Advertisement
Guest User

AC bridge

a guest
Nov 19th, 2017
46
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 7.62 KB | None | 0 0
  1. \documentclass[12pt, a4paper]{exam}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{graphicx}
  4. \usepackage{wrapfig}
  5.  
  6. \begin{document}
  7. \noindent\begin{minipage}{0.45\linewidth}
  8. \textbf{Final Exam EE1}\\* February \newcommand{\ts}{\textsuperscript}2\ts{nd}, 2012\\*
  9. Prof. Dr. rer. nat. Rasmus Rettig
  10. \end{minipage}
  11. \begin{minipage}{0.55\linewidth}
  12. \begin{flushright}
  13. \includegraphics[width=0.5\linewidth]{Hawhamburg-logo.png}
  14. \end{flushright}
  15. \end{minipage}
  16. \vspace{5mm}
  17. \setcounter{section}{2}
  18. \section{AC bridge}
  19. The voltage measured between the points A and B in the included
  20. schematics is UAB=0V. The RMS voltage of the source is 10V, its
  21. frequency is 1kHz.\\*
  22. \includegraphics[width=0.7\linewidth]{AC_circuit.png}
  23.  
  24. \pagebreak
  25.  
  26. \begin{minipage}{0.45\linewidth}
  27. \textbf{Final Exam EE1}\\* February \newcommand{\ts}{\textsuperscript}2\ts{nd}, 2012\\*
  28. Prof. Dr. rer. nat. Rasmus Rettig
  29. \end{minipage}
  30. \begin{minipage}{0.55\linewidth}
  31. \begin{flushright}
  32. \includegraphics[width=0.5\linewidth]{Hawhamburg-logo.png}
  33. \end{flushright}
  34. \end{minipage}
  35. \vspace{5mm}
  36. \\*
  37. a)What is the generic form of the balancing condition for an AC bridge
  38. circuit? Start with this condition, add the respective impedances as
  39. indicated in the schematic and derive the equations for R1 and C1.
  40. \vspace{10mm}
  41. \\*
  42. Balancing Condition:
  43. \vspace{20mm}
  44. \\*
  45. Calculation:
  46. \vspace{140mm}
  47. \\*
  48. \begin{center}
  49. Formula R1=...\\*
  50. Formula R2=...
  51. \end {center}
  52.  
  53. \pagebreak
  54.  
  55.  
  56. \begin{minipage}{0.45\linewidth}
  57. \textbf{Final Exam EE1}\\* February \newcommand{\ts}{\textsuperscript}2\ts{nd}, 2012\\*
  58. Prof. Dr. rer. nat. Rasmus Rettig
  59. \end{minipage}
  60. \begin{minipage}{0.55\linewidth}
  61. \begin{flushright}
  62. \includegraphics[width=0.5\linewidth]{Hawhamburg-logo.png}
  63. \end{flushright}
  64. \end{minipage}
  65. \\*\\*\\*
  66. b) Calculate the values for R1 and C1 based on the parameters in the
  67. schematic.\\*
  68. Calculation:
  69. \vspace{100mm}
  70. \\*
  71. \begin{flushright}
  72. R1=$\rule{3cm}{0.15mm}$\\*
  73. C1=$\rule{3cm}{0.15mm}$\\*
  74. \end{flushright}
  75.  
  76. \pagebreak
  77.  
  78. \begin{minipage}{0.45\linewidth}
  79. \[
  80. \textnormal{NCT script}\textnormal{\hspace{5cm}}
  81. \]
  82. \end{minipage}
  83. \begin{minipage}{0.55\linewidth}
  84. \begin{flushright}
  85. \includegraphics[width=0.5\linewidth]{National.png}
  86. \end{flushright}
  87. \end{minipage}
  88. \\*
  89. \vspace{10mm}
  90. \section*{16.1. A.C. Bridges\cite{AC bridge}}
  91. Resistances can be measured by direct-current Wheatstone bridge, shown in Fig. 16.1 (a) for which the condition of balance is that
  92. \begin{center}
  93. \[
  94. \frac{R_1}{R_2} = {R_4}{R_3} \textnormal{ or } R_1R_3 \hspace{1cm}R_2R_4
  95. \]
  96. \end{center}
  97. Inductances and capacitances can also be measured by a similar four-arm bridge, as shown in Fig. 16.1 (b); instead of using a source of direct current, alternating current is employed and galvanometer is replaced by a vibration galvanometer (for commercial frequencies or by telephone detector if frequencies are higher (500 to 2000 Hz))
