/* Driver for Realtek PCI-Express card reader * * Copyright(c) 2009 Realtek Semiconductor Corp. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see #include #include #include #include "rtsx.h" #include "rtsx_chip.h" #include "rtsx_transport.h" #include "rtsx_scsi.h" #include "rtsx_card.h" #include "general.h" #include "ms.h" #include "sd.h" #include "xd.h" #define DRIVER_VERSION "v1.10" MODULE_DESCRIPTION("Realtek BarossaPlusPlus card reader driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRIVER_VERSION); static unsigned int delay_use = 1; module_param(delay_use, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(delay_use, "seconds to delay before using a new device"); static int auto_delink_en = 0; module_param(auto_delink_en, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(auto_delink_en, "enable auto delink"); static unsigned char aspm_l0s_l1_en = 0; module_param(aspm_l0s_l1_en, byte, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(aspm_l0s_l1_en, "enable device aspm"); static int msi_en = 0; module_param(msi_en, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(msi_en, "enable msi"); static irqreturn_t rtsx_interrupt(int irq, void *dev_id); /*********************************************************************** * Host functions ***********************************************************************/ static const char* host_info(struct Scsi_Host *host) { return "SCSI emulation for Realtek BarossaPlusPlus card reader"; } static int slave_alloc (struct scsi_device *sdev) { /* * Set the INQUIRY transfer length to 36. We don't use any of * the extra data and many devices choke if asked for more or * less than 36 bytes. */ sdev->inquiry_len = 36; return 0; } static int slave_configure(struct scsi_device *sdev) { /* Scatter-gather buffers (all but the last) must have a length * divisible by the bulk maxpacket size. Otherwise a data packet * would end up being short, causing a premature end to the data * transfer. Since high-speed bulk pipes have a maxpacket size * of 512, we'll use that as the scsi device queue's DMA alignment * mask. Guaranteeing proper alignment of the first buffer will * have the desired effect because, except at the beginning and * the end, scatter-gather buffers follow page boundaries. */ blk_queue_dma_alignment(sdev->request_queue, (512 - 1)); /* Set the SCSI level to at least 2. We'll leave it at 3 if that's * what is originally reported. We need this to avoid confusing * the SCSI layer with devices that report 0 or 1, but need 10-byte * commands (ala ATAPI devices behind certain bridges, or devices * which simply have broken INQUIRY data). * * NOTE: This means /dev/sg programs (ala cdrecord) will get the * actual information. This seems to be the preference for * programs like that. * * NOTE: This also means that /proc/scsi/scsi and sysfs may report * the actual value or the modified one, depending on where the * data comes from. */ if (sdev->scsi_level < SCSI_2) sdev->scsi_level = sdev->sdev_target->scsi_level = SCSI_2; return 0; } /*********************************************************************** * /proc/scsi/ functions ***********************************************************************/ #undef SPRINTF #define SPRINTF(args...) \ do { if (pos < buffer+length) pos += sprintf(pos, ## args); } while (0) static int queuecommand_lck(struct scsi_cmnd *srb, void (*done)(struct scsi_cmnd *)) { struct rtsx_dev *dev = host_to_rtsx(srb->device->host); struct rtsx_chip *chip = dev->chip; if (chip->srb != NULL) { printk(KERN_ERR "Error in %s: chip->srb = %p\n", __FUNCTION__, chip->srb); return SCSI_MLQUEUE_HOST_BUSY; } if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { printk(KERN_INFO "Fail command during disconnect\n"); srb->result = DID_NO_CONNECT << 16; done(srb); return 0; } srb->scsi_done = done; chip->srb = srb; complete(&dev->cmnd_ready); return 0; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 37) static int queuecommand(struct scsi_cmnd *srb, void (*done)(struct scsi_cmnd *)) { return queuecommand_lck(srb, done); } #else static DEF_SCSI_QCMD(queuecommand) #endif /*********************************************************************** * Error handling functions ***********************************************************************/ static int command_abort(struct scsi_cmnd *srb) { struct Scsi_Host *host = srb->device->host; struct rtsx_dev *dev = host_to_rtsx(host); struct rtsx_chip *chip = dev->chip; printk(KERN_INFO "%s called\n", __FUNCTION__); scsi_lock(host); if (chip->srb != srb) { scsi_unlock(host); printk(KERN_INFO "-- nothing to abort\n"); return FAILED; } rtsx_set_stat(chip, RTSX_STAT_ABORT); scsi_unlock(host); wait_for_completion(&dev->notify); return SUCCESS; } /* This invokes the transport reset mechanism to reset the state of the * device */ static int device_reset(struct scsi_cmnd *srb) { int result = 0; printk(KERN_INFO "%s called\n", __FUNCTION__); return result < 0 ? FAILED : SUCCESS; } static int bus_reset(struct scsi_cmnd *srb) { int result = 0; printk(KERN_INFO "%s called\n", __FUNCTION__); return result < 0 ? FAILED : SUCCESS; } /* * this defines our host template, with which we'll allocate hosts */ static struct scsi_host_template rtsx_host_template = { .name = CR_DRIVER_NAME, .proc_name = CR_DRIVER_NAME, .info = host_info, .queuecommand = queuecommand, .eh_abort_handler = command_abort, .eh_device_reset_handler = device_reset, .eh_bus_reset_handler = bus_reset, .can_queue = 1, .cmd_per_lun = 1, .this_id = -1, .slave_alloc = slave_alloc, .slave_configure = slave_configure, .sg_tablesize = SG_ALL, .max_sectors = 240, /* merge commands... this seems to help performance, but * periodically someone should test to see which setting is more * optimal. */ .use_clustering = 1, .emulated = 1, .skip_settle_delay = 1, .module = THIS_MODULE }; static int rtsx_acquire_irq(struct rtsx_dev *dev) { struct rtsx_chip *chip = dev->chip; printk(KERN_INFO "%s: chip->msi_en = %d, pci->irq = %d\n", __FUNCTION__, chip->msi_en, dev->pci->irq); if (request_irq(dev->pci->irq, rtsx_interrupt, chip->msi_en ? 0 : IRQF_SHARED, CR_DRIVER_NAME, dev)) { printk(KERN_ERR "rtsx: unable to grab IRQ %d, " "disabling device\n", dev->pci->irq); return -1; } dev->irq = dev->pci->irq; pci_intx(dev->pci, !chip->msi_en); return 0; } #ifdef CONFIG_PM /* * power management */ static int rtsx_suspend(struct pci_dev *pci, pm_message_t state) { struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci); struct rtsx_chip *chip; printk(KERN_INFO "Ready to suspend\n"); if (!dev) { printk(KERN_ERR "Invalid memory\n"); return 0; } mutex_lock(&(dev->dev_mutex)); chip = dev->chip; rtsx_do_before_power_down(chip, PM_S3, 0); if (dev->irq >= 0) { synchronize_irq(dev->irq); free_irq(dev->irq, (void *)dev); dev->irq = -1; } if (chip->msi_en) { pci_disable_msi(pci); } pci_save_state(pci); pci_enable_wake(pci, pci_choose_state(pci, state), 1); pci_disable_device(pci); pci_set_power_state(pci, pci_choose_state(pci, state)); mutex_unlock(&dev->dev_mutex); return 0; } static int rtsx_resume(struct pci_dev *pci) { struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci); struct rtsx_chip *chip; printk(KERN_INFO "Ready to resume\n"); if (!dev) { printk(KERN_ERR "Invalid memory\n"); return 0; } chip = dev->chip; mutex_lock(&(dev->dev_mutex)); pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { printk(KERN_ERR "%s: pci_enable_device failed, " "disabling device\n", CR_DRIVER_NAME); mutex_unlock(&dev->dev_mutex); return -EIO; } pci_set_master(pci); if (chip->msi_en) { if (pci_enable_msi(pci) < 0) { chip->msi_en = 0; } } if (rtsx_acquire_irq(dev) < 0) { mutex_unlock(&dev->dev_mutex); return -EIO; } rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 0x00); rtsx_init_chip(chip); mutex_unlock(&dev->dev_mutex); return 0; } #endif static void rtsx_shutdown(struct pci_dev *pci) { struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci); struct rtsx_chip *chip; printk(KERN_INFO "Ready to shutdown\n"); if (!dev) { printk(KERN_ERR "Invalid memory\n"); return; } chip = dev->chip; rtsx_do_before_power_down(chip, PM_S1, 0); if (dev->irq >= 0) { synchronize_irq(dev->irq); free_irq(dev->irq, (void *)dev); dev->irq = -1; } if (chip->msi_en) { pci_disable_msi(pci); } pci_disable_device(pci); return; } static int rtsx_control_thread(void * __dev) { struct rtsx_dev *dev = (struct rtsx_dev *)__dev; struct rtsx_chip *chip = dev->chip; struct Scsi_Host *host = rtsx_to_host(dev); current->flags |= PF_NOFREEZE; for(;;) { if (wait_for_completion_interruptible(&dev->cmnd_ready)) break; mutex_lock(&(dev->dev_mutex)); if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { printk(KERN_INFO "-- rtsbpp-control exiting\n"); mutex_unlock(&dev->dev_mutex); break; } scsi_lock(host); if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) { chip->srb->result = DID_ABORT << 16; goto SkipForAbort; } scsi_unlock(host); /* reject the command if the direction indicator * is UNKNOWN */ if (chip->srb->sc_data_direction == DMA_BIDIRECTIONAL) { printk(KERN_ERR "UNKNOWN data direction\n"); chip->srb->result = DID_ERROR << 16; } /* reject if target != 0 or if LUN is higher than * the maximum known LUN */ else if (chip->srb->device->id) { printk(KERN_ERR "Bad target number (%d:%d)\n", chip->srb->device->id, chip->srb->device->lun); chip->srb->result = DID_BAD_TARGET << 16; } else if (chip->srb->device->lun > chip->max_lun) { printk(KERN_ERR "Bad LUN (%d:%d)\n", chip->srb->device->id, chip->srb->device->lun); chip->srb->result = DID_BAD_TARGET << 16; } else { RTSX_DEBUG(scsi_show_command(chip->srb)); rtsx_invoke_transport(chip->srb, chip); } scsi_lock(host); if (!chip->srb) ; else if (chip->srb->result != DID_ABORT << 16) { chip->srb->scsi_done(chip->srb); } else { SkipForAbort: printk(KERN_ERR "scsi command