Advertisement
Guest User

Untitled

a guest
Sep 19th, 2019
79
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.64 KB | None | 0 0
  1. \begin{enumerate}
  2. \item
  3. \text{Let} {A} = \left(
  4. \begin{array}{cccc}
  5. a_{11} & a_{12} & ... & a_{1m} \\
  6. a_{21} & a_{22} & ... & a_{2m} \\
  7. a_{31}& a_{32} & ... & a_{3m} \\
  8. \vdots & \vdots & \ddots & \vdots \\
  9. a_{n1} & a_{n2} & \cdots & a_{nm}\\
  10. \end{array}
  11. \right)
  12. \\
  13. \\
  14. \\
  15. \text{Let} {B} = \left(
  16. \begin{array}{cccc}
  17. b_{11} & b_{12} & ... & b_{1m} \\
  18. b_{21} & b_{22} & ... & b_{2m} \\
  19. b_{31}& b_{32} & ... & b_{3m} \\
  20. \vdots & \vdots & \ddots & \vdots \\
  21. b_{n1} & b_{n2} & \cdots & b_{nm}\\
  22. \end{array}
  23. \right).
  24. \\
  25. \\
  26. \text{Then}\\
  27. A^T + B^T = \left(
  28. \begin{array}{cccc}
  29. a_{11} + b_{11} & a_{21} + b_{21} & ... & a_{n1} + b_{n1} \\
  30. a_{12} + b_{12} & a_{22} + b_{22} & ... & a_{n2} + b_{n2} \\
  31. a_{31} + b_{13}& a_{23} + b_{23} & ... & a_{n3} + b_{n3} \\
  32. \vdots & \vdots & \ddots & \vdots \\
  33. a_{1m} + b_{1m} & au_{n2} & \cdots & a_{nm} + b_{nm}\\
  34. \end{array}
  35. \right)
  36. \\
  37. \\
  38. A + B = \left(\begin{array}{cccc}
  39. a_{11} + b_{11} & a_{21} + b_{21} & ... & a_{1m} + b_{1m} \\
  40. a_{21} + b_{21} & a_{22} + b_22 & ... & a_{2m} + b_{2m} \\
  41. a_{31} + b_{31}& a_{23} + b_{23} & ... & a_{3m} + b_{3m} \\
  42. \vdots & \vdots & \ddots & \vdots \\
  43. a_{1m} + b_{1m} & a_{n2} & \cdots & a_{nm} + b_{nm}\\
  44. \end{array}
  45. \right)
  46.  
  47. \text{The Transpose if this sum is clearly the same as} A^T + B^T
  48.  
  49. \item
  50. Let \textit{A} be an arbitrary matrix that is symmetric and invertible.\\
  51. A property of the identity matrix is\\
  52. I = I^T \\
  53. \textit{ Since any matrix times its inverse is the identity:}\\
  54. AA^{-1} = (AA^{-1})^T\\
  55. A^{-1}A = (A^{-1})^TA^T\\
  56. \textit{Since A is symmetric:} \\
  57. A^{-1}A = (A^{-1})^TA\\
  58. A^{-1}AA^{-1} = (A^{-1})^TAA^{-1}\\
  59. A^{-1}I = (A^{-1})^TI\\
  60. Therefore A^{-1} = (A^{-1})^T \textit{when A is symmetric}\\
  61.  
  62. \item
  63. We know that (AB)^{-1}AB = I\\
  64. B^{-1}A^{-1}AB = B^{-1}IB = B^{-1}B=I\\
  65. \text{Since} I = (AB)^{-1}AB = B^{-1}A^{-1}AB \\
  66. (AB)^{-1}AB = B^{-1}A^{-1}AB \textit{if we divide by AB}
  67. \end{enumerate}
  68. \item
  69. \begin{enumerate}
  70. \item
  71. \begin{enumerate}
  72. \item
  73. $f(x_1,x_2,x_3)=1$ when $x_1=1, x_2=0, x_3=1$ \\
  74. This means that $\theta\cdot x_1 + \theta \cdot x_3 > 0$ and $\theta_1 + \theta_3 > 0$.\\
  75. Also, $f(x_1,x_2,x_3)=0$ when $x_1=1, x_2=0, x_3=0$ and $x_1=0, x_2=0, x_3=1$
  76. This suggests $\theta_1 < 0$ and $\theta_3 < 0$ respectively.\\
  77. This contradicts our original inequality since the sum of two negatives cannot be positive. Therefore it is not possible to learn such a $\bar{\theta}$\\
  78. \item
  79. We can simply add $b$ to each of the inequalities derived from part (i).\\
  80. (1) $\theta_1 + \theta_3 + b > 0$\\
  81. (2) $\theta_1 + b < 0$\\
  82. (3) $\theta_3 + b < 0$\\
  83. If we combine inequalities (2) and (3), we get $\theta_1 +\theta_3 < -2b$ and rearranging (1) gives us $\theta_1 + \theta_3 > -b$. Now we know that there is no solution since $\theta_1 + \theta_3$ cannot be less than $-2b$, but also greater than $-b$
  84. \end{enumerate}
  85. \item
  86. \begin{enumerate}
  87. \item Yes. If $\theta = [2,1]^T$ it correctly classifies the points.
  88. \item Yes. If $\theta = [2,1]^T$ and $b=-1$, the points are correctly classified.
  89. \item No. If the square is formed by $s$ just greater than $1$, it is the minimum size to include the point $[0,1]$, but it doesn't correctly classify the data, since $[2,-2]$ is not included. $s$ must be greater than $2$ for $[2,-2]$ to be correctly classified, but $[-2,-1]$ will be classified as positive, and thus misclassified.
  90. \item Yes. Centered at $[2,0]$ with $s=5$
  91. \end{enumerate}
  92. \end{enumerate}
  93. \end{enumerate}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement