/* * ar8216.c: AR8216 switch driver * * Copyright (C) 2009 Felix Fietkau * Copyright (C) 2011-2012 Gabor Juhos * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ar8216.h" /* size of the vlan table */ #define AR8X16_MAX_VLANS 128 #define AR8X16_PROBE_RETRIES 10 #define AR8X16_MAX_PORTS 8 #define AR8XXX_MIB_WORK_DELAY 2000 /* msecs */ struct ar8xxx_priv; #define AR8XXX_CAP_GIGE BIT(0) #define AR8XXX_CAP_MIB_COUNTERS BIT(1) enum { AR8XXX_VER_AR8216 = 0x01, AR8XXX_VER_AR8236 = 0x03, AR8XXX_VER_AR8316 = 0x10, AR8XXX_VER_AR8327 = 0x12, AR8XXX_VER_AR8337 = 0x13, }; struct ar8xxx_mib_desc { unsigned int size; unsigned int offset; const char *name; }; struct ar8xxx_chip { unsigned long caps; int (*hw_init)(struct ar8xxx_priv *priv); void (*init_globals)(struct ar8xxx_priv *priv); void (*init_port)(struct ar8xxx_priv *priv, int port); void (*setup_port)(struct ar8xxx_priv *priv, int port, u32 members); u32 (*read_port_status)(struct ar8xxx_priv *priv, int port); int (*atu_flush)(struct ar8xxx_priv *priv); void (*vtu_flush)(struct ar8xxx_priv *priv); void (*vtu_load_vlan)(struct ar8xxx_priv *priv, u32 vlan); const struct ar8xxx_mib_desc *mib_decs; unsigned num_mibs; }; struct ar8216_data { u8 vlan_tagged; }; struct ar8327_data { u8 vlan_tagged[AR8X16_MAX_VLANS]; u32 port0_status; u32 port6_status; }; struct ar8xxx_priv { struct switch_dev dev; struct mii_bus *mii_bus; struct phy_device *phy; u32 (*read)(struct ar8xxx_priv *priv, int reg); void (*write)(struct ar8xxx_priv *priv, int reg, u32 val); int (*get_port_link)(unsigned port); const struct net_device_ops *ndo_old; struct net_device_ops ndo; struct mutex reg_mutex; u8 chip_ver; u8 chip_rev; const struct ar8xxx_chip *chip; union { struct ar8216_data ar8216; struct ar8327_data ar8327; } chip_data; bool initialized; bool port4_phy; char buf[2048]; bool init; bool mii_lo_first; struct mutex mib_lock; struct delayed_work mib_work; int mib_next_port; u64 *mib_stats; struct list_head list; unsigned int use_count; /* all fields below are cleared on reset */ bool vlan; u16 vlan_id[AR8X16_MAX_VLANS]; u8 vlan_table[AR8X16_MAX_VLANS]; u16 pvid[AR8X16_MAX_PORTS]; /* mirroring */ bool mirror_rx; bool mirror_tx; int source_port; int monitor_port; }; #define MIB_DESC(_s , _o, _n) \ { \ .size = (_s), \ .offset = (_o), \ .name = (_n), \ } static const struct ar8xxx_mib_desc ar8216_mibs[] = { MIB_DESC(1, AR8216_STATS_RXBROAD, "RxBroad"), MIB_DESC(1, AR8216_STATS_RXPAUSE, "RxPause"), MIB_DESC(1, AR8216_STATS_RXMULTI, "RxMulti"), MIB_DESC(1, AR8216_STATS_RXFCSERR, "RxFcsErr"), MIB_DESC(1, AR8216_STATS_RXALIGNERR, "RxAlignErr"), MIB_DESC(1, AR8216_STATS_RXRUNT, "RxRunt"), MIB_DESC(1, AR8216_STATS_RXFRAGMENT, "RxFragment"), MIB_DESC(1, AR8216_STATS_RX64BYTE, "Rx64Byte"), MIB_DESC(1, AR8216_STATS_RX128BYTE, "Rx128Byte"), MIB_DESC(1, AR8216_STATS_RX256BYTE, "Rx256Byte"), MIB_DESC(1, AR8216_STATS_RX512BYTE, "Rx512Byte"), MIB_DESC(1, AR8216_STATS_RX1024BYTE, "Rx1024Byte"), MIB_DESC(1, AR8216_STATS_RXMAXBYTE, "RxMaxByte"), MIB_DESC(1, AR8216_STATS_RXTOOLONG, "RxTooLong"), MIB_DESC(2, AR8216_STATS_RXGOODBYTE, "RxGoodByte"), MIB_DESC(2, AR8216_STATS_RXBADBYTE, "RxBadByte"), MIB_DESC(1, AR8216_STATS_RXOVERFLOW, "RxOverFlow"), MIB_DESC(1, AR8216_STATS_FILTERED, "Filtered"), MIB_DESC(1, AR8216_STATS_TXBROAD, "TxBroad"), MIB_DESC(1, AR8216_STATS_TXPAUSE, "TxPause"), MIB_DESC(1, AR8216_STATS_TXMULTI, "TxMulti"), MIB_DESC(1, AR8216_STATS_TXUNDERRUN, "TxUnderRun"), MIB_DESC(1, AR8216_STATS_TX64BYTE, "Tx64Byte"), MIB_DESC(1, AR8216_STATS_TX128BYTE, "Tx128Byte"), MIB_DESC(1, AR8216_STATS_TX256BYTE, "Tx256Byte"), MIB_DESC(1, AR8216_STATS_TX512BYTE, "Tx512Byte"), MIB_DESC(1, AR8216_STATS_TX1024BYTE, "Tx1024Byte"), MIB_DESC(1, AR8216_STATS_TXMAXBYTE, "TxMaxByte"), MIB_DESC(1, AR8216_STATS_TXOVERSIZE, "TxOverSize"), MIB_DESC(2, AR8216_STATS_TXBYTE, "TxByte"), MIB_DESC(1, AR8216_STATS_TXCOLLISION, "TxCollision"), MIB_DESC(1, AR8216_STATS_TXABORTCOL, "TxAbortCol"), MIB_DESC(1, AR8216_STATS_TXMULTICOL, "TxMultiCol"), MIB_DESC(1, AR8216_STATS_TXSINGLECOL, "TxSingleCol"), MIB_DESC(1, AR8216_STATS_TXEXCDEFER, "TxExcDefer"), MIB_DESC(1, AR8216_STATS_TXDEFER, "TxDefer"), MIB_DESC(1, AR8216_STATS_TXLATECOL, "TxLateCol"), }; static const struct ar8xxx_mib_desc ar8236_mibs[] = { MIB_DESC(1, AR8236_STATS_RXBROAD, "RxBroad"), MIB_DESC(1, AR8236_STATS_RXPAUSE, "RxPause"), MIB_DESC(1, AR8236_STATS_RXMULTI, "RxMulti"), MIB_DESC(1, AR8236_STATS_RXFCSERR, "RxFcsErr"), MIB_DESC(1, AR8236_STATS_RXALIGNERR, "RxAlignErr"), MIB_DESC(1, AR8236_STATS_RXRUNT, "RxRunt"), MIB_DESC(1, AR8236_STATS_RXFRAGMENT, "RxFragment"), MIB_DESC(1, AR8236_STATS_RX64BYTE, "Rx64Byte"), MIB_DESC(1, AR8236_STATS_RX128BYTE, "Rx128Byte"), MIB_DESC(1, AR8236_STATS_RX256BYTE, "Rx256Byte"), MIB_DESC(1, AR8236_STATS_RX512BYTE, "Rx512Byte"), MIB_DESC(1, AR8236_STATS_RX1024BYTE, "Rx1024Byte"), MIB_DESC(1, AR8236_STATS_RX1518BYTE, "Rx1518Byte"), MIB_DESC(1, AR8236_STATS_RXMAXBYTE, "RxMaxByte"), MIB_DESC(1, AR8236_STATS_RXTOOLONG, "RxTooLong"), MIB_DESC(2, AR8236_STATS_RXGOODBYTE, "RxGoodByte"), MIB_DESC(2, AR8236_STATS_RXBADBYTE, "RxBadByte"), MIB_DESC(1, AR8236_STATS_RXOVERFLOW, "RxOverFlow"), MIB_DESC(1, AR8236_STATS_FILTERED, "Filtered"), MIB_DESC(1, AR8236_STATS_TXBROAD, "TxBroad"), MIB_DESC(1, AR8236_STATS_TXPAUSE, "TxPause"), MIB_DESC(1, AR8236_STATS_TXMULTI, "TxMulti"), MIB_DESC(1, AR8236_STATS_TXUNDERRUN, "TxUnderRun"), MIB_DESC(1, AR8236_STATS_TX64BYTE, "Tx64Byte"), MIB_DESC(1, AR8236_STATS_TX128BYTE, "Tx128Byte"), MIB_DESC(1, AR8236_STATS_TX256BYTE, "Tx256Byte"), MIB_DESC(1, AR8236_STATS_TX512BYTE, "Tx512Byte"), MIB_DESC(1, AR8236_STATS_TX1024BYTE, "Tx1024Byte"), MIB_DESC(1, AR8236_STATS_TX1518BYTE, "Tx1518Byte"), MIB_DESC(1, AR8236_STATS_TXMAXBYTE, "TxMaxByte"), MIB_DESC(1, AR8236_STATS_TXOVERSIZE, "TxOverSize"), MIB_DESC(2, AR8236_STATS_TXBYTE, "TxByte"), MIB_DESC(1, AR8236_STATS_TXCOLLISION, "TxCollision"), MIB_DESC(1, AR8236_STATS_TXABORTCOL, "TxAbortCol"), MIB_DESC(1, AR8236_STATS_TXMULTICOL, "TxMultiCol"), MIB_DESC(1, AR8236_STATS_TXSINGLECOL, "TxSingleCol"), MIB_DESC(1, AR8236_STATS_TXEXCDEFER, "TxExcDefer"), MIB_DESC(1, AR8236_STATS_TXDEFER, "TxDefer"), MIB_DESC(1, AR8236_STATS_TXLATECOL, "TxLateCol"), }; static DEFINE_MUTEX(ar8xxx_dev_list_lock); static LIST_HEAD(ar8xxx_dev_list); static inline struct ar8xxx_priv * swdev_to_ar8xxx(struct switch_dev *swdev) { return container_of(swdev, struct ar8xxx_priv, dev); } static inline bool ar8xxx_has_gige(struct ar8xxx_priv *priv) { return priv->chip->caps & AR8XXX_CAP_GIGE; } static inline bool ar8xxx_has_mib_counters(struct ar8xxx_priv *priv) { return priv->chip->caps & AR8XXX_CAP_MIB_COUNTERS; } static inline bool chip_is_ar8216(struct ar8xxx_priv *priv) { return priv->chip_ver == AR8XXX_VER_AR8216; } static inline bool chip_is_ar8236(struct ar8xxx_priv *priv) { return priv->chip_ver == AR8XXX_VER_AR8236; } static inline bool chip_is_ar8316(struct ar8xxx_priv *priv) { return priv->chip_ver == AR8XXX_VER_AR8316; } static inline bool chip_is_ar8327(struct ar8xxx_priv *priv) { return priv->chip_ver == AR8XXX_VER_AR8327; } static inline bool chip_is_ar8337(struct ar8xxx_priv *priv) { return priv->chip_ver == AR8XXX_VER_AR8337; } static inline void split_addr(u32 regaddr, u16 *r1, u16 *r2, u16 *page) { regaddr >>= 1; *r1 = regaddr & 0x1e; regaddr >>= 5; *r2 = regaddr & 0x7; regaddr >>= 3; *page = regaddr & 0x1ff; } static u32 ar8xxx_mii_read(struct ar8xxx_priv *priv, int reg) { struct mii_bus *bus = priv->mii_bus; u16 r1, r2, page; u16 lo, hi; split_addr((u32) reg, &r1, &r2, &page); mutex_lock(&bus->mdio_lock); bus->write(bus, 0x18, 0, page); usleep_range(1000, 2000); /* wait for the page switch to propagate */ lo = bus->read(bus, 0x10 | r2, r1); hi = bus->read(bus, 0x10 | r2, r1 + 1); mutex_unlock(&bus->mdio_lock); return (hi << 16) | lo; } static void ar8xxx_mii_write(struct ar8xxx_priv *priv, int reg, u32 val) { struct mii_bus *bus = priv->mii_bus; u16 r1, r2, r3; u16 lo, hi; split_addr((u32) reg, &r1, &r2, &r3); lo = val & 0xffff; hi = (u16) (val >> 16); mutex_lock(&bus->mdio_lock); bus->write(bus, 0x18, 0, r3); usleep_range(1000, 2000); /* wait for the page switch to propagate */ if (priv->mii_lo_first) { bus->write(bus, 0x10 | r2, r1, lo); bus->write(bus, 0x10 | r2, r1 + 1, hi); } else { bus->write(bus, 0x10 | r2, r1 + 1, hi); bus->write(bus, 0x10 | r2, r1, lo); } mutex_unlock(&bus->mdio_lock); } static void ar8xxx_phy_dbg_write(struct ar8xxx_priv *priv, int phy_addr, u16 dbg_addr, u16 dbg_data) { struct mii_bus *bus = priv->mii_bus; mutex_lock(&bus->mdio_lock); bus->write(bus, phy_addr, MII_ATH_DBG_ADDR, dbg_addr); bus->write(bus, phy_addr, MII_ATH_DBG_DATA, dbg_data); mutex_unlock(&bus->mdio_lock); } static void ar8xxx_phy_mmd_write(struct ar8xxx_priv *priv, int phy_addr, u16 addr, u16 data) { struct mii_bus *bus = priv->mii_bus; mutex_lock(&bus->mdio_lock); bus->write(bus, phy_addr, MII_ATH_MMD_ADDR, addr); bus->write(bus, phy_addr, MII_ATH_MMD_DATA, data); mutex_unlock(&bus->mdio_lock); } static u32 ar8xxx_rmw(struct ar8xxx_priv *priv, int reg, u32 mask, u32 val) { u32 v; lockdep_assert_held(&priv->reg_mutex); v = priv->read(priv, reg); v &= ~mask; v |= val; priv->write(priv, reg, v); return v; } static inline void ar8xxx_reg_set(struct ar8xxx_priv *priv, int reg, u32 val) { u32 v; lockdep_assert_held(&priv->reg_mutex); v = priv->read(priv, reg); v |= val; priv->write(priv, reg, v); } static int ar8xxx_reg_wait(struct ar8xxx_priv *priv, u32 reg, u32 mask, u32 val, unsigned timeout) { int i; for (i = 0; i < timeout; i++) { u32 t; t = priv->read(priv, reg); if ((t & mask) == val) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static int ar8xxx_mib_op(struct ar8xxx_priv *priv, u32 op) { unsigned mib_func; int ret; lockdep_assert_held(&priv->mib_lock); if (chip_is_ar8327(priv) || chip_is_ar8337(priv)) mib_func = AR8327_REG_MIB_FUNC; else mib_func = AR8216_REG_MIB_FUNC; mutex_lock(&priv->reg_mutex); /* Capture the hardware statistics for all ports */ ar8xxx_rmw(priv, mib_func, AR8216_MIB_FUNC, (op << AR8216_MIB_FUNC_S)); mutex_unlock(&priv->reg_mutex); /* Wait for the capturing to complete. */ ret = ar8xxx_reg_wait(priv, mib_func, AR8216_MIB_BUSY, 0, 10); if (ret) goto out; ret = 0; out: return ret; } static int ar8xxx_mib_capture(struct ar8xxx_priv *priv) { return ar8xxx_mib_op(priv, AR8216_MIB_FUNC_CAPTURE); } static int ar8xxx_mib_flush(struct ar8xxx_priv *priv) { return ar8xxx_mib_op(priv, AR8216_MIB_FUNC_FLUSH); } static void ar8xxx_mib_fetch_port_stat(struct ar8xxx_priv *priv, int port, bool flush) { unsigned int base; u64 *mib_stats; int i; WARN_ON(port >= priv->dev.ports); lockdep_assert_held(&priv->mib_lock); if (chip_is_ar8327(priv) || chip_is_ar8337(priv)) base = AR8327_REG_PORT_STATS_BASE(port); else if (chip_is_ar8236(priv) || chip_is_ar8316(priv)) base = AR8236_REG_PORT_STATS_BASE(port); else base = AR8216_REG_PORT_STATS_BASE(port); mib_stats = &priv->mib_stats[port * priv->chip->num_mibs]; for (i = 0; i < priv->chip->num_mibs; i++) { const struct ar8xxx_mib_desc *mib; u64 t; mib = &priv->chip->mib_decs[i]; t = priv->read(priv, base + mib->offset); if (mib->size == 2) { u64 hi; hi = priv->read(priv, base + mib->offset + 4); t |= hi << 32; } if (flush) mib_stats[i] = 0; else mib_stats[i] += t; } } static void ar8216_read_port_link(struct ar8xxx_priv *priv, int port, struct switch_port_link *link) { u32 status; u32 speed; memset(link, '\0', sizeof(*link)); status = priv->chip->read_port_status(priv, port); link->aneg = !!(status & AR8216_PORT_STATUS_LINK_AUTO); if (link->aneg) { link->link = !!(status & AR8216_PORT_STATUS_LINK_UP); } else { link->link = true; if (priv->get_port_link) { int err; err = priv->get_port_link(port); if (err >= 0) link->link = !!err; } } if (!link->link) return; link->duplex = !!(status & AR8216_PORT_STATUS_DUPLEX); link->tx_flow = !!(status & AR8216_PORT_STATUS_TXFLOW); link->rx_flow = !!(status & AR8216_PORT_STATUS_RXFLOW); speed = (status & AR8216_PORT_STATUS_SPEED) >> AR8216_PORT_STATUS_SPEED_S; switch (speed) { case AR8216_PORT_SPEED_10M: link->speed = SWITCH_PORT_SPEED_10; break; case AR8216_PORT_SPEED_100M: link->speed = SWITCH_PORT_SPEED_100; break; case AR8216_PORT_SPEED_1000M: link->speed = SWITCH_PORT_SPEED_1000; break; default: link->speed = SWITCH_PORT_SPEED_UNKNOWN; break; } } static struct sk_buff * ar8216_mangle_tx(struct net_device *dev, struct sk_buff *skb) { struct ar8xxx_priv *priv = dev->phy_ptr; unsigned char *buf; if (unlikely(!priv)) goto error; if (!priv->vlan) goto send; if (unlikely(skb_headroom(skb) < 2)) { if (pskb_expand_head(skb, 2, 0, GFP_ATOMIC) < 0) goto error; } buf = skb_push(skb, 2); buf[0] = 0x10; buf[1] = 0x80; send: return skb; error: dev_kfree_skb_any(skb); return NULL; } static void ar8216_mangle_rx(struct net_device *dev, struct sk_buff *skb) { struct ar8xxx_priv *priv; unsigned char *buf; int port, vlan; priv = dev->phy_ptr; if (!priv) return; /* don't strip the header if vlan mode is disabled */ if (!priv->vlan) return; /* strip header, get vlan id */ buf = skb->data; skb_pull(skb, 2); /* check for vlan header presence */ if ((buf[12 + 2] != 0x81) || (buf[13 + 2] != 0x00)) return; port = buf[0] & 0xf; /* no need to fix up packets coming from a tagged source */ if (priv->chip_data.ar8216.vlan_tagged & BIT(port)) return; /* lookup port vid from local table, the switch passes an invalid vlan id */ vlan = priv->vlan_id[priv->pvid[port]]; buf[14 + 2] &= 0xf0; buf[14 + 2] |= vlan >> 8; buf[15 + 2] = vlan & 0xff; } static int ar8216_wait_bit(struct ar8xxx_priv *priv, int reg, u32 mask, u32 val) { int timeout = 20; u32 t = 0; while (1) { t = priv->read(priv, reg); if ((t & mask) == val) return 0; if (timeout-- <= 0) break; udelay(10); } pr_err("ar8216: timeout on reg %08x: %08x & %08x != %08x\n", (unsigned int) reg, t, mask, val); return -ETIMEDOUT; } static void ar8216_vtu_op(struct ar8xxx_priv *priv, u32 op, u32 val) { if (ar8216_wait_bit(priv, AR8216_REG_VTU, AR8216_VTU_ACTIVE, 0)) return; if ((op & AR8216_VTU_OP) == AR8216_VTU_OP_LOAD) { val &= AR8216_VTUDATA_MEMBER; val |= AR8216_VTUDATA_VALID; priv->write(priv, AR8216_REG_VTU_DATA, val); } op |= AR8216_VTU_ACTIVE; priv->write(priv, AR8216_REG_VTU, op); } static void ar8216_vtu_flush(struct ar8xxx_priv *priv) { ar8216_vtu_op(priv, AR8216_VTU_OP_FLUSH, 0); } static void ar8216_vtu_load_vlan(struct ar8xxx_priv *priv, u32 vlan) { u32 op; u32 vid = priv->vlan_id[vlan]; u32 port_mask = priv->vlan_table[vlan]; op = AR8216_VTU_OP_LOAD | (vid << AR8216_VTU_VID_S); ar8216_vtu_op(priv, op, port_mask); } static int ar8216_atu_flush(struct ar8xxx_priv *priv) { int ret; ret = ar8216_wait_bit(priv, AR8216_REG_ATU, AR8216_ATU_ACTIVE, 0); if (!ret) priv->write(priv, AR8216_REG_ATU, AR8216_ATU_OP_FLUSH); return