {
  70.         "trusted": true
  71.       },
  72.       "cell_type": "code",
  73.       "source": "start=time()\nb=sampling_as_tensor(sample_num)\nprint(time()-start)",
  74.       "execution_count": 5,
  75.       "outputs": [
  76.         {
  77.           "output_type": "stream",
  78.           "text": "0.03568911552429199\n",
  79.           "name": "stdout"
  80.         }
  81.       ]
  82.     },
  83.     {
  84.       "metadata": {
  85.         "trusted": true
  86.       },
  87.       "cell_type": "code",
  88.       "source": "plt.hist(a,bins=1000)\nplt.show()\n\nplt.hist(b,bins=1000)\nplt.show()",
  89.       "execution_count": 6,
  90.       "outputs": [
  91.         {
  92.           "output_type": "display_data",
  93.           "data": {
  94.             "text/plain": "<Figure size 432x288 with 1 Axes>",
  95.             "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFYNJREFUeJzt3X+MZeV93/H3J4BxVDsBzJSS3XUXJZtEOG2wO12oqNQEalh+KEsk18Ft7a1Lta0Eql25TRbnDxI7SKRtTGLFISKGekmdbFb+IVZmE7LGSJGl2jBrr7EX7DLFuOwKm4kXY1tWscDf/nGfQZdlZufOzJ1778x5v6SrOec5z733OXfufT7nOefce1JVSJK658fG3QBJ0ngYAJLUUQaAJHWUASBJHWUASFJHGQCS1FEGgCR1lAEgSR1lAEhSR50+aMUkpwEzwPGqujbJBcA+4HXAYeDtVfXDJGcC9wD/CPg28GtV9WR7jJuBG4AXgf9YVfef6jnPPffc2rp167JXSpK67PDhw39bVVNL1Rs4AIB3AY8BP9Hmfxe4var2Jfljeh37He3vs1X1M0mub/V+LcmFwPXAG4CfAj6d5Ger6sXFnnDr1q3MzMwso4mSpCTfGKTeQLuAkmwGrgE+3OYDXAZ8rFXZC1zXpne2edryy1v9ncC+qnq+qr4OzALbB3l+SdLwDXoM4PeBXwd+1OZfB3ynql5o88eATW16E/AUQFv+XKv/UvkC93lJkt1JZpLMzM3NLWNVJEnLsWQAJLkWeKaqDo+gPVTVnVU1XVXTU1NL7sKSJK3QIMcALgV+JcnVwKvpHQP4A+CsJKe3rfzNwPFW/ziwBTiW5HTgJ+kdDJ4vn9d/H0nSiC05Aqiqm6tqc1VtpXcQ9zNV9a+AB4G3tGq7gHvb9IE2T1v+mepddOAAcH2SM9sZRNuAh4a2JpKkZVnOWUAn+w1gX5LfAb4I3NXK7wL+NMkscIJeaFBVR5PsBx4FXgBuPNUZQJKktZVJviLY9PR0eRqoJC1PksNVNb1UPb8JLEkdZQBIUkcZAJLUUQaANICte+4bdxOkoTMApBUyFLTeGQDSEBgGWo8MAEnqKANAOoXFtuzd4tdGYABIy7BUx28waD0xAKQlzHfqdu7aaAwASeooA0BappNHAguNEBwtaD0wACSpowwA6SRuvasrDABpFQwLrWcGgCR1lAEgLcKte210BoDU2OGra5YMgCSvTvJQki8lOZrkt1v5R5J8PcmRdruolSfJB5PMJnkkyZv6HmtXksfbbddizymNyzC+9GWQaL0Y5KLwzwOXVdX3k5wBfDbJX7Zl/6WqPnZS/auAbe12MXAHcHGSc4BbgGmggMNJDlTVs8NYEWk17LTVRUuOAKrn+232