/sources/mtr-0.75/net.c: In function `udp_checksum': /sources/mtr-0.75/net.c:240: parse error before `struct' /sources/mtr-0.75/net.c:242: `prepend' undeclared (first use in this function) /sources/mtr-0.75/net.c:242: (Each undeclared identifier is reported only once /sources/mtr-0.75/net.c:242: for each function it appears in.) /sources/mtr-0.75/net.c:242: `udppheader' undeclared (first use in this function) /sources/mtr-0.75/net.c:248: parse error before `struct' /sources/mtr-0.75/net.c:250: `content' undeclared (first use in this function) /sources/mtr-0.75/net.c:250: `udpdata' undeclared (first use in this function) /sources/mtr-0.75/net.c: In function `net_send_query': /sources/mtr-0.75/net.c:302: parse error before `int' make[2]: [net.o] Error 1 (ignored) /* mtr -- a network diagnostic tool Copyright (C) 1997,1998 Matt Kimball This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 1999-08-13 ok Olav@okvittem.priv.no added -psize */ #include #if defined(HAVE_SYS_XTI_H) #include #endif #include #include #include #include #include #include #ifdef HAVE_FCNTL_H #include #endif #include #include #include #include #include #include "mtr.h" #include "net.h" #include "display.h" #include "dns.h" /* We can't rely on header files to provide this information, because the fields have different names between, for instance, Linux and Solaris */ struct ICMPHeader { uint8 type; uint8 code; uint16 checksum; uint16 id; uint16 sequence; }; /* Structure of an UDP header. */ struct UDPHeader { uint16 srcport; uint16 dstport; uint16 length; uint16 checksum; }; /* Structure of an IPv4 UDP pseudoheader. */ struct UDPv4PHeader { uint32 saddr; uint32 daddr; uint8 zero; uint8 protocol; uint16 len; }; /* Structure of an IP header. */ struct IPHeader { uint8 version; uint8 tos; uint16 len; uint16 id; uint16 frag; uint8 ttl; uint8 protocol; uint16 check; uint32 saddr; uint32 daddr; }; #define ICMP_ECHO 8 #define ICMP_ECHOREPLY 0 #define ICMP_TSTAMP 13 #define ICMP_TSTAMPREPLY 14 #define ICMP_TIME_EXCEEDED 11 #define ICMP_UNREACHABLE 3 #ifndef SOL_IP #define SOL_IP 0 #endif struct nethost { ip_t addr; ip_t addrs[MAXPATH]; /* for multi paths byMin */ int xmit; int returned; int sent; int up; long long var;/* variance, could be overflowed */ int last; int best; int worst; int avg; /* average: addByMin */ int gmean; /* geometirc mean: addByMin */ int jitter; /* current jitter, defined as t1-t0 addByMin */ /*int jbest;*/ /* min jitter, of cause it is 0, not needed */ int javg; /* avg jitter */ int jworst; /* max jitter */ int jinta; /* estimated variance,? rfc1889's "Interarrival Jitter" */ int transit; int saved[SAVED_PINGS]; int saved_seq_offset; }; struct sequence { int index; int transit; int saved_seq; struct timeval time; }; /* Configuration parameter: How many queries to unknown hosts do we send? (This limits the amount of traffic generated if a host is not reachable) -- REW */ #define MAX_UNKNOWN_HOSTS 5 /* BSD-derived kernels use host byte order for the IP length and offset fields when using raw sockets. We detect this automatically at run-time and do the right thing. */ static int BSDfix = 0; static struct nethost host[MaxHost]; static struct sequence sequence[MaxSequence]; static struct timeval