ret; } static u32 ar8216_read_port_status(struct ar8xxx_priv *priv, int port) { return priv->read(priv, AR8216_REG_PORT_STATUS(port)); } static void ar8216_setup_port(struct ar8xxx_priv *priv, int port, u32 members) { u32 header; u32 egress, ingress; u32 pvid; if (priv->vlan) { pvid = priv->vlan_id[priv->pvid[port]]; if (priv->chip_data.ar8216.vlan_tagged & BIT(port)) egress = AR8216_OUT_ADD_VLAN; else egress = AR8216_OUT_STRIP_VLAN; ingress = AR8216_IN_SECURE; } else { pvid = port; egress = AR8216_OUT_KEEP; ingress = AR8216_IN_PORT_ONLY; } if (chip_is_ar8216(priv) && priv->vlan && port == AR8216_PORT_CPU) header = AR8216_PORT_CTRL_HEADER; else header = 0; ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port), AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE | AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE | AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK, AR8216_PORT_CTRL_LEARN | header | (egress << AR8216_PORT_CTRL_VLAN_MODE_S) | (AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S)); ar8xxx_rmw(priv, AR8216_REG_PORT_VLAN(port), AR8216_PORT_VLAN_DEST_PORTS | AR8216_PORT_VLAN_MODE | AR8216_PORT_VLAN_DEFAULT_ID, (members << AR8216_PORT_VLAN_DEST_PORTS_S) | (ingress << AR8216_PORT_VLAN_MODE_S) | (pvid << AR8216_PORT_VLAN_DEFAULT_ID_S)); } static int ar8216_hw_init(struct ar8xxx_priv *priv) { return 0; } static void ar8216_init_globals(struct ar8xxx_priv *priv) { /* standard atheros magic */ priv->write(priv, 0x38, 0xc000050e); ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL, AR8216_GCTRL_MTU, 1518 + 8 + 2); } static void ar8216_init_port(struct ar8xxx_priv *priv, int port) { /* Enable port learning and tx */ priv->write(priv, AR8216_REG_PORT_CTRL(port), AR8216_PORT_CTRL_LEARN | (4 << AR8216_PORT_CTRL_STATE_S)); priv->write(priv, AR8216_REG_PORT_VLAN(port), 0); if (port == AR8216_PORT_CPU) { priv->write(priv, AR8216_REG_PORT_STATUS(port), AR8216_PORT_STATUS_LINK_UP | (ar8xxx_has_gige(priv) ? AR8216_PORT_SPEED_1000M : AR8216_PORT_SPEED_100M) | AR8216_PORT_STATUS_TXMAC | AR8216_PORT_STATUS_RXMAC | (chip_is_ar8316(priv) ? AR8216_PORT_STATUS_RXFLOW : 0) | (chip_is_ar8316(priv) ? AR8216_PORT_STATUS_TXFLOW : 0) | AR8216_PORT_STATUS_DUPLEX); } else { priv->write(priv, AR8216_REG_PORT_STATUS(port), AR8216_PORT_STATUS_LINK_AUTO); } } static const struct ar8xxx_chip ar8216_chip = { .caps = AR8XXX_CAP_MIB_COUNTERS, .hw_init = ar8216_hw_init, .init_globals = ar8216_init_globals, .init_port = ar8216_init_port, .setup_port = ar8216_setup_port, .read_port_status = ar8216_read_port_status, .atu_flush = ar8216_atu_flush, .vtu_flush = ar8216_vtu_flush, .vtu_load_vlan = ar8216_vtu_load_vlan, .num_mibs = ARRAY_SIZE(ar8216_mibs), .mib_decs = ar8216_mibs, }; static void ar8236_setup_port(struct ar8xxx_priv *priv, int port, u32 members) { u32 egress, ingress; u32 pvid; if (priv->vlan) { pvid = priv->vlan_id[priv->pvid[port]]; if (priv->chip_data.ar8216.vlan_tagged & BIT(port)) egress = AR8216_OUT_ADD_VLAN; else egress = AR8216_OUT_STRIP_VLAN; ingress = AR8216_IN_SECURE; } else { pvid = port; egress = AR8216_OUT_KEEP; ingress = AR8216_IN_PORT_ONLY; } ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port), AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE | AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE | AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK, AR8216_PORT_CTRL_LEARN | (egress << AR8216_PORT_CTRL_VLAN_MODE_S) | (AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S)); ar8xxx_rmw(priv, AR8236_REG_PORT_VLAN(port), AR8236_PORT_VLAN_DEFAULT_ID, (pvid << AR8236_PORT_VLAN_DEFAULT_ID_S)); ar8xxx_rmw(priv, AR8236_REG_PORT_VLAN2(port), AR8236_PORT_VLAN2_VLAN_MODE | AR8236_PORT_VLAN2_MEMBER, (ingress << AR8236_PORT_VLAN2_VLAN_MODE_S) | (members << AR8236_PORT_VLAN2_MEMBER_S)); } static int ar8236_hw_init(struct ar8xxx_priv *priv) { int i; struct mii_bus *bus; if (priv->initialized) return 0; /* Initialize the PHYs */ bus = priv->mii_bus; for (i = 0; i < 5; i++) { mdiobus_write(bus, i, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE); } msleep(1000); priv->initialized = true; return 0; } static void ar8236_init_globals(struct ar8xxx_priv *priv) { /* enable jumbo frames */ ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL, AR8316_GCTRL_MTU, 9018 + 8 + 2); /* Enable MIB counters */ ar8xxx_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN, (AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) | AR8236_MIB_EN); } static const struct ar8xxx_chip ar8236_chip = { .caps = AR8XXX_CAP_MIB_COUNTERS, .hw_init = ar8236_hw_init, .init_globals = ar8236_init_globals, .init_port = ar8216_init_port, .setup_port = ar8236_setup_port, .read_port_status = ar8216_read_port_status, .atu_flush = ar8216_atu_flush, .vtu_flush = ar8216_vtu_flush, .vtu_load_vlan = ar8216_vtu_load_vlan, .num_mibs = ARRAY_SIZE(ar8236_mibs), .mib_decs = ar8236_mibs, }; static int ar8316_hw_init(struct ar8xxx_priv *priv) { int i; u32 val, newval; struct mii_bus *bus; val = priv->read(priv, AR8316_REG_POSTRIP); if (priv->phy->interface == PHY_INTERFACE_MODE_RGMII) { if (priv->port4_phy) { /* value taken from Ubiquiti RouterStation Pro */ newval = 0x81461bea; pr_info("ar8316: Using port 4 as PHY\n"); } else { newval = 0x01261be2; pr_info("ar8316: Using port 4 as switch port\n"); } } else if (priv->phy->interface == PHY_INTERFACE_MODE_GMII) { /* value taken from AVM Fritz!Box 7390 sources */ newval = 0x010e5b71; } else { /* no known value for phy interface */ pr_err("ar8316: unsupported mii mode: %d.\n", priv->phy->interface); return -EINVAL; } if (val == newval) goto out; priv->write(priv, AR8316_REG_POSTRIP, newval); if (priv->port4_phy && priv->phy->interface == PHY_INTERFACE_MODE_RGMII) { /* work around for phy4 rgmii mode */ ar8xxx_phy_dbg_write(priv, 4, 0x12, 0x480c); /* rx delay */ ar8xxx_phy_dbg_write(priv, 4, 0x0, 0x824e); /* tx delay */ ar8xxx_phy_dbg_write(priv, 4, 0x5, 0x3d47); msleep(1000); } /* Initialize the ports */ bus = priv->mii_bus; for (i = 0; i < 5; i++) { /* initialize the port itself */ mdiobus_write(bus, i, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL); mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE); } msleep(1000); out: priv->initialized = true; return 0; } static void ar8316_init_globals(struct ar8xxx_priv *priv) { /* standard atheros magic */ priv->write(priv, 0x38, 0xc000050e); /* enable cpu port to receive multicast and broadcast frames */ priv->write(priv, AR8216_REG_FLOOD_MASK, 0x003f003f); /* enable jumbo frames */ ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL, AR8316_GCTRL_MTU, 9018 + 8 + 2); /* Enable MIB counters */ ar8xxx_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN, (AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) | AR8236_MIB_EN); } static const struct ar8xxx_chip ar8316_chip = { .caps = AR8XXX_CAP_GIGE | AR8XXX_CAP_MIB_COUNTERS, .hw_init = ar8316_hw_init, .init_globals = ar8316_init_globals, .init_port = ar8216_init_port, .setup_port = ar8216_setup_port, .read_port_status = ar8216_read_port_status, .atu_flush = ar8216_atu_flush, .vtu_flush = ar8216_vtu_flush, .vtu_load_vlan = ar8216_vtu_load_vlan, .num_mibs = ARRAY_SIZE(ar8236_mibs), .mib_decs = ar8236_mibs, }; static u32 ar8327_get_pad_cfg(struct ar8327_pad_cfg *cfg) { u32 t; if (!cfg) return 0; t = 0; switch (cfg->mode) { case AR8327_PAD_NC: break; case AR8327_PAD_MAC2MAC_MII: t = AR8327_PAD_MAC_MII_EN; if (cfg->rxclk_sel) t |= AR8327_PAD_MAC_MII_RXCLK_SEL; if (cfg->txclk_sel) t |= AR8327_PAD_MAC_MII_TXCLK_SEL; break; case AR8327_PAD_MAC2MAC_GMII: t = AR8327_PAD_MAC_GMII_EN; if (cfg->rxclk_sel) t |= AR8327_PAD_MAC_GMII_RXCLK_SEL; if (cfg->txclk_sel) t |= AR8327_PAD_MAC_GMII_TXCLK_SEL; break; case AR8327_PAD_MAC_SGMII: t = AR8327_PAD_SGMII_EN; /* * WAR for the QUalcomm Atheros AP136 board. * It seems that RGMII TX/RX delay settings needs to be * applied for SGMII mode as well, The ethernet is not * reliable without this. */ t |= cfg->txclk_delay_sel << AR8327_PAD_RGMII_TXCLK_DELAY_SEL_S; t |= cfg->rxclk_delay_sel << AR8327_PAD_RGMII_RXCLK_DELAY_SEL_S; if (cfg->rxclk_delay_en) t |= AR8327_PAD_RGMII_RXCLK_DELAY_EN; if (cfg->txclk_delay_en) t |= AR8327_PAD_RGMII_TXCLK_DELAY_EN; if (cfg->sgmii_delay_en) t |= AR8327_PAD_SGMII_DELAY_EN; break; case AR8327_PAD_MAC2PHY_MII: t = AR8327_PAD_PHY_MII_EN; if (cfg->rxclk_sel) t |= AR8327_PAD_PHY_MII_RXCLK_SEL; if (cfg->txclk_sel) t |= AR8327_PAD_PHY_MII_TXCLK_SEL; break; case AR8327_PAD_MAC2PHY_GMII: t = AR8327_PAD_PHY_GMII_EN; if (cfg->pipe_rxclk_sel) t |= AR8327_PAD_PHY_GMII_PIPE_RXCLK_SEL; if (cfg->rxclk_sel) t |= AR8327_PAD_PHY_GMII_RXCLK_SEL; if (cfg->txclk_sel) t |= AR8327_PAD_PHY_GMII_TXCLK_SEL; break; case AR8327_PAD_MAC_RGMII: t = AR8327_PAD_RGMII_EN; t |= cfg->txclk_delay_sel << AR8327_PAD_RGMII_TXCLK_DELAY_SEL_S; t |= cfg->rxclk_delay_sel << AR8327_PAD_RGMII_RXCLK_DELAY_SEL_S; if (cfg->rxclk_delay_en) t |= AR8327_PAD_RGMII_RXCLK_DELAY_EN; if (cfg->txclk_delay_en) t |= AR8327_PAD_RGMII_TXCLK_DELAY_EN; break; case AR8327_PAD_PHY_GMII: t = AR8327_PAD_PHYX_GMII_EN; break; case AR8327_PAD_PHY_RGMII: t = AR8327_PAD_PHYX_RGMII_EN; break; case AR8327_PAD_PHY_MII: t = AR8327_PAD_PHYX_MII_EN; break; } return t; } static void ar8327_phy_fixup(struct ar8xxx_priv *priv, int phy) { switch (priv->chip_rev) { case 1: /* For 100M waveform */ ar8xxx_phy_dbg_write(priv, phy, 0, 0x02ea); /* Turn on Gigabit clock */ ar8xxx_phy_dbg_write(priv, phy, 0x3d, 0x68a0); break; case 2: ar8xxx_phy_mmd_write(priv, phy, 0x7, 0x3c); ar8xxx_phy_mmd_write(priv, phy, 0x4007, 0x0); /* fallthrough */ case 4: ar8xxx_phy_mmd_write(priv, phy, 0x3, 0x800d); ar8xxx_phy_mmd_write(priv, phy, 0x4003, 0x803f); ar8xxx_phy_dbg_write(priv, phy, 0x3d, 0x6860); ar8xxx_phy_dbg_write(priv, phy, 0x5, 0x2c46); ar8xxx_phy_dbg_write(priv, phy, 0x3c, 