Leylite's SpaceChem Puzzles Last updated: September 3rd, 2013 ==== Note: ratios after puzzle names represent difficulty ratings similar to those found on ResearchNet. ==== Thanks and accolades to blueeyedrat for helping me and commenting on some of these puzzles. Thanks also to Lanky for comments and an edit to Radioactive Salts. ===== Hunter Process (1/3) (production) Extract titanium out of titanium dioxide, using the Hunter process: Solving this level is straightforward, since the reactor quota is generous and there's a recycler. Optimizing it may be a little more interesting. H4sIAOtxtlAA/3WQzW7CMBCEXwXtOUi2DwElx/TAoSqVyq3qwcSLsOrYyD8VKaLP3nWCENA0h0 gZ7UxmvhN4aZXr5toeUpx/O4sBqhOw/Bo0+nw/QecMtskgVLDRUVqdutmTdketsN7o9Q8TNeeC nlrwJWM1F/SGAlqXbIRqeS7uMpq9cV5brBszWvmCM7Lyxa1LPLrcJznouqT/cFEKsoiSZWPJxK 3v43wuYKePqCaGwZtTuf+qV35c8CLXq1yCM56b5yqCUxMKcSn+BTNBgygMBG77c0YB/MHQSL91 9gqvubAr/0M3hIiHkMuCEeMwoDHDgAmKFEAJEb2X2kLFCujkce5RttF52lQWsJdhHqL0dARV9A lHSYaA3db0UO2kCRdR6TCpS/UlbYvqNsCm1qD0d3chHTATUHive2x7ur4WiP0hLz14p1IbtbO0 yMouayvahX726l2LIZAuU9w7csIz9kZHJEnp3U4TrUgt2fkXZ3dZlecCAAA= ==== Not Road Salt (1/3) (production) I'm sure all of you are by now familiar with sodium chloride, NaCl, which is widely used as road salt due to its colligative properties when dissolved in water (from melted snow). Potassium chloride, KCl, is also used for this job. Cesium iodide, CsI, is another salt made from a (heavy) group I element and a (heavy) halogen. At this time, SpaceChem has no plans to deploy CsI as road salt. Phosphoric acid isn't road salt either. H4sIAMy1clEA/22QTWsCMRCG/8oyZ4VJrCC7p+JFoVRpeys9xGSsgd1kyUdxK+tv7+xqKWIvu+ TJZN6PEwTljG+m1rU5Tb+9owjlCXD4jIyP7ydofE061wQlLCna3BSrzgR/tIaqZdysKiHmc4GV FAsUlZQCESagfXYJSiH7j76fwN4eyfyjBNuDj+3BhxyLt2CtN8Pa7fqMM94r5oI3ivkMsUL+sY qQw4kFBD/eHLtPctXmjJKnF/JiAoEFfU73qe6jrC+Cy7j+i3EV+E2A/Sh28/rXtdXFo7amWrHf Ldt4qBAFt4BiMXjFxWhsjCHkgOR4Pbq8qwqHohKFoKyDcjaBRh2ngZROPnAGOYGDitOYVOAhKF PIdEEqRmp2dQflXtXxCo2N/3JlvpTTZG6gy7omFW5YzC2FnXeGbnkg3fH0H0xdO3TSBm+yTtY7 zuRUM7Bnn4oXr0zxqurEWOXErfHFE3W1TcTI2P3ecq2JbWL/Az5eV5OVAgAA ==== Repair Tungsten (1/3) (research) Today, it seems we have a surplus of Tungsten(VI) hexachloride left over from our other experiments. We'd like to recover the tungsten as well as produce some hydrochloric acid, so adding hydrogen should not only produce our desired results but release energy too. Of course, this is SpaceChem so our molecules are going to need a little help to make this happen. H4sIAIK2clEA/3VQu2rEMBD8FbP1GSQTckGqwjUurgqBK0IKxV7bAp1k9IA4xvftWdu5PJyk2W VHs7MzGkHbPsX8zVkMIEZgc1kwGp9GODuDVTIIAh6TbUNEm3X4qqrOOK9rlKeDubBbyTjfcyY5 43vGJQ03nEtGE7WCr2CxUApqjMEOKpdsBMGL6XnaAf//cDnU3rVoZXlhBWnzWYXKVoRUXIq/42 ylVu9Vdl/pWpYH8yX50xi72vrjE+RpCbnh00KnQm6UbzFfvYBolAm4gxdna/T5B/luZQa0wXkQ 0SdckSYF9J9LC6c3OsYNGNFg7/x3OA797NBjQOWrjoxZdZ6RB+yV9tnVOj2oFLv5LBxxIHEkqN ZNoylkHECw6R1nRnDgGAIAAA== ==== (NEW!) Shared Space (1/3) (research) A simple assignment. Take two benzene outputs, and using a fusion laser, create two pyridine outputs. Easy to solve; slightly more difficult to optimize. There's some bonders too in case you want to try something fancy. H4sIAIPTJVIA/8WQTUvEMBCG/4rMuYVMZKu0N714EBH2KB5iO7WBbFLyceiW+tudtKusiAcves gweXjJPJkZtB1TLI/OUoB6BpHLyvj6NMPBGWqTIajhhuyRLDW3b6K649MIgQIbgZXkKtd6iUI0 uHLECrmXFXK/crlyiZWQjZRV7jOHAlqXbIQa5fK8FID/7sASLsXvizkzeZy87vSmsmOV3cPvXf DqRwvxsYe/HMkzBxVKo/wrldsCoO6VCVTAi7Md+fIUvt6SgWxw/jOTUZ8CMYk+nUAYjY6RvqYi GRqdP8dxGvMnPQVSvh1YzKpDJvtBeeou9qNqialKccgz4Z4mfjmjTve95iXFCWqxvAOtYmmy1A IAAA== ==== (NEW!) Shared Space II (1/3) (research) Second verse, similar to the first. This time you need to take two benzene inputs and create two pyrazine outputs, requiring two fusions on opposite sides of the molecule. H4sIAJTTJVIA/8WQTWvDMAxA/0rROQHLK+lIbttlhTEGPY4dvERZAqkd/HFIQvrbJyfdaBnbcT tYyM9CetYEre6DT0ejyUE+gYhhYXx9meBoOipDR5DDHemRNBX3J5E98CmEQIGFwExylEu8QSEK XDhihpzLDDlfuFy4xEzIQsos5pFDAqUJ2kOOcn6dE8B/d2AJE/z3xVyYPA9Wje2qsmWV7dOJW1 7r7OQvIrj7UUF8LuHP5vHARrm0U/ad0vXrkNeqc5TAm9EV2fRcfLtWOtLO2K+aiOrgiIm34Qxc 37Xe03WVp456Yy+xH/r4Q0uOlC0bFtPqGMmhUZaqzaFXJW32e35QwTdxLDzSwM2JUdXWdctL8g PkYv4ArXOKcNECAAA= ==== Nonsense Organic (1.5/3) (research) A research level about producing some sort of organic molecule. Again, this level is generous and provides 8 bonders, but there aren't any other conveniences like sensors or quantum tunnels. In fact, this level can also be solved without flip-flops. Fond memories of the main campaign, right? H4sIAKNytlAA/3WQwWrDMBBEf6XsOYZdCeJgH0uhh5J8QOlBddaxwJGMJB/SkHx7V3IpadOCWa ynYTSzZ7BumlP14R1HaM6AeRQmx9czHP3I3TwyNPCUBuP8aI7Wcft4RfV8xXq7axEJqUWqSaYi xJYKIVoLoUJUIaoQVYguRNMGEVbQ+dklaEhd3i4roP9DbG0K/sCu3UoAeaLWYk71nYm4+DndV7 u18i6yfA+7cDDOdqWT2OrcayfB1yqXqEs5oqWETLWWf602uQSVoroWgrpo9LKAsgwsJGtu0mHO NphYjSYcuFpSQtObMfIK3r3bc6i+xJtFmWP68K3JqJ8j/yRxGm1Kv2DikScfbnE6Tbl94MgmdI Mkc+b41z7kxsxpyA/DC5/EnQXtbd9b2WA6QYOXTyTS70hAAgAA ==== Uranium Oxide Reduction (1.5/3) (research) Deal with three different uranium oxide inputs, using only bonders and quantum tunnels. If you're familiar with sorting molecules using input molecule shapes, bonders, grab/drops and such, then this exercise will be a piece of cake. If not, well, now's the time to learn. Optimizing this one will probably come down to squeezing individual cycles/symbols out of the solution. H4sIAOu85FAA/42QT2uEMBDFv8oyZ4Uk7cGaa49dhFJPpYdUxzUQE8kfWCv2szfqbrHuHnoJ5M d7b97MCFL3wadfRqODfAQyPwuL3/cROqOwCgohh9IKLUN3OBptzrJGXhac0ifGCGc0IwQSqEzQ HvLHKbnrfJZX4zdhq5etXk7ZvxLe7Cbi4U4EpyQjbBv0MU0JmOBv19zkF+fhhJpfemW3K1ESU+ jOdWnFy6XITh71rXCpEvaE6Tof8kYohwl8Gl2jTa8dV6VD7Yz91cyoCQ7/Etcr6f0OelTYG7tg b0OkfujnghYdClu1sZgW3faQxXzFwyvWofLS6CgQwbfzeHjBIc7AiGrZNDLu6gfIyfQDbQgqsy wCAAA= ==== A Small Push (1.5/3) (research) A relatively straightforward decomposition of a large organic molecule into two smaller copies (and some hydrogen). The procedure is pretty straightforward, so it's OK if you only have two bonders to do it with, right? H4sIAHa7clEA/2WPT2vDMAzFv0rRaYMErLSUEp+2MMhh0MGOYwevUZqAawf/OWQl/eyTk210HQ bx/LP0/HSG3gwx5J/WkIfyDCKVmfH17Qwnq+kQNUEJmG1WjzGMrumVbqgbG5LVRRT1RWzuqn19 z1oibhGlEDvWYtEFCiHXM1njVqBcz6SYX1HwkbiQpSYCGRxsNAFKLKb3acrAxvA/6FW6p9CR4U dZcZ6i2v8447b49WfNSXAnxJW/YHO8MavHxtkjGVkvOyGmabyZ48FO+Vwrd6R8yQdlq7SnDD6s acjl383F0unJeOt+exJqo6e/xA+6D+EGBtI0WHeNwzikqI48KXfoOJlRp0QeVq8npfXqJfpEVQ xd+hSeaWRnYtT0bdvzqmGEUkxfpQIxEAQCAAA= ==== Pushed Together (1.5/3) (research) The companion assignment to A Small Push. Now that we've created our small organic pieces of ethenone (ketene), we can dimerize them together into diketene. After that, in SpaceChem 2.0, there will be an assignment that has two diketene inputs and asks them to be combined into tetraacetic acid or something silly like that. But I'm getting ahead of myself. H4sIAIS7clEA/3WQzWrDMBCEXyXsOQKt7JhiHUOhh0J6yK304Cbr2KBIRj9QNyTP3lWcg5O2SD J4NOw3oxP0dkhRfDtLAeoTyPy5avz7foKjM7RLhqCG59iRZZ9ev1ykWm80YqVQo+SlUaGUWrEi dYFPUsISdi7ZCDWq88d5Cfj/5G3XhwVvuhEW0bk/KbP5E/GBwhiX4u9CM1YpjowZDYO+KDZWKH HtdJFlBm74aCwqnCqhlgUiFytyiKLIYFVe8WWF7FxV2bPKHqzuA8kcp2uCMI0/kJiCQR19oiV8 OrsnL25eNRkD2eA81G1jAk1SmwLdK2EwfYwPYiRDg/NzOY5D7uspUON3HQezzTErbyl0tF9s3S G/t+eLJsUuc+GVRh5OLO37tu35yeIItTz/AFvZvocnAgAA ==== Easier Done Than Said (1.5/3) (research) Chlorodiphenylphosphine isn't hard to pronounce, and it isn't hard to combine two benzene rings and two phosphorous atoms into a large molecule. Right? After all, there's only twenty-six atoms here. H4sIAGS9clEA/3WRPWvDMBCG/0rQ1EIMOsVWwd6aFjp0CLRb6aAm59qgSEaSByckv713cgopoY Nfzq/v6zkfRe+GMRUH7zCK+igkS/bo9eMo9t7idrQoavGI7oAOm/VZ6hd6GilBQiNBK1KVdQVS NpB9AA0UKw0UZ19lX4GWqlFKc8y+WIqtH10SNajT52kp4P8dNp2PQ+fDGJsNTYDqppzq/Zhuma 6arDvrg9/1Q4duskNu2bvm7gJW3Z+l2qxtAxVvCiWTqTJzSA20e1ZiqmRGfmBO0DMbZ+VbECH7 mlVllRVwXHE1taB4pfkuqyprmVVlhaySla7MtQR7jSoZtDOxsCZ8YzEjizqFEZfiy7sdhuKSW8 6JEV30QdStsRFnqx0jht+inDPYPiX8m5XQ4uDDtZ2mgQ8ZMKIJ2472cmbPzrOJPYbFE51+8d4Z t3gz/Y4+mzF1PFy84kQjkKxd37Y9/ZE0iVqefgC6iQaBiQIAAA== ==== Garlic Breath (1.5/3) (research) One of our research facilities is currently working with some odorless and highly toxic gases, so in the name of safety we have decided to add some allyl methyl sulfide into each of the pressurized tanks. The strong garlic odor should assist in early recognition of gas leaks and could potentially save precious cycles and/or lives. H4sIAHC9clEA/3WQPW/DIBCG/0p1c5A4nFiV2RpV7dBOHqsO1DnXlghYfAyulfz2As6QpKqQTv g5eHnOC4xmioH9WEMemgV4LoWlz48FjlZTFzVBA89hmDUZkvszF69nvpXI05KItUhVIOdSFCKw zjUT2EBnownQoDh9njaA/z/QRt1HJ9uUmALur6a7Noa/slcBFXunLBmG0TJkk7PTxXebfB/bLI YixyOXFRZhUSPKapWv8h6r0q0K2a6T7EpjVxq70qhvZ+NZb1CeaeW+ia2i0AQXaQNf1hzIsctZ sR70ZLx10PRKe1pRHz3dEj/pMYQ7GEjTZN01DvOU53fkSbluSGJGHTN5UU6P3cOTIxUyVjEM+V V4ozlFU0KHse/H9APDDA0//QKqbo1SEQIAAA== ==== Cruel Benzene (1.5/3) (research) Today we need to synthesize some benzene rings. Unfortunately, we discovered a design flaw in our methylene supply reactors that allows some hydrogen gas to contaminate the supply. Worse, our on-site recycler is closed for maintenance. Our only option that fills our benzene ring quota on time is to work with our contaminated input using our nuclear reactor. Don't worry about leaving garbage inside the reactor, either - we can clean it out later if necessary. It's more important that we get the rings finished before the deadline. H4sIAJK/clEA/2WQvW6EMBCEXyXaGqS1L3IBXWiuSJ4gSkFgOZB8NvJPwSHu2bM2KMklzWj9aW c89gqTmWMob9aQh2oFTJIZH99XuFpNXdQEFbxRGBdNhurzHWVToxACayEUq+QRoYDORhOgErgV D97z0jt7IZOtdTLi7v/xyO1j2wqwMfwv9CvphcwtdWjuqDhM1YgCBYcpySqznlK8yHyvJ6QSPG cuM5dCcREpVZpPf8tzj7H1pW7dhcq9EVRDqz0V8GlNT648lp/3TU/GW/e9k9AQPTEJLh7Az3oK 4ZEF0jRbl+nhDcuc3unIU+u6kXuZ9ppIwy79dLyfcRvDmO6EV1o4OaF+GoaJPyosUOH2BQV8Px PdAQAA ==== Tetrazene Isomers (2/3) (production) A production level about producing three different isomers of tetrazene, an explosive compound. Unfortunately, all we have available are assembly and disassembly reactors, so the job might be a bit difficult. Good luck - any solution is a good solution! H4sIAJoywlAA/22RzWrDMBCEXyXs2QZJCTHYx0JJoeTUW+lBsdaNqC0F/ZQ4wX32ruw0beJiEN bgnW9mfQYnjbJdrs0hhvxkDXooz8DSMWp0fT1DZ1usY4tQwlYHZ9/RVNsvJirOiyWrBC8Ygwxq G02AkovhbRgyaPQR1T/WsOnV5LGZPDhPHpw8aMrGMM/yJ8BDX7c2YHDyhAZTjBXZrFIUzlMUOr kokqUoGL0zeiomRsiSINVyRP3GZUTl95S91GbxMsewCcBHAC9EsksY9oMhwIRcijlG3GEerfuY U9aXMuxaZirGbihjjYqPlcSoixmRkAGdoy50zaCTx9yhrIN1tNt1Bnvpcx+ko4+gbGTrcdKk99 jt2h7K4OJFU9r/J0v1KU2N6mbexLpFeevp4wHdzhp1x3JY0y9N4mQa+kNazcFZFeugraFGRnZJ u25q8eRth1QiAxnD3tIwPGPf6oAkKd00mjYcKCgbvgHRqxGY5QIAAA== ==== Cyanide Reassembly (2/3) (production) This is a level in the spirit of the Flidais assignments. The following reactor layout is mandated, which places an assembly reactor on the left and a disassembly reactor on the right, which feeds back into the assembly reactor using a pipeline loop. (If you use any other layout, it doesn't count as a solution.) http://imgur.com/6pO6G0i Since you have to use the pipeline loop at least once, you'll need to balance taking in new inputs and reassembling inputs into the final product. Good luck, and happy optimizing! H4sIAAG95FAA/22RPW/DIBCG/4p1sy0dWE0lM1VZMlRR1bXqcDHnBskGi48qTuT+9uI0apu0Aw geON4HOIEnq91QGTumWB2d5QDNCXDpzixPX04wuJ7b1DM0sJm0d29si/VE1mhWm/VWoRAClRCr GpUU94hQQuuSjdAIOb/OcwmdObC+ycnYpfg3+VecqB6OrhClLJ68G0kbtqzWH1hvctvmlrNXUi hEgWIxkIvBKtugFIiqzjZSyfNqLZdxXV/74WIX2XsyFpq7EgY6VJ6pjc5nJVnCnkIVIvm8CZqO +sBfjELgYddP0ESfLkyb8B8m/U62ZX1Vb1PbM12fGdLIfuesvsny3E559w+M07i8z+idTm00zu YrWRoWdvmZ4pm/VUqgFPcul8MjT72JnJE2XWfyO8esivMnUXNSeAwCAAA= ==== Unnatural Gas (2/3) (production) Our client has requested we synthesize several liters of methyl azide, since they theorize it could be a less toxic alternative to sodium azide and lead azide. We can fill this order by combining various hydrocarbons with nitrogen gas, but we believe that our nuclear reactors may make this process more efficient than just throwing away excess hydrogen and carbon. H4sIALK/clEA/32QwWrDMAyGX2X4nIDtlBaS0xhjO2y97TR2UBNlMSR2sOXRtLTPPiVNR9uNER Dxh/z5l/bCg61clxrbR0p3zmIQ+V7IsUyMj+970bkWy9iiyMUrUgMWi4fno1wUUiklCyX5K5Ra Kq5aSVloxlIkonTRksgXh+RK8kjN0OJoOUo9ibRanhRaFXrS6Uk0q/W/uvsS6cqnz8HUMhvDLP k/u430cTgkojZbrP4YX6wNefeJtliPOqVWk2jFCr7lIv3e12Wgnesu9pSxIzvvZxpojjfvasUv aD3VbHUZUskxI6H3YKzIs0R0sE09QknOhwk0ENJA4LlJ5DW0AU8MQsBu0w5XsDLhTw7VF9gSK5 GTjzOzsWwR/CUKsUe/cba6ectjOXDzTy8N/biF3rsqlmSc5YksdCN7sxYoemjvniAwhkiN44vi BYfWEDKqTF0bXiRxRnn4BnGnRAejAgAA ==== Recycled Brick Acid (2/3) (production) As a proof of concept, we want to create common acids out of recycled bricks (from demolished buildings). These acids can then be used to clean the bricks of our old historic brick buildings that we actually want to preserve. The marketing department says they think they can sway some clients from SFCM to SpaceChem if we can put on a demonstration. All our hydrogen reserves are currently occupied with other assignments, though, so you will need to create your hydrogen on-site. H4sIAJPDclEA/21RTY/TMBD9K9GcW8n2VksUn0ovewBFohIcEIdZ29GOcOzKsVFLFX474xRKu+ wlVp7fvI/xGRIGG8c1hUPJ658xuAm6M4j6WTD+/XqGMXpninfQwZ48GdR76n8JpaWSGym0Uq0Q WspWSFiBiSVk6KSav83zCgY6OvuGA+zQGypj0x/JOr3DnhWUUCzHQoKFJJO2vowUUG89+7Hngx ZSPlRPPmoC2V4DCNEKBWwZS/6/z02JjyURZjLN1pDVTzvPMvKi+W5x/ltBzEuKu+GefBOH5jPl RNHrJ86152AbDtZKqYWSdRc1SlV9lHVLNZ0SUshrt1sH9crhC2aXFuH+Gqyts1X6bpaHmZqQAn SbFYx4XCeHJsfEvR9X8ILTesqYmATdgH5yFwynyY3P/nQHWprexNH+wGCchS6n8gcLxXiH6Raa ysGl5xjsK6/kzInJ/8B8OtSWhxRtMZli4EoBx4p9unBt8z6R+b48D19iyS+R5+GDO3nKjiFLw0 