  98. \begin{center}
  99. \includegraphics[width=0.7\linewidth]{cir5.PNG}\\*
  100. \textbf{Fig. 16.1}
  101. \end{center}
  102. The condition for balance is the same as before but instead of resistances, impedances are used i.e.
  103. \begin{center}
  104. \[
  105. \frac{Z_1}{Z_2} = \frac{Z_4}{Z_3} \textnormal{ or } Z_1Z_3=Z_2Z_4
  106. \]
  107. \end{center}
  108. But there is one important difference i.e. not only should there be balance for the magnitudes of the impedances but also a phase balance. Writing the impedances in their polar form, the above condition becomes
  109. \[
  110. Z_1<\phi_1Z_3<\phi_3=Z_2<\phi_2Z_4<\phi_4 \textnormal{ or } Z_1Z_3<\phi_1 + \phi_3 = Z_2Z_4<\phi_2 + \phi_4
  111. \]
  112. Hence, we see that, in fact, there are two balance conditions which must be satisfied simultaneously in a four-arm a.c. impedance bridge.
  113. \[
  114. (i)\hspace{0.1cm}Z_1Z_3 = Z_2Z_4 \hspace{4cm}\textnormal{...for magnitude balance}
  115. \]
  116. \[
  117. (ii) \hspace{0.1cm}\phi_1 + \phi_3 = \phi_2 + \phi_4\hspace{3.15cm}\textnormal{...for phase angle balance}
  118. \]
  119. \pagebreak
  120.  
  121. \begin{minipage}{0.45\linewidth}
  122. \[
  123. \textnormal{Script }EE_1\textnormal{\hspace{5cm}}
  124. \]
  125. \end{minipage}
  126. \begin{minipage}{0.55\linewidth}
  127. \begin{flushright}
  128. \includegraphics[width=0.5\linewidth]{Hawhamburg-logo.png}
  129. \end{flushright}
  130. \end{minipage}
  131. \\*
  132. \vspace{10mm}
  133. \\*
  134. \section*{7.8 AC bridges\cite{EE1 script}}
  135. If we replace the resistors of a Wheatstone bridge by capacitors and inductors we get an AC bridge
  136. that can be treated in a similar way to the DC bridge. The following bridges are designed to measure
  137. inductances, capacity or frequency.
  138. \vspace{10mm}
  139. \\*
  140. \begin{minipage}{0.55\linewidth}
  141. \includegraphics[width=0.5\linewidth]{cir1.PNG}
  142. \end{minipage}
  143. \begin{minipage}{0.45\linewidth}
  144. \begin{flushright}
  145. \[
  146. \textnormal{Voltage across the bridge: }\underline{U_a}\textnormal{\hspace{10cm}}
  147. \]
  148. \[
  149. \underline{U_a} = \underline{U} \left(\frac{\underline{Z_2}}{\underline{Z_1} + \underline{Z_2}} - \frac{\underline{Z_4}}{\underline{Z_3} + \underline{Z_4}}\right)
  150. \textnormal{\hspace{5cm}}
  151. \]
  152. \[
  153. \textnormal{Balance condition:\hspace{5cm}}
  154. \]
  155. \[
  156. \frac{\underline{Z_1}}{\underline{Z_2}} = \frac{\underline{Z_3}}{\underline{Z_4}}\textnormal{\hspace{5cm}}
  157. \]
  158. \end{flushright}
  159. \end{minipage}
  160. \vspace{10mm}
  161. \\*
  162. \begin{minipage}{0.55\linewidth}
  163. \textbf{Maxwell-Wien bridge}\\*
  164. \includegraphics[width=0.5\linewidth]{cir2.PNG}
  165. \end{minipage}
  166. \begin{minipage}{0.45\linewidth}
  167. \begin{flushright}
  168. \[
  169. \textnormal{To be measured: inductor }\textnormal{\hspace{10cm}}