0x6000); break; } } static u32 ar8327_get_port_init_status(struct ar8327_port_cfg *cfg) { u32 t; if (!cfg->force_link) return AR8216_PORT_STATUS_LINK_AUTO; t = AR8216_PORT_STATUS_TXMAC | AR8216_PORT_STATUS_RXMAC; t |= cfg->duplex ? AR8216_PORT_STATUS_DUPLEX : 0; t |= cfg->rxpause ? AR8216_PORT_STATUS_RXFLOW : 0; t |= cfg->txpause ? AR8216_PORT_STATUS_TXFLOW : 0; switch (cfg->speed) { case AR8327_PORT_SPEED_10: t |= AR8216_PORT_SPEED_10M; break; case AR8327_PORT_SPEED_100: t |= AR8216_PORT_SPEED_100M; break; case AR8327_PORT_SPEED_1000: t |= AR8216_PORT_SPEED_1000M; break; } return t; } static int ar8327_hw_config_pdata(struct ar8xxx_priv *priv, struct ar8327_platform_data *pdata) { struct ar8327_led_cfg *led_cfg; struct ar8327_data *data; u32 pos, new_pos; u32 t; if (!pdata) return -EINVAL; priv->get_port_link = pdata->get_port_link; data = &priv->chip_data.ar8327; data->port0_status = ar8327_get_port_init_status(&pdata->port0_cfg); data->port6_status = ar8327_get_port_init_status(&pdata->port6_cfg); t = ar8327_get_pad_cfg(pdata->pad0_cfg); if (chip_is_ar8337(priv)) t |= AR8337_PAD_MAC06_EXCHANGE_EN; priv->write(priv, AR8327_REG_PAD0_MODE, t); t = ar8327_get_pad_cfg(pdata->pad5_cfg); priv->write(priv, AR8327_REG_PAD5_MODE, t); t = ar8327_get_pad_cfg(pdata->pad6_cfg); priv->write(priv, AR8327_REG_PAD6_MODE, t); pos = priv->read(priv, AR8327_REG_POWER_ON_STRIP); new_pos = pos; led_cfg = pdata->led_cfg; if (led_cfg) { if (led_cfg->open_drain) new_pos |= AR8327_POWER_ON_STRIP_LED_OPEN_EN; else new_pos &= ~AR8327_POWER_ON_STRIP_LED_OPEN_EN; priv->write(priv, AR8327_REG_LED_CTRL0, led_cfg->led_ctrl0); priv->write(priv, AR8327_REG_LED_CTRL1, led_cfg->led_ctrl1); priv->write(priv, AR8327_REG_LED_CTRL2, led_cfg->led_ctrl2); priv->write(priv, AR8327_REG_LED_CTRL3, led_cfg->led_ctrl3); if (new_pos != pos) new_pos |= AR8327_POWER_ON_STRIP_POWER_ON_SEL; } if (pdata->sgmii_cfg) { t = pdata->sgmii_cfg->sgmii_ctrl; if (priv->chip_rev == 1) t |= AR8327_SGMII_CTRL_EN_PLL | AR8327_SGMII_CTRL_EN_RX | AR8327_SGMII_CTRL_EN_TX; else t &= ~(AR8327_SGMII_CTRL_EN_PLL | AR8327_SGMII_CTRL_EN_RX | AR8327_SGMII_CTRL_EN_TX); priv->write(priv, AR8327_REG_SGMII_CTRL, t); if (pdata->sgmii_cfg->serdes_aen) new_pos &= ~AR8327_POWER_ON_STRIP_SERDES_AEN; else new_pos |= AR8327_POWER_ON_STRIP_SERDES_AEN; } priv->write(priv, AR8327_REG_POWER_ON_STRIP, new_pos); return 0; } #ifdef CONFIG_OF static int ar8327_hw_config_of(struct ar8xxx_priv *priv, struct device_node *np) { const __be32 *paddr; int len; int i; paddr = of_get_property(np, "qca,ar8327-initvals", &len); if (!paddr || len < (2 * sizeof(*paddr))) return -EINVAL; len /= sizeof(*paddr); for (i = 0; i < len - 1; i += 2) { u32 reg; u32 val; reg = be32_to_cpup(paddr + i); val = be32_to_cpup(paddr + i + 1); switch (reg) { case AR8327_REG_PORT_STATUS(0): priv->chip_data.ar8327.port0_status = val; break; case AR8327_REG_PORT_STATUS(6): priv->chip_data.ar8327.port6_status = val; break; default: priv->write(priv, reg, val); break; } } return 0; } #else static inline int ar8327_hw_config_of(struct ar8xxx_priv *priv, struct device_node *np) { return -EINVAL; } #endif static int ar8327_hw_init(struct ar8xxx_priv *priv) { struct mii_bus *bus; int ret; int i; if (priv->phy->dev.of_node) ret = ar8327_hw_config_of(priv, priv->phy->dev.of_node); else ret = ar8327_hw_config_pdata(priv, priv->phy->dev.platform_data); if (ret) return ret; bus = priv->mii_bus; for (i = 0; i < AR8327_NUM_PHYS; i++) { ar8327_phy_fixup(priv, i); /* start aneg on the PHY */ mdiobus_write(bus, i, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL); mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE); } msleep(1000); return 0; } static void ar8327_init_globals(struct ar8xxx_priv *priv) { u32 t; /* enable CPU port and disable mirror port */ t = AR8327_FWD_CTRL0_CPU_PORT_EN | AR8327_FWD_CTRL0_MIRROR_PORT; priv->write(priv, AR8327_REG_FWD_CTRL0, t); /* forward multicast and broadcast frames to CPU */ t = (AR8327_PORTS_ALL << AR8327_FWD_CTRL1_UC_FLOOD_S) | (AR8327_PORTS_ALL << AR8327_FWD_CTRL1_MC_FLOOD_S) | (AR8327_PORTS_ALL << AR8327_FWD_CTRL1_BC_FLOOD_S); priv->write(priv, AR8327_REG_FWD_CTRL1, t); /* enable jumbo frames */ ar8xxx_rmw(priv, AR8327_REG_MAX_FRAME_SIZE, AR8327_MAX_FRAME_SIZE_MTU, 9018 + 8 + 2); /* Enable MIB counters */ ar8xxx_reg_set(priv, AR8327_REG_MODULE_EN, AR8327_MODULE_EN_MIB); } static void ar8327_init_port(struct ar8xxx_priv *priv, int port) { u32 t; if (port == AR8216_PORT_CPU) t = priv->chip_data.ar8327.port0_status; else if (port == 6) t = priv->chip_data.ar8327.port6_status; else t = AR8216_PORT_STATUS_LINK_AUTO; priv->write(priv, AR8327_REG_PORT_STATUS(port), t); priv->write(priv, AR8327_REG_PORT_HEADER(port), 0); t = 1 << AR8327_PORT_VLAN0_DEF_SVID_S; t |= 1 << AR8327_PORT_VLAN0_DEF_CVID_S; priv->write(priv, AR8327_REG_PORT_VLAN0(port), t); t = AR8327_PORT_VLAN1_OUT_MODE_UNTOUCH << AR8327_PORT_VLAN1_OUT_MODE_S; priv->write(priv, AR8327_REG_PORT_VLAN1(port), t); t = AR8327_PORT_LOOKUP_LEARN; t |= AR8216_PORT_STATE_FORWARD << AR8327_PORT_LOOKUP_STATE_S; priv->write(priv, AR8327_REG_PORT_LOOKUP(port), t); } static u32 ar8327_read_port_status(struct ar8xxx_priv *priv, int port) { return priv->read(priv, AR8327_REG_PORT_STATUS(port)); } static int ar8327_atu_flush(struct ar8xxx_priv *priv) { int ret; ret = ar8216_wait_bit(priv, AR8327_REG_ATU_FUNC, AR8327_ATU_FUNC_BUSY, 0); if (!ret) priv->write(priv, AR8327_REG_ATU_FUNC, AR8327_ATU_FUNC_OP_FLUSH); return ret; } static void ar8327_vtu_op(struct ar8xxx_priv *priv, u32 op, u32 val) { if (ar8216_wait_bit(priv, AR8327_REG_VTU_FUNC1, AR8327_VTU_FUNC1_BUSY, 0)) return; if ((op & AR8327_VTU_FUNC1_OP) == AR8327_VTU_FUNC1_OP_LOAD) priv->write(priv, AR8327_REG_VTU_FUNC0, val); op |= AR8327_VTU_FUNC1_BUSY; priv->write(priv, AR8327_REG_VTU_FUNC1, op); } static void ar8327_vtu_flush(struct ar8xxx_priv *priv) { ar8327_vtu_op(priv, AR8327_VTU_FUNC1_OP_FLUSH, 0); } static void ar8327_vtu_load_vlan(struct ar8xxx_priv *priv, u32 vlan) { u32 op, val; int i; u32 vid = priv->vlan_id[vlan]; u32 port_mask = priv->vlan_table[vlan]; u32 tagged = priv->chip_data.ar8327.vlan_tagged[vlan]; op = AR8327_VTU_FUNC1_OP_LOAD | (vid << AR8327_VTU_FUNC1_VID_S); val = AR8327_VTU_FUNC0_VALID | AR8327_VTU_FUNC0_IVL; for (i = 0; i < AR8327_NUM_PORTS; i++) { u32 mode; if ((port_mask & BIT(i)) == 0) mode = AR8327_VTU_FUNC0_EG_MODE_NOT; else if (priv->vlan == 0) mode = AR8327_VTU_FUNC0_EG_MODE_KEEP; else if (tagged & BIT(i)) mode = AR8327_VTU_FUNC0_EG_MODE_TAG; else mode = AR8327_VTU_FUNC0_EG_MODE_UNTAG; val |= mode << AR8327_VTU_FUNC0_EG_MODE_S(i); } ar8327_vtu_op(priv, op, val); } static void ar8327_setup_port(struct ar8xxx_priv *priv, int port, u32 members) { u32 ingress, mode; u32 pvid; u32 t; if (priv->vlan) { pvid = priv->vlan_id[priv->pvid[port]]; mode = AR8327_PORT_VLAN1_OUT_MODE_UNMOD; ingress = AR8216_IN_SECURE; } else { pvid = port; mode = AR8327_PORT_VLAN1_OUT_MODE_UNTOUCH; ingress = AR8216_IN_PORT_ONLY; } t = pvid << AR8327_PORT_VLAN0_DEF_SVID_S; t |= pvid << AR8327_PORT_VLAN0_DEF_CVID_S; priv->write(priv, AR8327_REG_PORT_VLAN0(port), t); t = AR8327_PORT_VLAN1_PORT_VLAN_PROP; t |= mode << AR8327_PORT_VLAN1_OUT_MODE_S; priv->write(priv, AR8327_REG_PORT_VLAN1(port), t); t = members; t |= AR8327_PORT_LOOKUP_LEARN; t |= ingress << AR8327_PORT_LOOKUP_IN_MODE_S; t |= AR8216_PORT_STATE_FORWARD << AR8327_PORT_LOOKUP_STATE_S; priv->write(priv, AR8327_REG_PORT_LOOKUP(port), t); } static const struct ar8xxx_chip ar8327_chip = { .caps = AR8XXX_CAP_GIGE | AR8XXX_CAP_MIB_COUNTERS, .hw_init = ar8327_hw_init, .init_globals = ar8327_init_globals, .init_port = ar8327_init_port, .setup_port = ar8327_setup_port, .read_port_status = ar8327_read_port_status, .atu_flush = ar8327_atu_flush, .vtu_flush = ar8327_vtu_flush, .vtu_load_vlan = ar8327_vtu_load_vlan, .num_mibs = ARRAY_SIZE(ar8236_mibs), .mib_decs = ar8236_mibs, }; static int ar8xxx_sw_set_vlan(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); priv->vlan = !!val->value.i; return 0; } static int ar8xxx_sw_get_vlan(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); val->value.i = priv->vlan; return 0; } static int ar8xxx_sw_set_pvid(struct switch_dev *dev, int port, int vlan) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); /* make sure no invalid PVIDs get set */ if (vlan >= dev->vlans) return -EINVAL; priv->pvid[port] = vlan; return 0; } static int ar8xxx_sw_get_pvid(struct switch_dev *dev, int port, int *vlan) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); *vlan = priv->pvid[port]; return 0; } static int ar8xxx_sw_set_vid(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); priv->vlan_id[val->port_vlan] = val->value.i; return 0; } static int ar8xxx_sw_get_vid(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); val->value.i = priv->vlan_id[val->port_vlan]; return 0; } static int ar8xxx_sw_get_port_link(struct switch_dev *dev, int port, struct switch_port_link *link) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); ar8216_read_port_link(priv, port, link); return 0; } static int ar8xxx_sw_get_ports(struct switch_val *val, int ports, u8 port_mask, u8 tagged) { int i; val->len = 0; for (i = 0; i < ports; i++) { struct switch_port *p; if (!