jHY71ZXkdwL3tPt9DjgryfnAlcChqjrROv1DwI7VNV9aPTt/ddVAxwCSnJbkCPAMvU78823RrW03z+1Jzmxlm4Cn+u5+rJUtVn7yc+1OMpNkZm5ubpmrI00Ww0WTbKAAqKoXq+oiYDOwPckvADcDPw/8Y+Ac4DeG0aCqurOqpqtqempqahgPKUlawLLOAqqq7wAPAjuq6um2m+d54H8A21u148CWvrttbmWLlUsbmqMATapBzgKaSnJWm/5x4M3AV9t+fZIEuA74SrvLAeAd7WygS4Dnqupp4H7giiRnJzkbuKKVSRueIaBJNMhZQOcDe5OcRi8w9lfVp5J8JskUEOAI8B9a/YPA1cAs8APgnQBVdSLJ+4GHW733VdWJ4a2KNNm27rmPJ2+7ZtzNkF6yZABU1SPAGxcov2yR+gXcuMiyu4G7l9lGSdIaGGQEIG1Ia71bxt0+mnT+FIQkdZQBII2YIwNNCgNAnTLuC7zb+WuSGADSGBkIGicDQJI6ygBQ57jVLfUYAJLUUQaANAaOQjQJDAB1gh2u9EoGgCR1lAGgzpi0UcCktUfdYwBIUkcZAJLUUQaAJHWUASCNmccCNC4GgDY8O1hpYYNcE/jVSR5K8qUkR5P8diu/IMnnk8wm+Yskr2rlZ7b52bZ8a99j3dzKv5bkyrVaKUnS0gYZATwPXFZVvwhcBOxoF3v/XeD2qvoZ4Fnghlb/BuDZVn57q0eSC4HrgTcAO4A/atcZltaMW//S4pYMgOr5fps9o90KuAz4WCvfC1zXpne2edryy5Okle+rquer6uv0Lhq/fShrIUlatoGOASQ5LckR4BngEPB/gO9U1QutyjFgU5veBDwF0JY/B7yuv3yB+0iSRmygAKiqF6vqImAzva32n1+rBiXZnWQmyczc3NxaPY02OHf9SEtb1llAVfUd4EHgnwBnJTm9LdoMHG/Tx4EtAG35TwLf7i9f4D79z3FnVU1X1fTU1NRymidtCIaXRmWQs4CmkpzVpn8ceDPwGL0geEurtgu4t00faPO05Z+pqmrl17ezhC4AtgEPDWtFpPXMTl/jcPrSVTgf2NvO2PkxYH9VfSrJo8C+JL8DfBG4q9W/C/jTJLPACXpn/lBVR5PsBx4FXgBurKoXh7s60vplCGjUlgyAqnoEeOMC5U+wwFk8VfX/gH+xyGPdCty6/GZKy2eHKp2a3wSWpI4yACSpowwASeooA0CSOsoAkCaQB7A1CgaANhw7T2kwBoAkdZQBIEkdZQBow3DXj7Q8BoAkdZQBIEkdZQBoQ5jf/eNuIGlwBoAkdZQBIEkdZQBIE8xdWlpLBoDWvY3aSW7U9dLkMACkCWcQaK0YAJLUUYNcFH5LkgeTPJrkaJJ3tfLfSnI8yZF2u7rvPjcnmU3ytSRX9pXvaGWzSfaszSpJkgYxyEXhXwDeU1VfSPJa4HCSQ23Z7VX13/srJ7mQ3oXg3wD8FPDpJD/bFn8IeDNwDHg4yYGqenQYKyJJWp4lRwBV9XRVfaFNfw94DNh0irvsBPZV1fNV9XVglt7F47cDs1X1RFX9ENjX6kpagscBtBaWdQwgyVbgjcDnW9FNSR5JcneSs1vZJuCpvrsda2WLlUuSxmDgAEjyGuDjwLur6rvAHcBPAxcBTwO/N4wGJdmdZCbJzNzc3DAeUtoQHAVo2AYKgCRn0Ov8P1pVnwCoqm9V1YtV9SPgT+jt4gE4Dmzpu/vmVrZY+ctU1Z1VNV1V01NTU8tdH3WMnaK0coOcBRTgLuCxqvpAX/n5fdV+FfhKmz4AXJ/kzCQXANuAh4CHgW1JLkjyKnoHig8MZzXURXb+0uoMchbQpcDbgS8nOdLK3gu8LclFQAFPAv8eoKqOJtkPPErvDKIbq+pFgCQ3AfcDpwF3V9XRIa6LtOFt3XMfT952zbiboQ1iyQCoqs8CWWDRwVPc51bg1gXKD57qfpKk0fGbwJLUUQaAJHWUASBJHWUASFJHGQCS1FEGgNYlvwMgrZ4BIEkdZQBo3XHrXxoOA0CSOsoAkNYZR0AaFgNAkjrKAJCkjjIAJKmjDABpHdq65z6PBWjVDABJ6igDQOuGW7yv5Gui1TAAtK7Y4UnDYwBoXbDjX5yvjVZqkIvCb0nyYJJHkxxN8q5Wfk6SQ0keb3/PbuVJ8sEks0keSfKmvsfa1eo/nmTX2q2WJGkpg4wAXgDeU1UXApcANya5ENgDPFBV24AH2jzAVcC2dtsN3AG9wABuAS4GtgO3zIeGJGn0lgyAqnq6qr7Qpr8HPAZsAnYCe1u1vcB1bXoncE/1fA44K8n5wJXAoao6UVXPAoeAHUNdG0nSwJZ1DCDJVuCNwOeB86rq6bbom8B5bXoT8FTf3Y61ssXKpUW5f1taOwMHQJLXAB8H3l1V3+1fVlUF1DAalGR3kpkkM3Nzc8N4SEnSAgYKgCRn0Ov8P1pVn2jF32q7dmh/n2nlx4EtfXff3MoWK3+Zqrqzqqaranpqamo56yJJWoZBzgIKcBfwWFV9oG/RAWD+TJ5dwL195e9oZwNdAjzXdhXdD1yR5Ox28PeKViZpldxVppU4fYA6lwJvB76c5Egrey9wG7A/yQ3AN4C3tmUHgauBWeAHwDsBqupEkvcDD7d676uqE0NZC21odm7S2lgyAKrqs0AWWXz5AvULuHGRx7obuHs5DZQkrQ2/CSxtEI6UtFwGgCaWHZq0tgwASeooA0DaQBw1aTkMAE0kOzJp7RkAktRRBoC0wTh60qAMAEnqKANAE8ct2NXzNdQgDABJ6igDQJI6ygCQpI4yACSpowwASeooA0CSOsoA0MTw1EVptAwATRRDYHh8LbUUA0ATwc5KGr1BLgp/d5Jnknylr+y3khxPcqTdru5bdnOS2SRfS3JlX/mOVjabZM/wV0XSyQxWncogI4CPADsWKL+9qi5qt4MASS4Ergfe0O7zR0lOS3Ia8CHgKuBC4G2trmQnJY3JIBeF/5skWwd8vJ3Avqp6Hvh6kllge1s2W1VPACTZ1+o+uuwWS5KGYjXHAG5K8kjbRXR2K9sEPNVX51grW6z8FZLsTjKTZGZubm4VzZMEjrC0uJUGwB3ATwMXAU8DvzesBlXVnVU1XVXTU1NTw3pYSdJJltwFtJCq+tb8dJI/AT7VZo8DW/qqbm5lnKJckjQGKxoBJDm/b/ZXgfkzhA4A1yc5M8kFwDbgIeBhYFuSC5K8it6B4gMrb7YkabUGOQ30z4H/BfxckmNJbgD+a5IvJ3kE+GXgPwFU1VFgP72Du38F3FhVL1bVC8BNwP3AY8D+VlfSCHgcQAsZ5Cygty1QfNcp6t8K3LpA+UHg4LJaJ0laM34TWOoIRwE62YoOAkvDYIckjZcjAI2Fnb80fgaAJHWUASB1iCMv9TMAJKmjDABJ6igDQJI6ygCQOshjAQIDQOocO3/NMwA0UnY+0uQwADRyhoA0GQwASeooA0DqKEdiMgAkqaMMAI2MW5zSZDEAJKmjDACtObf8J5f/m24b5JrAdyd5JslX+srOSXIoyePt79mtPEk+mGQ2ySNJ3tR3n12t/uNJdq3N6mhS2dFIk2eQEcBHgB0nle0BHqiqbcADbR7gKmBbu+0G7oBeYAC3ABcD24Fb5kND0vgZ0N20ZABU1d8AJ04q3gnsbdN7gev6yu+pns8BZyU5H7gSOFRVJ6rqWeAQrwwVSdIIrfQYwHlV9XSb/iZwXpveBDzVV+9YK1us/BWS7E4yk2Rmbm5uhc2TNCi3/rtr1QeBq6qAGkJb5h/vzqqarqrpqampYT2sJOkkKw2Ab7VdO7S/z7Ty48CWvnqbW9li5drg3LpcP/xfdc9KA+AAMH8mzy7g3r7yd7SzgS4Bnmu7iu4Hrkhydjv4e0UrkySNyelLVUjy58AvAecmOUbvbJ7bgP1JbgC+Aby1VT8IXA3MAj8A3glQVSeSvB94uNV7X1WdfGBZkjRC6e3Cn0zT09M1MzMz7mZoBdydsH49eds1426CVinJ4aqaXqqe3wSWpI4yACS9jKO37jAAJKmjDABJr+AooBuWPAtIWg47Dmn9cAQgSR1lAEhSRxkAktRRBoCGxv3/G8vWPff5P93gDABJ6igDQEPhlqK0/hgAWjU7f2l9MgAkqaMMAEmn5Ahv4zIAJC3JENiYDACtih2DtH4ZAJIG4vcCNp5VBUCSJ5N8OcmRJDOt7Jwkh5I83v6e3cqT5INJZpM8kuRNw1gBjY+dQTf5f984hjEC+OWquqjv8mN7gAeqahvwQJsHuArY1m67gTuG8NwaEzsBaf1bi11AO4G9bXovcF1f+T3V8zngrCTnr8HzS5IGsNoAKOCvkxxOsruVnVdVT7fpbwLntelNwFN99z3WyiRJY7DaC8L806o6nuTvAoeSfLV/YVVVklrOA7Yg2Q3w+te/fpXN07C560faOFY1Aqiq4+3vM8Ange3At+Z37bS/z7Tqx4EtfXff3MpOfsw7q2q6qqanpqZW0zxJa8QNgY1hxQGQ5O8kee38NHAF8BXgALCrVdsF3NumDwDvaGcDXQI817erSOuAH3qdzPfE+raaXUDnAZ9MMv84f1ZVf5XkYWB/khuAbwBvbfUPAlcDs8APgHeu4rk1Yn7QdTLfE+vfigOgqp4AfnGB8m8Dly9QXsCNK30+SZNp6577ePK2a8bdDK2A3wTWKbmVp0H5Xll/DAAtyQ+2luJ7ZH0yACSpowwALcqtOmljMwC0IDt/rYS/GLq+GAB6BT/AGgbfR5PPANBL/MBqWHwvrQ8GgF7GD67UHQaAADt+rQ3fV5PNAJC0pjwwPLkMAEkjYQhMntVeD0DrmB9IjZq/GzRZHAF0zHynb+evcXGX0OQwADrID58kMAAkjZGjgfFK72f6J9P09HTNzMyMuxnr1vwH68nbrvFDponnsYHhSXK4qqaXqudB4A6w89d60P8+NQxGwwDYQOzotVGcPHo1ENbGyAMgyQ7gD4DTgA9X1W2jbsNGYqevjcz399oaaQAkOQ34EPBm4BjwcJIDVfXoKNuxHp08PPaDoS5Z6P3u6GD1Rn0W0HZgtqqeqKofAvuAnSNuw7pz8pvfzl96+Xda/IyszKh3AW0CnuqbPwZcPOI2DMVSWx4LLfdNKa2d1YRA/2d1/rPbhdHFSE8DTfIWYEdV/bs2/3bg4qq6qa/ObmB3m/054Gsja+BgzgX+dtyNGDNfA18D8DWAyX0N/n5VTS1VadQjgOPAlr75za3sJVV1J3DnKBu1HElmBjm/diPzNfA1AF8DWP+vwaiPATwMbEtyQZJXAdcDB0bcBkkSIx4BVNULSW4C7qd3GujdVXV0lG2QJPWM/HsAVXUQODjq5x2iid09NUK+Br4G4GsA6/w1mOjfApIkrR1/DVSSOsoAWIUk70lSSc4dd1tGLcl/S/LVJI8k+WSSs8bdplFIsiPJ15LMJtkz7vaMWpItSR5M8miSo0neNe42jUuS05J8Mcmnxt2WlTIAVijJFuAK4P+Ouy1jcgj4har6h8D/Bm4ec3vWXN9PmVwFXAi8LcmF423VyL0AvKeqLgQuAW7s4Gsw713AY+NuxGoYACt3O/DrQCcPolTVX1fVC232c/S+07HRdf6nTKrq6ar6Qpv+Hr0OcNN4WzV6STYD1wAfHndbVsMAWIEkO4HjVfWlcbdlQvxb4C/H3YgRWOinTDrX+c1LshV4I/D58bZkLH6f3gbgj8bdkNXwegCLSPJp4O8tsOg3gffS2/2zoZ3qNaiqe1ud36S3W+Cjo2ybxivJa4CPA++uqu+Ouz2jlORa4JmqOpzkl8bdntUwABZRVf98ofIk/wC4APhSEujt+vhCku1V9c0RNnHNLfYazEvyb4BrgcurG+cTL/lTJl2Q5Ax6nf9Hq+oT427PGFwK/EqSq4FXAz+R5H9W1b8ec7uWze8BrFKSJ4HpqprEH4RaM+3CPh8A/llVzY27PaOQ5HR6B7wvp9fxPwz8yy59mz29rZ69wImqeve42zNubQTwn6vq2nG3ZSU8BqCV+kPgtcChJEeS/PG4G7TW2kHv+Z8yeQzY36XOv7kUeDtwWfu/H2lbwlqHHAFIUkc5ApCkjjIAJKmjDABJ6igDQJI6ygCQpI4yACSpowwASeooA0CSOur/A5CMmY3QurOZAAAAAElFTkSuQmCC\n"
  96.           },
  97.           "metadata": {}
  98.         },
  99.         {
  100.           "output_type": "display_data",
  101.           "data": {
  102.             "text/plain": "<Figure size 432x288 with 1 Axes>",