  170. \]
  171. \[
  172. \textnormal{inductance } L_1 \textnormal{ with}\textnormal{\hspace{10cm}}
  173. \]
  174. \[
  175. \textnormal{dissipative element } R_1 \textnormal{\hspace{10cm}}
  176. \]
  177. \[
  178. \textnormal{Balance condition:\hspace{5cm}}
  179. \]
  180. \[
  181. R_1 = \frac{R_2 R_3}{R_4}\textnormal{\hspace{10cm}}
  182. \]
  183. \[
  184. L_1 = R_2 R_3 C_4\textnormal{\hspace{10cm}}
  185. \]
  186. \end{flushright}
  187. \end{minipage}
  188. \vspace{10mm}
  189. \\*
  190. \begin{minipage}{0.55\linewidth}
  191. \textbf{Capacity bridge}\\*
  192. \includegraphics[width=0.5\linewidth]{cir3.PNG}
  193. \end{minipage}
  194. \begin{minipage}{0.45\linewidth}
  195. \begin{flushright}
  196. \[
  197. \textnormal{To be measured: capacitor }\textnormal{\hspace{10cm}}
  198. \]
  199. \[
  200. \textnormal{capacity } C_1 \textnormal {with dissipative element } R_1 \textnormal{ }\textnormal{\hspace{10cm}}
  201. \]
  202. \[
  203. \textnormal{Balance condition:\hspace{5cm}}
  204. \]
  205. \[
  206. R_1 = \frac{R_2 R_3}{R_4}\textnormal{\hspace{10cm}}
  207. \]
  208. \[
  209. C_1 = \frac{C_2 R_4}{R_3}\textnormal{\hspace{10cm}}
  210. \]
  211. \end{flushright}
  212. \end{minipage}
  213.  
  214. \pagebreak
  215.  
  216. \begin{minipage}{0.45\linewidth}
  217. \[
  218. \textnormal{Script }EE_1\textnormal{\hspace{5cm}}
  219. \]
  220. \end{minipage}
  221. \begin{minipage}{0.55\linewidth}
  222. \begin{flushright}
  223. \includegraphics[width=0.5\linewidth]{Hawhamburg-logo.png}
  224. \end{flushright}
  225. \end{minipage}
  226. \\*
  227. \vspace{10mm}
  228. \\*
  229. \begin{minipage}{0.55\linewidth}
  230. \textbf{Wien-Robinson bridge}\\*
  231. \includegraphics[width=0.5\linewidth]{cir4.PNG}
  232. \end{minipage}
  233. \begin{minipage}{0.45\linewidth}
  234. \begin{flushright}
  235. \[
  236. \textnormal{To be measured: frequency }\omega = 2\pi \textnormal{f} \textnormal{\hspace{10cm}}
  237. \]
  238. \[
  239. \textnormal{Balance condition:\hspace{5cm}}
  240. \]
  241. \[
  242. 1 = \omega^2R_1R_2C_1C_2 \textnormal{ and }\frac{C_1}{C_2} + \frac{R_2}{R_1} = \frac{R_4}{R_3}\textnormal{\hspace{10cm}}
  243. \]
  244. \[
  245. \textnormal{Let } C_1 = C_2 = C, R_1 = R_2 = \textnormal{Rand}R_4 = 2R_3\textnormal{\hspace{10cm}}
  246. \]
  247. \[
  248. \textnormal{Hence : } \omega = \frac{1}{RC}\textnormal{\hspace{10cm}}
  249. \]
  250. \end{flushright}
  251. \end{minipage}
  252.  
  253. \pagebreak
  254.  
  255. \begin{thebibliography}{9}
  256. \bibitem{AC bridge}
  257. A.C. Bridges.
  258. \\\texttt{http://www.nct-tech.edu.lk/Download/Technology\%{}20Zone/AC\%{}20Bridges.pdf}
  259.  
  260. \bibitem{EE1 script}
  261. Prof. Dr.-Ing. Jörg Dahlkemper.
  262. \textit{Department Informations- und Elektrotechnik}.\\
  263. Electrical Engineering 1, 22.09.2017.
  264. \end{thebibliography}
  265. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement