SO(4,2) Casimirs in doubleton representation. In this notebook I am constructing a representation of SO(4,2) or SU(2,2) group using 2 pairs of annihilation/creation operators and then I am computing the Casimir invariants for this group in that representation. If you encounter any Fermion/InveX objects, please ignore them as they are not relevant for this particular representation. $HistoryLength = 0; Definition of Save and read functions SaveIt[filename_, expr_] := Module[{output}, output = Export[filename <> ".dat", ToString[expr // InputForm], "String"]; ClearMemory; output]; SaveIt[varnamestring_] := Module[{output}, output = Export[varnamestring <> ".dat", ToString[ToExpression[varnamestring] // InputForm], "String"]; ClearMemory; output]; ReadIt[filename_] := Module[{output}, output = ToExpression[ Import[StringReplace[filename, ".dat" -> ""] <> ".dat", "String"]]; ClearMemory; output]; ClearMemory := Module[{}, Unprotect[In, Out]; Clear[In, Out]; Protect[In, Out]; ClearSystemCache[];]; Definition of Bosonic oscillators Clear[Boson, BosonC, BosonA] Boson /: MakeBoxes[Boson[cr : (True | False), sym_], fmt_] := With[{sbox = If[StringQ[sym], sym, ToBoxes[sym]]}, With[{abox = If[cr, SuperscriptBox[#, FormBox["\[Dagger]", Bold]], #] &@sbox}, InterpretationBox[abox, Boson[cr, sym]]]] BosonA[sym_: String "a"] := Boson[False, sym] BosonC[sym_: String "a"] := Boson[True, sym] Aliasing NonCommutativeMultiply with CenterDot CenterDot can be entered by pressing Esc.Esc and this is how the non commuting objects should be multiplied and will be displayed in output. Unprotect[NonCommutativeMultiply]; Clear[NonCommutativeMultiply, CenterDot]; CenterDot[a__] := NonCommutativeMultiply[a]; NonCommutativeMultiply /: MakeBoxes[NonCommutativeMultiply[a__], fmt_] := With[{cbox = ToBoxes[HoldForm[CenterDot[a]]]}, InterpretationBox[cbox, NonCommutativeMultiply[a]]] Protect[NonCommutativeMultiply]; Clear[CRule] CRule = {NonCommutativeMultiply[a_] :> a}; Definition of clean - the function which orders and simplifies expressions ClearAll@expand SetAttributes[expand, HoldAll] Unevaluated[ expand[expr_] := Block[{NonCommutativeMultiply (*or times*)}, expr //. {times[left___, cnum_ /; FreeQ[cnum, (_Boson)], right___] :> cnum*times[left, right], times[left___, cnum_ /; (! FreeQ[cnum, Times[n___?NumericQ, ___Boson]]), right___] :> Times @@ Apply[Power, Drop[FactorList[cnum], -1], 2]* times[left, First[Last[FactorList[cnum]]], right], times[left___, Boson[False, s_], Boson[True, s_], right___] :> times[left, right] + times[left, Boson[True, s], Boson[False, s], right], times[left___, fst : Boson[_, s_], sec : Boson[_, t_], right___] :> times[left, sec, fst, right] /; FreeQ[Ordering[{s, t}], {1, 2}], times[b_Boson] :> b (*moved and rewrote this rule*), times[] -> 1}]] /. {HoldPattern[times] -> NonCommutativeMultiply} expand[Alternatives[NonCommutativeMultiply, CenterDot][ a1_, (a2_ + a3_)]] := expand[a1 ** a2] + expand[a1 ** a3] expand[Alternatives[NonCommutativeMultiply, CenterDot][(a1_ + a2_), a3_]] := expand[a1 ** a3] + expand[a2 ** a3] Clear[clean] clean = Simplify[FixedPoint[expand, Distribute //@ #] //. CRule] &; Commutator function Clear[CommOp]; CommOp[x_, y_] := clean[(x\[CenterDot]y - y\[CenterDot]x)]; Clear[ACommOp]; ACommOp[x_, y_] := clean[(x\[CenterDot]y + y\[CenterDot]x)]; Defining the basic variables. Clear[Ad, A, Bd, B, Xd, X, Yd, Y] Clear[\[Psi], \[Chi], \[CapitalGamma], \[CapitalSigma], i, j, k, l, m, n, p, \ q, g, T, G, P, Tr1, Tr2, Tr3, Cartan, Comm, Killing, Joseph, Commutator, \ Zero, zero, KillComm, KillMet, DoubleTr, GComm, Dim] Dim = 6; Ad = BosonC[a]; A = BosonA[a]; Bd = BosonC[b]; B = BosonA[b]; Xd = BosonC[x]; X = BosonA[x]; Yd = BosonC[y]; Y = BosonA[y]; Defining the algebra. Dirac \[CapitalGamma] matrices: \[CapitalGamma][ 1] = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}; \[CapitalGamma][ 2] = {{0, 0, 0, -1}, {0, 0, -1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}; \[CapitalGamma][ 3] = {{0, 0, 0, I}, {0, 0, -I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}}; \[CapitalGamma][ 4] = {{0, 0, -1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, -1, 0, 0}}; \[CapitalGamma][ 5] = {{0, 0, I, 0}, {0, 0, 0, I}, {I, 0, 0, 0}, {0, I, 0, 0}}; Zero = {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}; Spinors and metric: g = DiagonalMatrix[{-1, 1, 1, 1, 1, -1}]; \[Psi] = {{A}, {B}, {-Xd}, {-Yd}}; \[Chi] = {{Ad, Bd, X, Y}}; (*This is the Dirac conjugate of \[Psi]*) Subscript[\[CapitalGamma], ij] matrices: Table[\[CapitalSigma][i, j] = -I ( \[CapitalGamma][i].\[CapitalGamma][j] - \[CapitalGamma][ j].\[CapitalGamma][i])/4, {i, 1, 4}, {j, 1, 4}]; \[CapitalSigma][5, 6] = -\[CapitalGamma][5]/2; \[CapitalSigma][6, 5] = \[CapitalGamma][5]/2; Table[\[CapitalSigma][i, 5] = -I \[CapitalGamma][i].\[CapitalGamma][5]/2; \[CapitalSigma][5, i] = I \[CapitalGamma][i].\[CapitalGamma][5]/2; \[CapitalSigma][i, 6] = -\[CapitalGamma][i]/2; \[CapitalSigma][6, i] = \[CapitalGamma][i]/ 2, {i, 1, 4}]; \[CapitalSigma][5, 5] = Zero; \[CapitalSigma][6, 6] = Zero; Generators of SO(4,2) denoted by G[i,j] Table[G[i, j] = Sum[\[CapitalSigma][i, j][[m, n]] \[Chi][[1, m]]\[CenterDot]\[Psi][[n, 1]], {m, 1, 4}, {n, 1, 4}], {i, 1, Dim}, {j, 1, Dim}]; Check the commutation relations of \[CapitalSigma] matrices (*Table[Print[i,",",j,",",k,",",l,"=",Simplify[(\[CapitalSigma][i,j].\ \[CapitalSigma][k,l]-\[CapitalSigma][k,l].\[CapitalSigma][i,j]+ I( g[[i,k]]\ \[CapitalSigma][j,l]- g[[i,l]]\[CapitalSigma][j,k] - \ g[[j,k]]\[CapitalSigma][i,l] + \ g[[j,l]]\[CapitalSigma][i,k]))]],{i,1,Dim},{j,1,Dim},{k,1,Dim},{l,1,Dim}];*) Check the commutation relations of group generators (*Table[Print[i,",",j,",",k,",",l,"=",clean[(G[i,j]\[CenterDot]G[k,l]-G[k,l]\ \[CenterDot]G[i,j]+ I( g[[i,k]]G[j,l]- g[[i,l]]G[j,k] - g[[j,k]]G[i,l] + \ g[[j,l]]G[i,k]))]],{i,1,Dim},{j,1,Dim},{k,1,Dim},{l,1,Dim}];*) Generators of SO(3,1) and rest of the conformal generators Clear[M, \[Eta], \[CapitalPi], \[CapitalKappa], \[CapitalDelta]] (*\[CapitalPi] are translations, \[CapitalKappa](this is greek capital K \ obtained by esc K esc)are special conformal and \[CapitalDelta] is \ dilatations*) \[Eta] = DiagonalMatrix[{-1, 1, 1, 1}]; Table[M[i, j] = G[i, j], {i, 1, 4}, {j, 1, 4}]; Table[\[CapitalKappa][i] = G[i, 6] - G[i, 5], {i, 1, 4}]; Table[\[CapitalPi][i] = G[i, 6] + G[i, 5], {i, 1, 4}]; \[CapitalDelta] = -G[5, 6]; Casimirs Quadratic Casmir Clear[ind1, ind2, ind3, ind4, Cas2, Z] Z = Ad\[CenterDot]A + Bd\[CenterDot]B - Xd\[CenterDot]X - Yd\[CenterDot]Y; Cas2 = clean[ Sum[g[[ind1, ind3]]\[CenterDot]G[ind3, ind2]\[CenterDot]g[[ind2, ind4]]\[CenterDot]G[ind4, ind1], {ind1, 1, 6}, {ind2, 1, 6}, {ind3, 1, 6}, {ind4, 1, 6}]]; clean[Cas2 + (3/2) (Z\[CenterDot]Z - 4)]; SaveIt["Cas2"]; Cas2sq = clean[Cas2\[CenterDot]Cas2]; SaveIt["Cas2sq"]; Cubic Casmir (*Clear[ind1,ind2,ind3,ind4,ind5,ind6,cas3] Timing[cas3=Sum[g[[ind1,ind4]]g[[ind2,ind5]]g[[ind3,ind6]]G[ind4,ind2]\ \[CenterDot]G[ind5,ind3]\[CenterDot]G[ind6,ind1],{ind1,1,6},{ind2,1,6},{ind3,\ 1,6},{ind4,1,6},{ind5,1,6},{ind6,1,6} ];]; Cas3=clean[cas3]; SaveIt["Cas3.dat"]; clean[Cas3 -2I Cas2];*) Quartic Casimir (*Clear[ind1,ind2,ind3,ind4,ind5,ind6,ind7,ind8,cas4] cas4=Sum[g[[ind1,ind5]]g[[ind2,ind6]]g[[ind3,ind7]]g[[ind4,ind8]]G[ind5,ind2]\ \[CenterDot]G[ind6,ind3]\[CenterDot]G[ind7,ind4]\[CenterDot]G[ind8,ind1],{\ ind1,1,6},{ind2,1,6},{ind3,1,6},{ind4,1,6},{ind5,1,6},{ind6,1,6},{ind7,1,6},{\ ind8,1,6}]; Cas4=clean[cas4]; SaveIt["Cas4"]; clean[Cas4-(1/6) Cas2sq+4 Cas2]*) Cas4 = ReadIt["Cas4"]; clean[Cas4 - (1/6) Cas2sq + 4 Cas2] 0 6th order Casimir (*Clear[ind1,ind2,ind3,ind4,ind5,ind6,ind7,ind8,ind9,ind10,ind11,ind12,cas6,\ Cas6,dim] dim=6; Timing[cas6=ParallelSum[g[[ind1,ind7]]g[[ind2,ind8]]g[[ind3,ind9]]g[[ind4,\ ind10]]g[[ind5,ind11]]g[[ind6,ind12]]G[ind7,ind2]\[CenterDot]G[ind8,ind3]\ \[CenterDot]G[ind9,ind4]\[CenterDot]G[ind10,ind5]\[CenterDot]G[ind11,ind6]\ \[CenterDot]G[ind12,ind1],{ind1,1,dim},{ind2,1,dim},{ind3,1,dim},{ind4,1,dim},\ {ind5,1,dim},{ind6,1,dim},{ind7,1,dim},{ind8,1,dim},{ind9,1,dim},{ind10,1,dim}\ ,{ind11,1,dim},{ind12,1,dim}];]*) (*Cas6=clean[cas6];*) (*Clear[ind1,ind2,ind3,ind4,ind5,ind6,ind7,ind8,ind9,ind10,ind11,ind12,cas6,\ Cas6,dim] dim=6; AbsoluteTiming[Table[cas6[i,j]=ParallelSum[g[[i,ind7]]g[[j,ind8]]g[[ind3,ind9]\ ]g[[ind4,ind10]]g[[ind5,ind11]]g[[ind6,ind12]]G[ind7,j]\[CenterDot]G[ind8,\ ind3]\[CenterDot]G[ind9,ind4]\[CenterDot]G[ind10,ind5]\[CenterDot]G[ind11,\ ind6]\[CenterDot]G[ind12,i],{ind3,1,dim},{ind4,1,dim},{ind5,1,dim},{ind6,1,\ dim},{ind7,1,dim},{ind8,1,dim},{ind9,1,dim},{ind10,1,dim},{ind11,1,dim},{\ ind12,1,dim}],{i,1,dim},{j,1,dim}];]*) (*AbsoluteTiming[Table[Cas6[i,j]=clean[cas6[i,j]],{i,1,dim},{j,1,dim}]]*) 3-3 split (*Clear[Cas6133,cas6133] Table[cas6133[ind1,ind4]=Sum[g[[ind1,ind7]]g[[ind2,ind8]]g[[ind3,ind9]]G[ind7,\ ind2]\[CenterDot]G[ind8,ind3]\[CenterDot]G[ind9,ind4],{ind7,1,6},{ind2,1,6},{\ ind8,1,6},{ind3,1,6},{ind9,1,6}],{ind1,1,6},{ind4,1,6}]; Table[Cas6133[i,j]=clean[cas6133[i,j]],{i,1,6},{j,1,6}]; SaveIt["Cas6133"];*) ClearMemory[]; (*Clear[Cas6233,cas6233] Table[cas6233[ind4,ind1]=Sum[g[[ind4,ind10]]g[[ind5,ind11]]g[[ind6,ind12]]G[\ ind10,ind5]\[CenterDot]G[ind11,ind6]\[CenterDot]G[ind12,ind1],{ind10,1,6},{\ ind5,1,6},{ind11,1,6},{ind6,1,6},{ind12,1,6}],{ind4,1,6},{ind1,1,6}]; Table[Cas6233[i,j]=clean[cas6233[i,j]],{i,1,6},{j,1,6}]; SaveIt["Cas6233"];*) ClearMemory[]; (*Clear[Cas6333,cas6333] cas6333=Sum[Cas6133[ind1,ind4]\[CenterDot]Cas6233[ind4,ind1],{ind1,1,6},{ind4,\ 1,6}]; SaveIt["cas6333"]; Cas6333=clean[cas6333]; SaveIt["Cas6333"];*) Clear[Cas2cub] Cas2cub = clean[Cas2\[CenterDot]Cas2sq]; SaveIt["Cas2cub"]; $Aborted (*clean[Cas6333-\[Alpha] Cas2quart]*) Cas63 = ReadIt["Cas6333"]; Cas2quart = ReadIt["Cas2quart"]; clean[Cas63 - (1/36) Cas2cub + 2 Cas2sq - 16 Cas2] 0