aborted\n"); } if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) { complete(&(dev->notify)); rtsx_set_stat(chip, RTSX_STAT_IDLE); } chip->srb = NULL; scsi_unlock(host); mutex_unlock(&dev->dev_mutex); } /* notify the exit routine that we're actually exiting now * * complete()/wait_for_completion() is similar to up()/down(), * except that complete() is safe in the case where the structure * is getting deleted in a parallel mode of execution (i.e. just * after the down() -- that's necessary for the thread-shutdown * case. * * complete_and_exit() goes even further than this -- it is safe in * the case that the thread of the caller is going away (not just * the structure) -- this is necessary for the module-remove case. * This is important in preemption kernels, which transfer the flow * of execution immediately upon a complete(). */ complete_and_exit(&dev->control_exit, 0); } static int rtsx_polling_thread(void * __dev) { struct rtsx_dev *dev = (struct rtsx_dev *)__dev; struct rtsx_chip *chip = dev->chip; struct sd_info *sd_card = &(chip->sd_card); struct xd_info *xd_card = &(chip->xd_card); struct ms_info *ms_card = &(chip->ms_card); sd_card->cleanup_counter = 0; xd_card->cleanup_counter = 0; ms_card->cleanup_counter = 0; wait_timeout((delay_use + 5) * 1000); for(;;) { wait_timeout(POLLING_INTERVAL); mutex_lock(&(dev->dev_mutex)); if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { printk(KERN_INFO "-- rtsx-polling exiting\n"); mutex_unlock(&dev->dev_mutex); break; } mutex_unlock(&dev->dev_mutex); mspro_polling_format_status(chip); mutex_lock(&(dev->dev_mutex)); rtsx_polling_func(chip); mutex_unlock(&dev->dev_mutex); } complete_and_exit(&dev->polling_exit, 0); } /* * interrupt handler */ static irqreturn_t rtsx_interrupt(int irq, void *dev_id) { struct rtsx_dev *dev = dev_id; struct rtsx_chip *chip; int retval; u32 status; if (dev) { chip = dev->chip; } else { return IRQ_NONE; } if (!chip) { return IRQ_NONE; } spin_lock(&dev->reg_lock); retval = rtsx_pre_handle_interrupt(chip); if (retval == STATUS_FAIL) { spin_unlock(&dev->reg_lock); if (chip->int_reg == 0xFFFFFFFF) { return IRQ_HANDLED; } else { return IRQ_NONE; } } status = chip->int_reg; if (dev->check_card_cd) { if (!(dev->check_card_cd & status)) { dev->trans_result = TRANS_RESULT_FAIL; if (dev->done) { complete(dev->done); } goto Exit; } } if (status & (NEED_COMPLETE_INT | DELINK_INT)) { if (status & (TRANS_FAIL_INT | DELINK_INT)) { if (status & DELINK_INT) { RTSX_SET_DELINK(chip); } dev->trans_result = TRANS_RESULT_FAIL; if (dev->done) { complete(dev->done); } } else if (status & TRANS_OK_INT) { dev->trans_result = TRANS_RESULT_OK; if (dev->done) { complete(dev->done); } } else if (status & DATA_DONE_INT) { dev->trans_result = TRANS_NOT_READY; if (dev->done && (dev->trans_state == STATE_TRANS_SG)) { complete(dev->done); } } } Exit: spin_unlock(&dev->reg_lock); return IRQ_HANDLED; } static void rtsx_release_resources(struct rtsx_dev *dev) { printk(KERN_INFO "-- %s\n", __FUNCTION__); /* Tell the control thread to exit. The SCSI host must * already have been removed so it won't try to queue * any more commands. */ printk(KERN_INFO "-- sending exit command to thread\n"); complete(&dev->cmnd_ready); if (dev->ctl_thread) wait_for_completion(&dev->control_exit); if (dev->polling_thread) wait_for_completion(&dev->polling_exit); wait_timeout(200); if (dev->rtsx_resv_buf) { dma_free_coherent(&(dev->pci->dev), RTSX_RESV_BUF_LEN, dev->rtsx_resv_buf, dev->rtsx_resv_buf_addr); dev->chip->host_cmds_ptr = NULL; dev->chip->host_sg_tbl_ptr = NULL; } if (dev->irq > 0) free_irq(dev->irq, (void *)dev); if (dev->chip->msi_en) pci_disable_msi(dev->pci); if (dev->remap_addr) iounmap(dev->remap_addr); pci_disable_device(dev->pci); pci_release_regions(dev->pci); rtsx_release_chip(dev->chip); kfree(dev->chip); } /* First stage of disconnect processing: stop all commands and remove * the host */ static void quiesce_and_remove_host(struct rtsx_dev *dev) { struct Scsi_Host *host = rtsx_to_host(dev); struct rtsx_chip *chip = dev->chip; /* Prevent new transfers, stop the current command, and * interrupt a SCSI-scan or device-reset delay */ mutex_lock(&dev->dev_mutex); scsi_lock(host); rtsx_set_stat(chip, RTSX_STAT_DISCONNECT); scsi_unlock(host); mutex_unlock(&dev->dev_mutex); wake_up(&dev->delay_wait); wait_for_completion(&dev->scanning_done); wait_timeout(100); /* queuecommand won't accept any new commands and the control * thread won't execute a previously-queued command. If there * is such a command pending, complete it with an error. */ mutex_lock(&dev->dev_mutex); if (chip->srb) { chip->srb->result = DID_NO_CONNECT << 16; scsi_lock(host); chip->srb->scsi_done(dev->chip->srb); chip->srb = NULL; scsi_unlock(host); } mutex_unlock(&dev->dev_mutex); scsi_remove_host(host); } static void release_everything(struct rtsx_dev *dev) { rtsx_release_resources(dev); /* Drop our reference to the host; the SCSI core will free it * when the refcount becomes 0. */ scsi_host_put(rtsx_to_host(dev)); } static int rtsx_scan_thread(void * __dev) { struct rtsx_dev *dev = (struct rtsx_dev *)__dev; struct rtsx_chip *chip = dev->chip; if (delay_use > 0) { printk(KERN_INFO "%s: waiting for device " "to settle before scanning\n", CR_DRIVER_NAME); wait_event_interruptible_timeout(dev->delay_wait, rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT), delay_use * HZ); } if (!rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { scsi_scan_host(rtsx_to_host(dev)); printk(KERN_INFO "%s: device scan complete\n", CR_DRIVER_NAME); } complete_and_exit(&dev->scanning_done, 0); } static void rtsx_init_options(struct rtsx_chip *chip) { chip->vendor_id = chip->rtsx->pci->vendor; chip->product_id = chip->rtsx->pci->device; chip->adma_mode = 1; chip->lun_mc = 0; chip->driver_first_load = 1; #ifdef HW_AUTO_SWITCH_SD_BUS chip->sdio_in_charge = 0; #endif chip->mspro_formatter_enable = 1; chip->ignore_sd = 0; chip->use_hw_setting = 0; chip->lun_mode = DEFAULT_SINGLE; chip->auto_delink_en = auto_delink_en; chip->remote_wakeup_en = 0; if (aspm_l0s_l1_en > 3) { chip->aspm_l0s_l1_en = 0; } else { chip->aspm_l0s_l1_en = aspm_l0s_l1_en; } chip->dynamic_aspm = 1; chip->config_host_aspm = 0; chip->fpga_sd_sdr104_clk = CLK_200; chip->fpga_sd_ddr50_clk = CLK_100; chip->fpga_sd_sdr50_clk = CLK_100; chip->fpga_sd_hs_clk = CLK_100; chip->fpga_mmc_52m_clk = CLK_80; chip->fpga_ms_hg_clk = CLK_80; chip->fpga_ms_4bit_clk = CLK_80; chip->fpga_ms_1bit_clk = CLK_40; chip->asic_sd_sdr104_clk = 203; chip->asic_sd_sdr50_clk = 98; chip->asic_sd_ddr50_clk = 98; chip->asic_sd_hs_clk = 98; chip->asic_mmc_52m_clk = 98; chip->asic_ms_hg_clk = 117; chip->asic_ms_4bit_clk = 78; chip->asic_ms_1bit_clk = 39; chip->sd_sdr104_perf_adjust_clk = 98; chip->ssc_depth_sd_sdr104 = SSC_DEPTH_2M; chip->ssc_depth_sd_sdr50 = SSC_DEPTH_2M; chip->ssc_depth_sd_ddr50 = SSC_DEPTH_1M; chip->ssc_depth_sd_hs = SSC_DEPTH_1M; chip->ssc_depth_mmc_52m = SSC_DEPTH_1M; chip->ssc_depth_ms_hg = SSC_DEPTH_1M; chip->ssc_depth_ms_4bit = SSC_DEPTH_512K; chip->ssc_depth_low_speed = SSC_DEPTH_512K; chip->ssc_en = 1; chip->sd_speed_prior = 0x01040203; chip->sd_current_prior = 0x00010203; chip->sd_ctl = SD_PUSH_POINT_AUTO | SD_SAMPLE_POINT_AUTO | SUPPORT_MMC_DDR_MODE; chip->sd_ddr_tx_phase = 0; chip->mmc_ddr_tx_phase = 1; chip->sd_default_tx_phase = 15; chip->sd_default_rx_phase = 15; chip->pmos_pwr_on_interval = 200; chip->sd_voltage_switch_delay = 1000; chip->ms_power_class_en = 3; chip->sd_400mA_ocp_thd = 1; chip->sd_800mA_ocp_thd = 5; chip->card_drive_sel = 0x55; chip->sdr104_drive_sel_1v8 = 0x04; chip->sd30_drive_sel_1v8 = 0x03; chip->sd30_drive_sel_3v3 = 0x01; chip->do_delink_before_power_down = 1; chip->auto_power_down = 1; chip->polling_config = 0; chip->force_clkreq_0 = 1; chip->ft2_fast_mode = 0; chip->sdio_retry_cnt = 1; chip->xd_timeout = 2000; chip->sd_timeout = 10000; chip->ms_timeout = 2000; chip->mspro_timeout = 15000; chip->power_down_in_ss = 1; chip->sdr104_en = 1; chip->sdr50_en = 1; chip->ddr50_en = 1; chip->delink_stage1_step = 100; chip->delink_stage2_step = 40; chip->delink_stage3_step = 20; chip->card_reset_debounce = 1; chip->card_release_debounce = 1; chip->auto_delink_in_L1 = 0; chip->blink_led = 1; chip->msi_en = msi_en; chip->pmos_self_open_mode = 0; chip->rtl8411_ldo_tuned18 = ASIC_1V8; chip->rtl8402_ldo_tuned18 = ASIC_2V0; chip->handshake_en = 1; } static int rtsx_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct Scsi_Host *host; struct rtsx_dev *dev; int err = 0; struct task_struct *th; printk(KERN_INFO "--- %s ---\n", __TIME__); err = pci_enable_device(pci); if (err < 0) { printk(KERN_ERR "PCI enable device failed!\n"); return err; } err = pci_request_regions(pci, CR_DRIVER_NAME); if (err < 0) { printk(KERN_ERR "PCI request regions for %s failed!\n", CR_DRIVER_NAME); pci_disable_device(pci); return err; } /* * Ask the SCSI layer to allocate a host structure, with extra * space at the end for our private rtsx_dev structure. */ host = scsi_host_alloc(&rtsx_host_template, sizeof(*dev)); if (!host) { printk(KERN_ERR "Unable to allocate the scsi host\n"); pci_release_regions(pci); pci_disable_device(pci); return -ENOMEM; } dev = host_to_rtsx(host); memset(dev, 0, sizeof(struct rtsx_dev)); dev->chip = (struct rtsx_chip *)kmalloc(sizeof(struct rtsx_chip), GFP_KERNEL); if (dev->chip == NULL) { goto errout; } memset(dev->chip, 0, sizeof(struct rtsx_chip)); spin_lock_init(&dev->reg_lock); mutex_init(&(dev->dev_mutex)); init_completion(&dev->cmnd_ready); init_completion(&dev->control_exit); init_completion(&dev->polling_exit); init_completion(&(dev->notify)); init_completion(&dev->scanning_done); init_waitqueue_head(&dev->delay_wait); dev->pci = pci; dev->irq = -1; printk(KERN_INFO "Resource length: 0x%x\n", (unsigned int)pci_resource_len(pci,0)); dev->addr = pci_resource_start(pci, 0); dev->remap_addr = ioremap_nocache(dev->addr, pci_resource_len(pci,0)); if (dev->remap_addr == NULL) { printk(KERN_ERR "ioremap error\n"); err = -ENXIO; goto errout; } printk(KERN_INFO "Original address: 0x%lx, remapped address: 0x%lx\n", (unsigned long)(dev->addr), (unsigned long)(dev->remap_addr)); dev->rtsx_resv_buf = dma_alloc_coherent(&(pci->dev), RTSX_RESV_BUF_LEN, &(dev->rtsx_resv_buf_addr), GFP_KERNEL); if (dev->rtsx_resv_buf == NULL) { printk(KERN_ERR "alloc dma buffer fail\n"); err = -ENXIO; goto errout; } dev->chip->host_cmds_ptr = dev->rtsx_resv_buf; dev->chip->host_cmds_addr = dev->rtsx_resv_buf_addr; dev->chip->host_sg_tbl_ptr = dev->rtsx_resv_buf + HOST_CMDS_BUF_LEN; dev->chip->host_sg_tbl_addr = dev->rtsx_resv_buf_addr + HOST_CMDS_BUF_LEN; dev->chip->rtsx = dev; rtsx_init_options(dev->chip); printk(KERN_INFO "pci->irq = %d\n", pci->irq); if (dev->chip->msi_en) { if (pci_enable_msi(pci) < 0) { dev->chip->msi_en = 0; } } if (rtsx_acquire_irq(dev) < 0) { err = -EBUSY; goto errout; } pci_set_master(pci); synchronize_irq(dev->irq); if (rtsx_init_chip(dev->chip) != STATUS_SUCCESS) { err = -EIO; printk(KERN_ERR "rtsx_init_chip fail\n"); goto errout; } err = scsi_add_host(host, &pci->dev); if (err) { printk(KERN_ERR "Unable to add the scsi host\n"); goto errout; } th = kthread_run(rtsx_control_thread, dev, CR_DRIVER_NAME); if (IS_ERR(th)) { printk(KERN_ERR "Unable to start control thread\n"); err = PTR_ERR(th); goto errout; } dev->ctl_thread = th; th = kthread_create(rtsx_scan_thread, dev, "rtsbpp-scan"); if (IS_ERR(th)) { printk(KERN_ERR "Unable to start the device-scanning thread\n"); complete(&dev->scanning_done); quiesce_and_remove_host(dev); err = PTR_ERR(th); goto errout; } wake_up_process(th); th = kthread_run(rtsx_polling_thread, dev, "rtsbpp-polling"); if (IS_ERR(th)) { printk(KERN_ERR "Unable to start the device-polling thread\n"); quiesce_and_remove_host(dev); err = PTR_ERR(th); goto errout; } dev->polling_thread = th; pci_set_drvdata(pci, dev); return 0; errout: printk(KERN_ERR "rtsx_probe() failed\n"); release_everything(dev); return err; } static void rtsx_remove(struct pci_dev *pci) { struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci); printk(KERN_INFO "rtsx_remove() called\n"); quiesce_and_remove_host(dev); release_everything(dev); pci_set_drvdata(pci, NULL); } static struct pci_device_id rts_bpp_ids[] = { { 0x10EC, 0x5289, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_OTHERS << 16, 0xFF0000 }, { 0x10EC, 0x5286, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_OTHERS << 16, 0xFF0000 }, { 0, }, }; MODULE_DEVICE_TABLE(pci, rts_bpp_ids); static struct pci_driver driver = { .name = CR_DRIVER_NAME, .id_table = rts_bpp_ids, .probe = rtsx_probe, //.remove = __devexit_p(), .remove = rtsx_remove, #ifdef CONFIG_PM .suspend = rtsx_suspend, .resume = rtsx_resume, #endif .shutdown = rtsx_shutdown, }; static int __init rts_bpp_init(void) { printk(KERN_INFO "Initializing Realtek PCIE storage driver...\n"); return pci_register_driver(&driver); } static void __exit rts_bpp_exit(void) { printk(KERN_INFO "rtsx_exit() called\n"); pci_unregister_driver(&driver); printk(KERN_INFO "%s module exit\n", CR_DRIVER_NAME); } module_init(rts_bpp_init) module_exit(rts_bpp_exit)