  103.             "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFTtJREFUeJzt3X+MZeV93/H3J8sPR7UbcBhRurvqomSbCqcNtkZA5apNoIYFrCyRHAva2luXaltpkezKbQLOH07sIJG2MalVm2gTtl6nbjYr/xArTEI2mCiKVGBn8RqzEMrU4LIrbCZejG1ZIQJ/+8d9hlzWMzt3Zu7cO3PP+yWN5pznPOfe5+zOfT73POfc+6SqkCR1z4+MuwGSpPEwACSpowwASeooA0CSOsoAkKSOMgAkqaMMAEnqKANAkjrKAJCkjjpr3A04kwsuuKC2bds27mZI0oZy9OjRv6yqqaXqresA2LZtGzMzM+NuhiRtKEm+Pkg9h4AkqaMMAEnqKANAkjrKAJCkjjIAJKmjDABJ6igDQJI6ygCQpI4yACSpowwASeqogQMgyaYkX05yb1u/OMnDSWaT/EGSc1r5uW19tm3f1vcYt7Xyp5JcM+yDkVZr261fHHcTpJFZzhnA+4En+9Z/A7izqn4SeBG4uZXfDLzYyu9s9UhyCXAj8BZgB/DJJJtW13xp+AwBdcVAAZBkC3A98LttPcCVwGdblf3ADW15Z1unbb+q1d8JHKiql6vqGWAWuGwYByFJWr5BzwB+C/gl4Adt/ceBb1fVK239BLC5LW8GngNo219q9V8rX2AfaSzO9G7fMwFNuiUDIMk7gReq6ugI2kOS3UlmkszMzc2N4imlJRkGmkSDnAG8Hfj5JM8CB+gN/fw34Lwk8/MJbAFOtuWTwFaAtv3HgG/1ly+wz2uqam9VTVfV9NTUkvMZSEOzWCdv569JtWQAVNVtVbWlqrbRu4j7par6l8CDwLtatV3APW35UFunbf9SVVUrv7HdJXQxsB14ZGhHIq0BO39NstXMCPbLwIEkvw58Gbi7ld8N/F6SWeAUvdCgqo4nOQg8AbwC7KmqV1fx/JKkVVhWAFTVnwJ/2pa/xgJ38VTVXwG/uMj+twO3L7eRkqTh85PA0gK8HqAuMADUWcvtzOfrGwKaFAaAOslOXDIApBWFgQGiSWAASKtgEGgjMwAk7MjVTQaAOsfOXuoxANQpdv7S3zAApBUyTLTRGQDqDDts6fUMAE28UXT8hos2IgNAWiU7f21UBoAkdZQBIEkdZQBIUkcZAOoEx+mlH2YASFJHLRkASd6Q5JEkX0lyPMmvtfJPJXkmybH2c2krT5KPJ5lN8liSt/U91q4kT7efXYs9pzQso3zn71mGNppBpoR8Gbiyqr6X5Gzgz5P8Ydv2n6rqs6fVv5behO/bgcuBu4DLk7wZ+DAwDRRwNMmhqnpxGAciSVqeJc8Aqud7bfXs9lNn2GUn8Om230PAeUkuAq4BDlfVqdbpHwZ2rK75kqSVGugaQJJNSY4BL9DrxB9um25vwzx3Jjm3lW0Gnuvb/UQrW6z89OfanWQmyczc3NwyD0f6Gw7JSGc2yBAQVfUqcGmS84AvJPlp4DbgG8A5wF7gl4GPrLZBVbW3PR7T09NnOtOQ1p3TQ+fZO64fU0ukpS3rLqCq+jbwILCjqp5vwzwvA/8DuKxVOwls7dttSytbrFwaOt/9S0sb5C6gqfbOnyQ/CrwD+Is2rk+SADcAj7ddDgHvbXcDXQG8VFXPA/cDVyc5P8n5wNWtTJpohpHWq0GGgC4C9ifZRC8wDlbVvUm+lGQKCHAM+Pet/n3AdcAs8H3gfQBVdSrJR4Ejrd5HqurU8A5F6rHDlQazZABU1WPAWxcov3KR+gXsWWTbPmDfMtsoSVoDfhJYWkOejWg9MwAkqaMMAEnqKANAE8UhF2lwBoAkdZQBII2AZyZajwwATQQ7WGn5DABNDENAWh4DQJI6ygCQpI4yALThOfQjrYwBIEkdZQBIUkcZANrQHP6RVs4AkEbEsNJ6YwBII2QIaD0ZZErINyR5JMlXkhxP8mut/OIkDyeZTfIHSc5p5ee29dm2fVvfY93Wyp9Kcs1aHZQkaWmDnAG8DFxZVT8DXArsaHP9/gZwZ1X9JPAicHOrfzPwYiu/s9UjySXAjcBbgB3AJ9s0k5KkMVgyAKrne2317PZTwJXAZ1v5fnoTwwPsbOu07Ve1ieN3Ageq6uWqeobenMGXDeUoJEnLNtA1gCSbkhwDXgAOA/8X+HZVvdKqnAA2t+XNwHMAbftLwI/3ly+wjyRpxAYKgKp6taouBbbQe9f+D9aqQUl2J5lJMjM3N7dWTyNJnbesu4Cq6tvAg8A/Bs5LclbbtAU42ZZPAlsB2vYfA77VX77APv3PsbeqpqtqempqajnNkyQtwyB3AU0lOa8t/yjwDuBJekHwrlZtF3BPWz7U1mnbv1RV1cpvbHcJXQxsBx4Z1oFIG4W3gmq9OGvpKlwE7G937PwIcLCq7k3yBHAgya8DXwbubvXvBn4vySxwit6dP1TV8SQHgSeAV4A9VfXqcA9HXWJHKq3OkgFQVY8Bb12g/GsscBdPVf0V8IuLPNbtwO3Lb6Ykadj8JLA2nEl45z8Jx6CNzwDQhjQJHegkHIM2NgNAkjrKAJDGyLMAjZMBIEkdZQBIUkcZAJLUUQaAJHWUASCNmReCNS4GgCR1lAEgSR1lAEjrgMNAGgcDQBuKHaU0PAaANgw7f2m4DABJ6igDQJI6apApIbcmeTDJE0mOJ3l/K//VJCeTHGs/1/Xtc1uS2SRPJbmmr3xHK5tNcuvaHJIkaRCDTAn5CvDBqno0yZuAo0kOt213VtV/7a+c5BJ600C+Bfi7wJ8k+ftt8yfozSl8AjiS5FBVPTGMA9Fkc/xfGr4lzwCq6vmqerQtf5fehPCbz7DLTuBAVb1cVc8As/SmjrwMmK2qr1XVXwMHWl1JGHIavWVdA0iyjd78wA+3oluSPJZkX5LzW9lm4Lm+3U60ssXKpTOyY5TWxsABkOSNwOeAD1TVd4C7gJ8ALgWeB35zGA1KsjvJTJKZubm5YTykJGkBAwVAkrPpdf6fqarPA1TVN6vq1ar6AfA79IZ4AE4CW/t239LKFit/naraW1XTVTU9NTW13OORJA1okLuAAtwNPFlVH+srv6iv2i8Aj7flQ8CNSc5NcjGwHXgEOAJsT3JxknPoXSg+NJzD0KRy+EdaO4PcBfR24D3AV5Mca2UfAm5KcilQwLPAvwOoquNJDgJP0LuDaE9VvQqQ5BbgfmATsK+qjg/xWCRJy5CqGncbFjU9PV0zMzPjbobGqKtnAM/ecf24m6ANLMnRqppeqp6fBJakjjIAJKmjDABJ6igDQJI6ygCQ1qGuXvzWaA1yG6g0cnaA0trzDECSOsoAkKSOMgCkdcphMK01A0CSOsoAkKSOMgAkqaMMAEnqKANAkjrKD4JpXfHOF2l0PAOQpI4aZErIrUkeTPJEkuNJ3t/K35zkcJKn2+/zW3mSfDzJbJLHkryt77F2tfpPJ9m1doclTQbPiLSWBjkDeAX4YFVdAlwB7ElyCXAr8EBVbQceaOsA19KbB3g7sBu4C3qBAXwYuJzeBPIfng8NSdLoLRkAVfV8VT3alr8LPAlsBnYC+1u1/cANbXkn8OnqeQg4r00gfw1wuKpOVdWLwGFgx1CPRpI0sGVdBE6yDXgr8DBwYVU93zZ9A7iwLW8Gnuvb7UQrW6xccqjjDOb/bZwnWMM28EXgJG8EPgd8oKq+07+tejPLD2V2+SS7k8wkmZmbmxvGQ0qSFjBQACQ5m17n/5mq+nwr/mYb2qH9fqGVnwS29u2+pZUtVv46VbW3qqaranpqamo5xyJJWoZB7gIKcDfwZFV9rG/TIWD+Tp5dwD195e9tdwNdAbzUhoruB65Ocn67+Ht1K5MkjcEg1wDeDrwH+GqSY63sQ8AdwMEkNwNfB97dtt0HXAfMAt8H3gdQVaeSfBQ40up9pKpODeUoJEnLtmQAVNWfA1lk81UL1C9gzyKPtQ/Yt5wGSpLWhp8ElqSOMgCkDcJbZTVsBoDGzo5NGg8DQJI6ygCQNhDPljRMBoAkdZQBIG0wngVoWAwASeooA0Bj5btZaXwMAEnqKANAY+O7f2m8DABJ6igDQJI6ygCQNiiH0LRaBoC0Adn5axgMAI2cndfw+G+p1TAANBZ2XNL4DTIn8L4kLyR5vK/sV5OcTHKs/VzXt+22JLNJnkpyTV/5jlY2m+TW4R+KJGk5BjkD+BSwY4HyO6vq0vZzH0CSS4Abgbe0fT6ZZFOSTcAngGuBS4CbWl1J0pgMMifwnyXZNuDj7QQOVNXLwDNJZoHL2rbZqvoaQJIDre4Ty26xNjSHfqT1YzXXAG5J8lgbIjq/lW0Gnuurc6KVLVb+Q5LsTjKTZGZubm4VzdN6Y+e/Nvx31UqtNADuAn4CuBR4HvjNYTWoqvZW1XRVTU9NTQ3rYSVJp1lyCGghVfXN+eUkvwPc21ZPAlv7qm5pZZyhXJI0Bis6A0hyUd/qLwDzdwgdAm5Mcm6Si4HtwCPAEWB7kouTnEPvQvGhlTdbkrRag9wG+vvA/wZ+KsmJJDcD/znJV5M8Bvwc8B8Aquo4cJDexd0/AvZU1atV9QpwC3A/8CRwsNWVNAReB9BKDHIX0E0LFN99hvq3A7cvUH4fcN+yWqeJYQclrT9+EliSOsoAkKSOMgAkqaMMAGlCbLv1i15r0bIYAJLUUQaAJHWUASBJHWUAaM3Mj0c7Lj1a/ntrUAaA1pSdkbR+GQCS1FEGgCR1lAEgSR1lAEhSRxkAktRRBoDWhHf/jJdfC6FBGAAaOjseaWMYZEawfUleSPJ4X9mbkxxO8nT7fX4rT5KPJ5lN8liSt/Xts6vVfzrJrrU5HEn9DGOdySBnAJ8CdpxWdivwQFVtBx5o6wDX0psHeDuwG7gLeoEBfBi4HLgM+PB8aEiSxmPJAKiqPwNOnVa8E9jflvcDN/SVf7p6HgLOaxPIXwMcrqpTVfUicJgfDhVJ0git9BrAhVX1fFv+BnBhW94MPNdX70QrW6z8hyTZnWQmyczc3NwKm6dxcchB2jhWfRG4qgqoIbRl/vH2VtV0VU1PTU0N62ElSadZaQB8sw3t0H6/0MpPAlv76m1pZYuVS1pj3hKqxaw0AA4B83fy7ALu6St/b7sb6ArgpTZUdD9wdZLz28Xfq1uZJGlMzlqqQpLfB34WuCDJCXp389wBHExyM/B14N2t+n3AdcAs8H3gfQBVdSrJR4Ejrd5Hqur0C8va4HyXKW0sSwZAVd20yKarFqhbwJ5FHmcfsG9ZrZMkrRk/CaxV852/tDEZABoKQ2D982KwTmcASFJHGQCS1FEGgCR1lAEgSR1lAGhVvKgobVwGgFbMzn9j8v9N8wwAqYMMAYEBIHWWISADQCti5yFtfAaA1GEGebcZAFo2Ow1pMhgAktRRBoCWxXf/k8f/0+5acj4ACewkpEm0qjOAJM8m+WqSY0lmWtmbkxxO8nT7fX4rT5KPJ5lN8liStw3jACStngHfTcMYAvq5qrq0qqbb+q3AA1W1HXigrQNcC2xvP7uBu4bw3JKkFVqLawA7gf1teT9wQ1/5p6vnIeC8JBetwfNLkgaw2gAo4I+THE2yu5VdWFXPt+VvABe25c3Ac337nmhlWuccHugGZwzrntUGwD+pqrfRG97Zk+Sf9m9sk8TXch4wye4kM0lm5ubmVtk8SctlCHTHqgKgqk623y8AXwAuA745P7TTfr/Qqp8EtvbtvqWVnf6Ye6tquqqmp6amVtM8rZIdgTTZVhwASf5WkjfNLwNXA48Dh4Bdrdou4J62fAh4b7sb6Argpb6hIq0z852/ISBNrtV8DuBC4AtJ5h/nf1XVHyU5AhxMcjPwdeDdrf59wHXALPB94H2reG5J0iqtOACq6mvAzyxQ/i3gqgXKC9iz0ueTNFrbbv0iz95x/biboTXkV0HohzjsI4cAu8EAkKSOMgD0Or7j0+n8m5hcBoBe4wtd6hYDQICdv5bm38jkMQDkC1tL8qLwZDIAJKmjDICO8x2dlsu/mclhAHSYL2Sp25wSsmPs9DUMp/8d+YnhjckzAEnqKAOgQ3z3r7XiXUIbkwHQEb4wtdb8G9t4vAYwoXwxalzm//a8LrD+eQYwYZzXVeuFf4frn2cAE8QXnNYb7xZa30Z+BpBkR5KnkswmuXXUzz9JvPCmjcYz1PUlvYm6RvRkySbg/wDvAE4AR4CbquqJhepPT0/XzMzMyNq33s3P0OQLSJPGM4PhSnK0qqaXqjfqIaDLgNk2nSRJDgA7gQUDoItOn4bv9M7ezl+TqP/CscNGozPqANgMPNe3fgK4fMRtWDOnv0NfbHmQx5G6aKG//eW+Hk5/rRkgixv1ENC7gB1V9W/b+nuAy6vqlr46u4HdbfWngKdG1sDBXQD85bgbMWIeczd07Zgn9Xj/XlVNLVVp1GcAJ4GtfetbWtlrqmovsHeUjVquJDODjK9NEo+5G7p2zF073tON+i6gI8D2JBcnOQe4ETg04jZIkhjxGUBVvZLkFuB+YBOwr6qOj7INkqSekX8QrKruA+4b9fMO2boeolojHnM3dO2Yu3a8rzPSi8CSpPXD7wKSpI4yAFYpyQeTVJILxt2WtZbkvyT5iySPJflCkvPG3aa10LWvK0myNcmDSZ5IcjzJ+8fdplFJsinJl5PcO+62jIMBsApJtgJXA/9v3G0ZkcPAT1fVP6L3lR63jbk9Q9e+ruQTwLXAJcBNSS4Zb6vW3CvAB6vqEuAKYE8Hjnne+4Enx92IcTEAVudO4JeATlxIqao/rqpX2upD9D7HMWle+7qSqvprYP7rSiZWVT1fVY+25e/S6xA3j7dVay/JFuB64HfH3ZZxMQBWKMlO4GRVfWXcbRmTfwP84bgbsQYW+rqSie8M5yXZBrwVeHi8LRmJ36L3Bu4H427IuDgfwBkk+RPg7yyw6VeAD9Eb/pkoZzrmqrqn1fkVesMGnxll27S2krwR+Bzwgar6zrjbs5aSvBN4oaqOJvnZcbdnXAyAM6iqf75QeZJ/CFwMfCUJ9IZCHk1yWVV9Y4RNHLrFjnlekn8NvBO4qibzHuIlv65kEiU5m17n/5mq+vy42zMCbwd+Psl1wBuAv53kf1bVvxpzu0bKzwEMQZJngemqmsQvlXpNkh3Ax4B/VlVz427PWkhyFr0L3FfR6/iPAP9ikj+xnt67mP3Aqar6wLjbM2rtDOA/VtU7x92WUfMagJbjvwNvAg4nOZbkt8fdoGFrF7nnv67kSeDgJHf+zduB9wBXtv/XY+2dsSacZwCS1FGeAUhSRxkAktRRBoAkdZQBIEkdZQBIUkcZAJLUUQaAJHWUASBJHfX/AaUuakCp8Hx+AAAAAElFTkSuQmCC\n"
  104.           },
  105.           "metadata": {}
  106.         }
  107.       ]
  108.     },
  109.     {
  110.       "metadata": {
  111.         "trusted": true
  112.       },
  113.       "cell_type": "code",
  114.       "source": "",
  115.       "execution_count": null,
  116.       "outputs": []
  117.     }
  118.   ],
  119.   "metadata": {
  120.     "kernelspec": {
  121.       "name": "python3",
  122.       "display_name": "Python 3",
  123.       "language": "python"
  124.     },
  125.     "language_info": {
  126.       "name": "python",
  127.       "version": "3.6.4",
  128.       "mimetype": "text/x-python",
  129.       "codemirror_mode": {
  130.         "name": "ipython",
  131.         "version": 3
  132.       },
  133.       "pygments_lexer": "ipython3",
  134.       "nbconvert_exporter": "python",
  135.       "file_extension": ".py"
  136.     },
  137.     "gist": {
  138.       "id": "",
  139.       "data": {
  140.         "description": "first_time_edward.ipynb",
  141.         "public": true
  142.       }
  143.     }
  144.   },
  145.   "nbformat": 4,
  146.   "nbformat_minor": 2
  147. }
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top