C8rsxRxfwbmoXoCcgCAAA= ==== Chlorine Bath (2/3) (research) It's time to perform chlorination and produce some 1,2 dichloroethane (not 1,1 dichloroethane!). Unfortunately, our reactor quota is pretty strict - 1 reactor. So the single reactor must both sort three different hydrocarbons and process all of them into 1,2 dichloroethane. H4sIAHfEclEA/3WRTW7CMBCFr4JmnUi2QVAlu9JKLNoTVF24YUIiGTvyzyJFcPZOnBQMEYpkKc 8z38x7PkGru+DzX6PRQXECNhxRo9+vExyNwioohAI+0TdSY7ndXdiqZJxzVnJGX8n5mtMpOGOl IJlBBpUJ2kOxPmd3kPeJcWGCMOvnmKiIqIioLO/Byzm4V3hDr25QMYOyCZrivs8Z8Ofut40yth 34igYQlm94dLtJMVwQh0Am+HmsCY1nYvHWVgPT4F0kq5F/zWXzEEyMYYpEjNcxpWQH9u8kGbjr 99YcUJe7aXs+eyrqo8ZGulxJe8B89ABFLZXDDH6M3qPNp+KXsdKhdsZC4W3AUamDQ3ttijWdar 1/ED0q7IxNZd93w6YWHUpbNbSYlsc0+sWr9IMsg2+GofCBPaGRpH1b1y1Z9T0U7PwHHCbsxtYC AAA= ==== (NEW!) Supernitrous (3/3) (research) It's time to decompose a mixture of nitrogen oxides into nitrogen and oxygen gas: we have nitric oxide, nitrous oxide, and pentazenium oxide (which I'm pretty sure doesn't exist). Anyway, you have everything you could possibly need to sort the inputs, so this should take no time at all. H4sIAFfuJVIA/4WRzWrDMBCEX6Xs2YaV0+JgvUKJCz2WHlRnnQhsyegH4gT32buy+hOSQy8LGv abnUEX0GaKoTxbQx6aC2Aaq8bPtwuMdqAuDgQN7HRwuntoT3pPctdKIeoKZSW2iFBAZ6MJ0Dwu xR1ko/+hPrFqJYp6gwkX/+IvZII6k9Fx/LN44ttYo5CIKUEyEtlIiqrmiRXr16bvy1KAjeG+6t Wt9jQfyMiWM7Ln9r6bQHYRN9RaMHG7zKVqlahvOAaPypeDcgcqcxBoejV4KuDDmj258nt5mzc9 GW8dNMFFykofPblfaN2ZBh3CjRhooMm6Vc5wmKcU1JEn5boj5zJqTMprnMiZ/EGsqhiO6SQ808 zGxNJe973momGGBpcvrwuqnS0CAAA= ==== (NEW!) Radioactive Salts (3/3) (production) Here's a fusion challenge where your job is to make two theoretical salts out of plutonium and a mixture of hydrocarbons. The necessary molecular masses might be a little awkward, but since there's only two products it should be possible to get everything worked out. (NEW!) Note from September 3rd: This puzzle has been edited a bit according to some comments from Lanky; this should be a more fun puzzle to solve and/or optimize now. H4sIAK3/JVIA/3WS0WvbMBDG/5VwTxs4IKnFzeynUVr6MLKy7m3s4SpdiECWgnwq9ULyt/eUja 4OLYbD+vnuu+8T3kPG6NKw9HFXePknRRqh24Oq5cTk+GsPQwpkSyDo4Ia3U6BI/fVRmbujuuy1 kqfXujVSjVaqNydidFtrJdCATSUydO2hmcl9tcQzPfNf70J9pPH7cGhg45/JnTvXonkfCqfoy9 DfF9H5cinD0p8Kn7fOrNxSHmRosfackam/Hdbfj+pCPMh2SaX1lRZfalXdmZUQpVf6jS+tZIs5 U301s/iZvZ0wekfi69P1+nMV1+qqxlQ1ptL1XYJrIaatK83pa42gZ3tkEVPO6CN0poEBn5eZ0H LKEq1tYIvjcmTM0gTdBsNIfxmOIw2PYZpB58d3ObonjJYcdJzLPxaLDYT5LRrLjvJjio5mOJOd pPeV8bSr97HLyRXLPkUJFHGo7Ac6n8S9f6LFAwb56RrAwtskw/CNpuCZBDm/2Xi5Vhab6vACdR fJAbwCAAA= ==== Enjoy, and let me know what your solutions were (or what you think of the puzzle design).