reset = { 0, 0 }; int timestamp; int sendsock4; int sendsock4_icmp; int sendsock4_udp; int recvsock4; int sendsock6; int sendsock6_icmp; int sendsock6_udp; int recvsock6; int sendsock; int recvsock; #ifdef ENABLE_IPV6 struct sockaddr_storage sourcesockaddr_struct; struct sockaddr_storage remotesockaddr_struct; struct sockaddr_in6 * ssa6 = (struct sockaddr_in6 *) &sourcesockaddr_struct; struct sockaddr_in6 * rsa6 = (struct sockaddr_in6 *) &remotesockaddr_struct; #else struct sockaddr_in sourcesockaddr_struct; struct sockaddr_in remotesockaddr_struct; #endif struct sockaddr * sourcesockaddr = (struct sockaddr *) &sourcesockaddr_struct; struct sockaddr * remotesockaddr = (struct sockaddr *) &remotesockaddr_struct; struct sockaddr_in * ssa4 = (struct sockaddr_in *) &sourcesockaddr_struct; struct sockaddr_in * rsa4 = (struct sockaddr_in *) &remotesockaddr_struct; ip_t * sourceaddress; ip_t * remoteaddress; /* XXX How do I code this to be IPV6 compatible??? -- REW */ #ifdef ENABLE_IPV6 char localaddr[INET6_ADDRSTRLEN]; #else #ifndef INET_ADDRSTRLEN #define INET_ADDRSTRLEN 16 #endif char localaddr[INET_ADDRSTRLEN]; #endif static int batch_at = 0; static int numhosts = 10; extern int fstTTL; /* initial hub(ttl) to ping byMin */ extern int maxTTL; /* last hub to ping byMin*/ extern int cpacketsize; /* packet size used by ping */ static int packetsize; /* packet size used by ping */ extern int bitpattern; /* packet bit pattern used by ping */ extern int tos; /* type of service set in ping packet*/ extern int af; /* address family of remote target */ extern int mtrtype; /* type of query packet used */ /* return the number of microseconds to wait before sending the next ping */ int calc_deltatime (float waittime) { waittime /= numhosts; return 1000000 * waittime; } /* This doesn't work for odd sz. I don't know enough about this to say that this is wrong. It doesn't seem to cripple mtr though. -- REW */ int checksum(void *data, int sz) { unsigned short *ch; unsigned int sum; sum = 0; ch = data; sz = sz / 2; while (sz--) { sum += *(ch++); } sum = (sum >> 16) + (sum & 0xffff); return (~sum & 0xffff); } /* Prepend pseudoheader to the udp datagram and calculate checksum */ int udp_checksum(void *pheader, void *udata, int psize, int dsize) { unsigned int tsize = psize + dsize; char csumpacket[tsize]; memset(csumpacket, (unsigned char) abs(bitpattern), abs(tsize)); struct UDPv4PHeader *prepend = (struct UDPv4PHeader *) csumpacket; struct UDPv4PHeader *udppheader = (struct UDPv4PHeader *) pheader; prepend->saddr = udppheader->saddr; prepend->daddr = udppheader->daddr; prepend->zero = 0; prepend->protocol = udppheader->protocol; prepend->len = udppheader->len; struct UDPHeader *content = (struct UDPHeader *)(csumpacket + psize); struct UDPHeader *udpdata = (struct UDPHeader *) udata; content->srcport = udpdata->srcport; content->dstport = udpdata->dstport; content->length = udpdata->length; content->checksum = udpdata->checksum; return checksum(csumpacket,tsize); } int new_sequence(int index) { static int next_sequence = MinSequence; int seq; seq = next_sequence++; if (next_sequence >= MaxSequence) next_sequence = MinSequence; sequence[seq].index = index; sequence[seq].transit = 1; sequence[seq].saved_seq = ++host[index].xmit; memset(&sequence[seq].time, 0, sizeof(sequence[seq].time)); host[index].transit = 1; if (host[index].sent) host[index].up = 0; host[index].sent = 1; net_save_xmit(index); return seq; } /* Attempt to find the host at a particular number of hops away */ void net_send_query(int index) { /*ok char packet[sizeof(struct IPHeader) + sizeof(struct ICMPHeader)];*/ char packet[MAXPACKET]; struct IPHeader *ip = (struct IPHeader *) packet; struct ICMPHeader *icmp = NULL; struct UDPHeader *udp = NULL; struct UDPv4PHeader *udpp = NULL; uint16 mypid; /*ok int packetsize = sizeof(struct IPHeader) + sizeof(struct ICMPHeader) + datasize;*/ int rv; static int first=1; int ttl, iphsize = 0, echotype = 0, salen = 0, udphsize = 0; ttl = index + 1; /* offset for ipv6 checksum calculation */ int offset = 6; if ( packetsize < MINPACKET ) packetsize = MINPACKET; if ( packetsize > MAXPACKET ) packetsize = MAXPACKET; memset(packet, (unsigned char) abs(bitpattern), abs(packetsize)); switch ( af ) { case AF_INET: #if !defined(IP_HDRINCL) && defined(IP_TOS) && defined(IP_TTL) iphsize = 0; if ( setsockopt( sendsock, IPPROTO_IP, IP_TOS, &tos, sizeof tos ) ) { perror( "setsockopt IP_TOS" ); exit( EXIT_FAILURE ); } if ( setsockopt( sendsock, IPPROTO_IP, IP_TTL, &ttl, sizeof ttl ) ) { perror( "setsockopt IP_TTL" ); exit( EXIT_FAILURE ); } #else iphsize = sizeof (struct IPHeader); ip->version = 0x45; ip->tos = tos; ip->len = BSDfix ? abs(packetsize): htons (abs(packetsize)); ip->id = 0; ip->frag = 0; /* 1, if want to find mtu size? Min */ ip->ttl = ttl; ip->protocol = mtrtype; ip->check = 0; /* BSD needs the source address here, Linux & others do not... */ addrcpy( (void *) &(ip->saddr), (void *) &(ssa4->sin_addr), AF_INET ); addrcpy( (void *) &(ip->daddr), (void *) remoteaddress, AF_INET ); #endif echotype = ICMP_ECHO; salen = sizeof (struct sockaddr_in); break; #ifdef ENABLE_IPV6 case AF_INET6: iphsize = 0; if ( setsockopt( sendsock, IPPROTO_IPV6, IPV6_UNICAST_HOPS, &ttl, sizeof ttl ) ) { perror( "setsockopt IPV6_UNICAST_HOPS" ); exit( EXIT_FAILURE); } echotype = ICMP6_ECHO_REQUEST; salen = sizeof (struct sockaddr_in6); break; #endif } switch ( mtrtype ) { case IPPROTO_ICMP: icmp = (struct ICMPHeader *)(packet + iphsize); icmp->type = echotype; icmp->code = 0; icmp->checksum = 0; icmp->id = getpid(); icmp->sequence = new_sequence(index); icmp->checksum = checksum(icmp, abs(packetsize) - iphsize); gettimeofday(&sequence[icmp->sequence].time, NULL); break; case IPPROTO_UDP: udp = (struct UDPHeader *)(packet + iphsize); udphsize = sizeof (struct UDPHeader); udp->checksum = 0; mypid = (uint16)getpid(); if (mypid < MinPort) mypid += MinPort; udp->srcport = htons(mypid); udp->length = abs(packetsize) - iphsize; if(!BSDfix) udp->length = htons(udp->length); udp->dstport = new_sequence(index); gettimeofday(&sequence[udp->dstport].time, NULL); udp->dstport = htons(udp->dstport); break; } switch ( af ) { case AF_INET: switch ( mtrtype ) { case IPPROTO_UDP: /* checksum is not mandatory. only calculate if we know ip->saddr */ if (ip->saddr) { udpp = (struct UDPv4PHeader *)(malloc(sizeof(struct UDPv4PHeader))); udpp->saddr = ip->saddr; udpp->daddr = ip->daddr; udpp->protocol = ip->protocol; udpp->len = udp->length; udp->checksum = udp_checksum(udpp, udp, sizeof(struct UDPv4PHeader), abs(packetsize) - iphsize); } break; } ip->check = checksum(packet, abs(packetsize)); break; #ifdef ENABLE_IPV6 case AF_INET6: switch ( mtrtype ) { case IPPROTO_UDP: /* kernel checksum calculation */ if ( setsockopt(sendsock, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) ) { perror( "setsockopt IPV6_CHECKSUM" ); exit( EXIT_FAILURE); } break; } break; #endif } rv = sendto(sendsock, packet, abs(packetsize), 0, remotesockaddr, salen); if (first && (rv < 0) && ((errno == EINVAL) || (errno == EMSGSIZE))) { /* Try the first packet again using host byte order. */ ip->len = abs (packetsize); rv = sendto(sendsock, packet, abs(packetsize), 0, remotesockaddr, salen); if (rv >= 0) { BSDfix = 1; } } first = 0; } /* We got a return on something we sent out. Record the address and time. */ void net_process_ping(int seq, void * addr, struct timeval now) { int index; int totusec; int oldavg; /* usedByMin */ int oldjavg; /* usedByMin */ int i; /* usedByMin */ #ifdef ENABLE_IPV6 char addrcopy[sizeof(struct in6_addr)]; #else char addrcopy[sizeof(struct in_addr)]; #endif /* Copy the from address ASAP because it can be overwritten */ addrcpy( (void *) &addrcopy, addr, af ); if (seq < 0 || seq >= MaxSequence) return; if (!sequence[seq].transit) return; sequence[seq].transit = 0; index = sequence[seq].index; totusec = (now.tv_sec - sequence[seq].time.tv_sec ) * 1000000 + (now.tv_usec - sequence[seq].time.tv_usec); /* impossible? if( totusec < 0 ) totusec = 0 */; if ( addrcmp( (void *) &(host[index].addr), (void *) &unspec_addr, af ) == 0 ) { /* should be out of if as addr can change */ addrcpy( (void *) &(host[index].addr), addrcopy, af ); display_rawhost(index, (void *) &(host[index].addr)); /* multi paths by Min */ addrcpy( (void *) &(host[index].addrs[0]), addrcopy, af ); } else { for( i=0; i=best[index-1] if index>0 * 2) best >= average-20,000 usec (good number?) * Min if (index > 0) { if (totusec < host[index].best && totusec>= host[index-1].best) host[index].best = totusec; } else { if(totusec < host[index].best) host[index].best = totusec; } */ if (totusec < host[index].best ) host[index].best = totusec; if (totusec > host[index].worst) host[index].worst = totusec; if (host[index].jitter > host[index].jworst) host[index].jworst = host[index].jitter; host[index].returned++; /* begin addByMin do more stats */ oldavg = host[index].avg; host[index].avg += (totusec - oldavg +.0) / host[index].returned; host[index].var += (totusec - oldavg +.0) * (totusec - host[index].avg); oldjavg = host[index].javg; host[index].javg += (host[index].jitter - oldjavg) / host[index].returned; /* below algorithm is from rfc1889, A.8 */ host[index].jinta += host[index].jitter - ((host[index].jinta + 8) >> 4); if ( host[index].returned > 1 ) host[index].gmean = pow( (double) host[index].gmean, (host[index].returned-1.0)/host[index].returned ) * pow( (double) totusec, 1.0/host[index].returned ); /* end addByMin*/ host[index].sent = 0; host[index].up = 1; host[index].transit = 0; net_save_return(index, sequence[seq].saved_seq, totusec); display_rawping(index, totusec); } /* We know a packet has come in, because the main select loop has called us, now we just need to read it, see if it is for us, and if it is a reply to something we sent, then call net_process_ping() */ void net_process_return(void) { char packet[MAXPACKET]; #ifdef ENABLE_IPV6 struct sockaddr_storage fromsockaddr_struct; struct sockaddr_in6 * fsa6 = (struct sockaddr_in6 *) &fromsockaddr_struct; #else struct sockaddr_in fromsockaddr_struct; #endif struct sockaddr * fromsockaddr = (struct sockaddr *) &fromsockaddr_struct; struct sockaddr_in * fsa4 = (struct sockaddr_in *) &fromsockaddr_struct; socklen_t fromsockaddrsize; int num; struct ICMPHeader *header = NULL; struct UDPHeader *udpheader = NULL; struct timeval now; ip_t * fromaddress = NULL; int echoreplytype = 0, timeexceededtype = 0, unreachabletype = 0; int sequence = 0; gettimeofday(&now, NULL); switch ( af ) { case AF_INET: fromsockaddrsize = sizeof (struct sockaddr_in); fromaddress = (ip_t *) &(fsa4->sin_addr); echoreplytype = ICMP_ECHOREPLY; timeexceededtype = ICMP_TIME_EXCEEDED; unreachabletype = ICMP_UNREACHABLE; break; #ifdef ENABLE_IPV6 case AF_INET6: fromsockaddrsize = sizeof (struct sockaddr_in6); fromaddress = (ip_t *) &(fsa6->sin6_addr); echoreplytype = ICMP6_ECHO_REPLY; timeexceededtype = ICMP6_TIME_EXCEEDED; unreachabletype = ICMP6_DST_UNREACH; break; #endif } num = recvfrom(recvsock, packet, MAXPACKET, 0, fromsockaddr, &fromsockaddrsize); switch ( af ) { case AF_INET: if((size_t) num < sizeof(struct IPHeader) + sizeof(struct ICMPHeader)) return; header = (struct ICMPHeader *)(packet + sizeof(struct IPHeader)); break; #ifdef ENABLE_IPV6 case AF_INET6: if(num < sizeof(struct ICMPHeader)) return; header = (struct ICMPHeader *) packet; break; #endif } switch ( mtrtype ) { case IPPROTO_ICMP: if (header->type == echoreplytype) { if(header->id != (uint16)getpid()) return; sequence = header->sequence; } else if (header->type == timeexceededtype) { switch ( af ) { case AF_INET: if ((size_t) num < sizeof(struct IPHeader) + sizeof(struct ICMPHeader) + sizeof (struct IPHeader) + sizeof (struct ICMPHeader)) return; header = (struct ICMPHeader *)(packet + sizeof (struct IPHeader) + sizeof (struct ICMPHeader) + sizeof (struct IPHeader)); break; #ifdef ENABLE_IPV6 case AF_INET6: if ( num < sizeof (struct ICMPHeader) + sizeof (struct ip6_hdr) + sizeof (struct ICMPHeader) ) return; header = (struct ICMPHeader *) ( packet + sizeof (struct ICMPHeader) + sizeof (struct ip6_hdr) ); break; #endif } if (header->id != (uint16)getpid()) return; sequence = header->sequence; } break; case IPPROTO_UDP: if (header->type == timeexceededtype || header->type == unreachabletype) { switch ( af ) { case AF_INET: if ((size_t) num < sizeof(struct IPHeader) + sizeof(struct ICMPHeader) + sizeof (struct IPHeader) + sizeof (struct UDPHeader)) return; udpheader = (struct UDPHeader *)(packet + sizeof (struct IPHeader) + sizeof (struct ICMPHeader) + sizeof (struct IPHeader)); break; #ifdef ENABLE_IPV6 case AF_INET6: if ( num < sizeof (struct ICMPHeader) + sizeof (struct ip6_hdr) + sizeof (struct UDPHeader) ) return; udpheader = (struct UDPHeader *) ( packet + sizeof (struct ICMPHeader) + sizeof (struct ip6_hdr) ); break; #endif } sequence = ntohs(udpheader->dstport); } break; } if (sequence) net_process_ping(sequence, (void *)fromaddress, now); } ip_t *net_addr(int at) { return (ip_t *)&(host[at].addr); } ip_t *net_addrs(int at, int i) { return (ip_t *)&(host[at].addrs[i]); } int net_loss(int at) { if ((host[at].xmit - host[at].transit) == 0) return 0; /* times extra 1000 */ return 1000*(100 - (100.0 * host[at].returned / (host[at].xmit - host[at].transit)) ); } int net_drop(int at) { return (host[at].xmit - host[at].transit) - host[at].returned; } int net_last(int at) { return (host[at].last); } int net_best(int at) { return (host[at].best); } int net_worst(int at) { return (host[at].worst); } int net_avg(int at) { return (host[at].avg); } int net_gmean(int at) { return (host[at].gmean); } int net_stdev(int at) { if( host[at].returned > 1 ) { return ( sqrt( host[at].var/(host[at].returned -1.0) ) ); } else { return( 0 ); } } /* jitter stuff */ int net_jitter(int at) { return (host[at].jitter); } int net_jworst(int at) { return (host[at].jworst); } int net_javg(int at) { return (host[at].javg); } int net_jinta(int at) { return (host[at].jinta); } /* end jitter */ int net_max(void) { int at; int max; max = 0; /* replacedByMin for(at = 0; at < MaxHost-2; at++) { */ for(at = 0; at < maxTTL-1; at++) { if ( addrcmp( (void *) &(host[at].addr), (void *) remoteaddress, af ) == 0 ) { return at + 1; } else if ( addrcmp( (void *) &(host[at].addr), (void *) &unspec_addr, af ) != 0 ) { max = at + 2; } } return max; } /* add by Min (wonder its named net_min;-)) because of ttl stuff */ int net_min (void) { return ( fstTTL - 1 ); } /* Added by Brian Casey December 1997 bcasey@imagiware.com*/ int net_returned(int at) { return host[at].returned; } int net_xmit(int at) { return host[at].xmit; } int net_transit(int at) { return host[at].transit; } int net_up(int at) { return host[at].up; } char * net_localaddr (void) { return localaddr; } void net_end_transit(void) { int at; for(at = 0; at < MaxHost; at++) { host[at].transit = 0; } } int net_send_batch(void) { int n_unknown=0, i; /* randomized packet size and/or bit pattern if packetsize<0 and/or bitpattern<0. abs(packetsize) and/or abs(bitpattern) will be used */ if( batch_at < fstTTL ) { if( cpacketsize < 0 ) { /* Someone used a formula here that tried to correct for the "end-error" in "rand()". By "end-error" I mean that if you have a range for "rand()" that runs to 32768, and the destination range is 10000, you end up with 4 out of 32768 0-2768's and only 3 out of 32768 for results 2769 .. 9999. As our detination range (in the example 10000) is much smaller (reasonable packet sizes), and our rand() range much larger, this effect is insignificant. Oh! That other formula didn't work. -- REW */ packetsize = MINPACKET + rand () % (-cpacketsize - MINPACKET); } else { packetsize = cpacketsize; } if( bitpattern < 0 ) { bitpattern = - (int)(256 + 255*(rand()/(RAND_MAX+0.1))); } } /* printf ("cpacketsize = %d, packetsize = %d\n", cpacketsize, packetsize); */ net_send_query(batch_at); for (i=fstTTL-1;i MAX_UNKNOWN_HOSTS) || /* or reach limit */ (batch_at >= maxTTL-1)) { numhosts = batch_at+1; batch_at = fstTTL - 1; return 1; } batch_at++; return 0; } static void set_fd_flags(int fd) { #if defined(HAVE_FCNTL) && defined(FD_CLOEXEC) int oldflags; oldflags = fcntl(fd, F_GETFD); if (oldflags == -1) { perror("Couldn't get fd's flags"); return; } if (fcntl(fd, F_SETFD, oldflags | FD_CLOEXEC)) perror("Couldn't set fd's flags"); #endif } int net_preopen(void) { int trueopt = 1; #if !defined(IP_HDRINCL) && defined(IP_TOS) && defined(IP_TTL) sendsock4_icmp = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP); sendsock4_udp = socket(AF_INET, SOCK_RAW, IPPROTO_UDP); #else sendsock4 = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); #endif if (sendsock4 < 0) return -1; #ifdef ENABLE_IPV6 sendsock6_icmp = socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6); sendsock6_udp = socket(AF_INET6, SOCK_RAW, IPPROTO_UDP); #endif #ifdef IP_HDRINCL /* FreeBSD wants this to avoid sending out packets with protocol type RAW to the network. */ if (setsockopt(sendsock4, SOL_IP, IP_HDRINCL, &trueopt, sizeof(trueopt))) { perror("setsockopt(IP_HDRINCL,1)"); return -1; } #endif /* IP_HDRINCL */ recvsock4 = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP); if (recvsock4 < 0) return -1; set_fd_flags(recvsock4); #ifdef ENABLE_IPV6 recvsock6 = socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6); #endif set_fd_flags(recvsock6); return 0; } int net_selectsocket(void) { #if !defined(IP_HDRINCL) && defined(IP_TOS) && defined(IP_TTL) switch ( mtrtype ) { case IPPROTO_ICMP: sendsock4 = sendsock4_icmp; break; case IPPROTO_UDP: sendsock4 = sendsock4_udp; break; } #endif if (sendsock4 < 0) return -1; #ifdef ENABLE_IPV6 switch ( mtrtype ) { case IPPROTO_ICMP: sendsock6 = sendsock6_icmp; break; case IPPROTO_UDP: sendsock6 = sendsock6_udp; break; } if ((sendsock6 < 0) && (sendsock4 < 0)) return -1; #endif return 0; } int net_open(struct hostent * host) { #ifdef ENABLE_IPV6 struct sockaddr_storage name_struct; #else struct sockaddr_in name_struct; #endif struct sockaddr * name = (struct sockaddr *) &name_struct; socklen_t len; net_reset(); remotesockaddr->sa_family = host->h_addrtype; switch ( host->h_addrtype ) { case AF_INET: sendsock = sendsock4; recvsock = recvsock4; addrcpy( (void *) &(rsa4->sin_addr), host->h_addr, AF_INET ); sourceaddress = (ip_t *) &(ssa4->sin_addr); remoteaddress = (ip_t *) &(rsa4->sin_addr); break; #ifdef ENABLE_IPV6 case AF_INET6: if (sendsock6 < 0 || recvsock6 < 0) { fprintf( stderr, "Could not open IPv6 socket\n" ); exit( EXIT_FAILURE ); } sendsock = sendsock6; recvsock = recvsock6; addrcpy( (void *) &(rsa6->sin6_addr), host->h_addr, AF_INET6 ); sourceaddress = (ip_t *) &(ssa6->sin6_addr); remoteaddress = (ip_t *) &(rsa6->sin6_addr); break; #endif default: fprintf( stderr, "net_open bad address type\n" ); exit( EXIT_FAILURE ); } len = sizeof name_struct; getsockname (recvsock, name, &len); sockaddrtop( name, localaddr, sizeof localaddr ); #if 0 printf ("got localaddr: %s\n", localaddr); #endif return 0; } void net_reopen(struct hostent * addr) { int at; for(at = 0; at < MaxHost; at++) { memset(&host[at], 0, sizeof(host[at])); } remotesockaddr->sa_family = addr->h_addrtype; addrcpy( (void *) remoteaddress, addr->h_addr, addr->h_addrtype ); switch ( addr->h_addrtype ) { case AF_INET: addrcpy( (void *) &(rsa4->sin_addr), addr->h_addr, AF_INET ); break; #ifdef ENABLE_IPV6 case AF_INET6: addrcpy( (void *) &(rsa6->sin6_addr), addr->h_addr, AF_INET6 ); break; #endif default: fprintf( stderr, "net_reopen bad address type\n" ); exit( EXIT_FAILURE ); } net_reset (); net_send_batch(); } void net_reset(void) { int at; int i; batch_at = fstTTL - 1; /* above replacedByMin */ numhosts = 10; for (at = 0; at < MaxHost; at++) { host[at].xmit = 0; host[at].transit = 0; host[at].returned = 0; host[at].sent = 0; host[at].up = 0; host[at].last = 0; host[at].avg = 0; host[at].best = 0; host[at].worst = 0; host[at].gmean = 0; host[at].var = 0; host[at].jitter = 0; host[at].javg = 0; host[at].jworst = 0; host[at].jinta = 0; for (i=0; isa_family = af; switch ( af ) { case AF_INET: ssa4->sin_port = 0; if ( inet_aton( InterfaceAddress, &(ssa4->sin_addr) ) < 1 ) { fprintf( stderr, "mtr: bad interface address: %s\n", InterfaceAddress ); return( 1 ); } len = sizeof (struct sockaddr); break; #ifdef ENABLE_IPV6 case AF_INET6: ssa6->sin6_port = 0; if ( inet_pton( af, InterfaceAddress, &(ssa6->sin6_addr) ) < 1 ) { fprintf( stderr, "mtr: bad interface address: %s\n", InterfaceAddress ); return( 1 ); } len = sizeof (struct sockaddr_in6); break; #endif } if ( bind( sendsock, sourcesockaddr, len ) == -1 ) { perror("mtr: failed to bind to interface"); return( 1 ); } return 0; } void net_close(void) { if (sendsock4 >= 0) { close(sendsock4_icmp); close(sendsock4_udp); } if (recvsock4 >= 0) close(recvsock4); if (sendsock6 >= 0) { close(sendsock6_icmp); close(sendsock6_udp); } if (recvsock6 >= 0) close(recvsock6); } int net_waitfd(void) { return recvsock; } int* net_saved_pings(int at) { return host[at].saved; } void net_save_increment(void) { int at; for (at = 0; at < MaxHost; at++) { memmove(host[at].saved, host[at].saved+1, (SAVED_PINGS-1)*sizeof(int)); host[at].saved[SAVED_PINGS-1] = -2; host[at].saved_seq_offset += 1; } } void net_save_xmit(int at) { if (host[at].saved[SAVED_PINGS-1] != -2) net_save_increment(); host[at].saved[SAVED_PINGS-1] = -1; } void net_save_return(int at, int seq, int ms) { int idx; idx = seq - host[at].saved_seq_offset; if (idx < 0 || idx > SAVED_PINGS) { return; } host[at].saved[idx] = ms; } /* Similar to inet_ntop but uses a sockaddr as it's argument. */ void sockaddrtop( struct sockaddr * saddr, char * strptr, size_t len ) { struct sockaddr_in * sa4; #ifdef ENABLE_IPV6 struct sockaddr_in6 * sa6; #endif switch ( saddr->sa_family ) { case AF_INET: sa4 = (struct sockaddr_in *) saddr; strncpy( strptr, inet_ntoa( (struct in_addr) sa4->sin_addr ), len - 1 ); strptr[ len - 1 ] = '\0'; return; #ifdef ENABLE_IPV6 case AF_INET6: sa6 = (struct sockaddr_in6 *) saddr; inet_ntop( sa6->sin6_family, &(sa6->sin6_addr), strptr, len ); return; #endif default: fprintf( stderr, "sockaddrtop unknown address type\n" ); strptr[0] = '\0'; return; } } /* Address comparison. */ int addrcmp( char * a, char * b, int af ) { int rc = -1; switch ( af ) { case AF_INET: rc = memcmp( a, b, sizeof (struct in_addr) ); break; #ifdef ENABLE_IPV6 case AF_INET6: rc = memcmp( a, b, sizeof (struct in6_addr) ); break; #endif } return rc; } /* Address copy. */ void addrcpy( char * a, char * b, int af ) { switch ( af ) { case AF_INET: memcpy( a, b, sizeof (struct in_addr) ); break; #ifdef ENABLE_IPV6 case AF_INET6: memcpy( a, b, sizeof (struct in6_addr) ); break; #endif } }