(port_mask & BIT(i))) continue; p = &val->value.ports[val->len++]; p->id = i; if (tagged & BIT(i)) p->flags = BIT(SWITCH_PORT_FLAG_TAGGED); else p->flags = 0; } return 0; } static int ar8216_sw_get_ports(struct switch_dev *dev, struct switch_val *val) { int ports = dev->ports; struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); u8 port_mask = priv->vlan_table[val->port_vlan]; u8 tagged = priv->chip_data.ar8216.vlan_tagged; return ar8xxx_sw_get_ports(val, ports, port_mask, tagged); } static int ar8327_sw_get_ports(struct switch_dev *dev, struct switch_val *val) { int ports = dev->ports; struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); u8 port_mask = priv->vlan_table[val->port_vlan]; u8 tagged = priv->chip_data.ar8327.vlan_tagged[val->port_vlan]; return ar8xxx_sw_get_ports(val, ports, port_mask, tagged); } static int ar8216_sw_set_ports(struct switch_dev *dev, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); u8 *vt = &priv->vlan_table[val->port_vlan]; u8 *tagged = &priv->chip_data.ar8216.vlan_tagged; int i, j; *vt = 0; for (i = 0; i < val->len; i++) { struct switch_port *p = &val->value.ports[i]; if (p->flags & BIT(SWITCH_PORT_FLAG_TAGGED)) { /* if port was untagged before then * remove him from other vlans */ if(*tagged & BIT(p->id)){ for (j = 0; j < AR8X16_MAX_VLANS; j++) { if (j == val->port_vlan) continue; priv->vlan_table[j] &= ~(BIT(p->id)); } } *tagged |= BIT(p->id); } else { *tagged &= ~(BIT(p->id)); priv->pvid[p->id] = val->port_vlan; /* make sure that an untagged port does not * appear in other vlans */ for (j = 0; j < AR8X16_MAX_VLANS; j++) { if (j == val->port_vlan) continue; priv->vlan_table[j] &= ~(BIT(p->id)); } } *vt |= BIT(p->id); } return 0; } static int ar8327_sw_set_ports(struct switch_dev *dev, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); u8 *vt = &priv->vlan_table[val->port_vlan]; u8 *vlan_tagged = priv->chip_data.ar8327.vlan_tagged; u8 *tagged = &vlan_tagged[val->port_vlan]; int i, j; *vt = 0; *tagged = 0; for (i = 0; i < val->len; i++) { struct switch_port *p = &val->value.ports[i]; if (p->flags & BIT(SWITCH_PORT_FLAG_TAGGED)) { *tagged |= BIT(p->id); } else { priv->pvid[p->id] = val->port_vlan; /* make sure that an untagged port does not * appear in other vlans */ for (j = 0; j < AR8X16_MAX_VLANS; j++) { if (j == val->port_vlan) continue; // skip tagged if(vlan_tagged[j] & BIT(SWITCH_PORT_FLAG_TAGGED)) continue; // remove port priv->vlan_table[j] &= ~(BIT(p->id)); } } *vt |= BIT(p->id); } return 0; } static void ar8327_set_mirror_regs(struct ar8xxx_priv *priv) { int port; /* reset all mirror registers */ ar8xxx_rmw(priv, AR8327_REG_FWD_CTRL0, AR8327_FWD_CTRL0_MIRROR_PORT, (0xF << AR8327_FWD_CTRL0_MIRROR_PORT_S)); for (port = 0; port < AR8327_NUM_PORTS; port++) { ar8xxx_rmw(priv, AR8327_REG_PORT_LOOKUP(port), AR8327_PORT_LOOKUP_ING_MIRROR_EN, 0); ar8xxx_rmw(priv, AR8327_REG_PORT_HOL_CTRL1(port), AR8327_PORT_HOL_CTRL1_EG_MIRROR_EN, 0); } /* now enable mirroring if necessary */ if (priv->source_port >= AR8327_NUM_PORTS || priv->monitor_port >= AR8327_NUM_PORTS || priv->source_port == priv->monitor_port) { return; } ar8xxx_rmw(priv, AR8327_REG_FWD_CTRL0, AR8327_FWD_CTRL0_MIRROR_PORT, (priv->monitor_port << AR8327_FWD_CTRL0_MIRROR_PORT_S)); if (priv->mirror_rx) ar8xxx_rmw(priv, AR8327_REG_PORT_LOOKUP(priv->source_port), AR8327_PORT_LOOKUP_ING_MIRROR_EN, AR8327_PORT_LOOKUP_ING_MIRROR_EN); if (priv->mirror_tx) ar8xxx_rmw(priv, AR8327_REG_PORT_HOL_CTRL1(priv->source_port), AR8327_PORT_HOL_CTRL1_EG_MIRROR_EN, AR8327_PORT_HOL_CTRL1_EG_MIRROR_EN); } static void ar8216_set_mirror_regs(struct ar8xxx_priv *priv) { int port; /* reset all mirror registers */ ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CPUPORT, AR8216_GLOBAL_CPUPORT_MIRROR_PORT, (0xF << AR8216_GLOBAL_CPUPORT_MIRROR_PORT_S)); for (port = 0; port < AR8216_NUM_PORTS; port++) { ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port), AR8216_PORT_CTRL_MIRROR_RX, 0); ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port), AR8216_PORT_CTRL_MIRROR_TX, 0); } /* now enable mirroring if necessary */ if (priv->source_port >= AR8216_NUM_PORTS || priv->monitor_port >= AR8216_NUM_PORTS || priv->source_port == priv->monitor_port) { return; } ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CPUPORT, AR8216_GLOBAL_CPUPORT_MIRROR_PORT, (priv->monitor_port << AR8216_GLOBAL_CPUPORT_MIRROR_PORT_S)); if (priv->mirror_rx) ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(priv->source_port), AR8216_PORT_CTRL_MIRROR_RX, AR8216_PORT_CTRL_MIRROR_RX); if (priv->mirror_tx) ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(priv->source_port), AR8216_PORT_CTRL_MIRROR_TX, AR8216_PORT_CTRL_MIRROR_TX); } static void ar8xxx_set_mirror_regs(struct ar8xxx_priv *priv) { if (chip_is_ar8327(priv) || chip_is_ar8337(priv)) { ar8327_set_mirror_regs(priv); } else { ar8216_set_mirror_regs(priv); } } static int ar8xxx_sw_hw_apply(struct switch_dev *dev) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); u8 portmask[AR8X16_MAX_PORTS]; int i, j; mutex_lock(&priv->reg_mutex); /* flush all vlan translation unit entries */ priv->chip->vtu_flush(priv); memset(portmask, 0, sizeof(portmask)); if (!priv->init) { /* calculate the port destination masks and load vlans * into the vlan translation unit */ for (j = 0; j < AR8X16_MAX_VLANS; j++) { u8 vp = priv->vlan_table[j]; if (!vp) continue; for (i = 0; i < dev->ports; i++) { u8 mask = BIT(i); if (vp & mask) portmask[i] |= vp & ~mask; } priv->chip->vtu_load_vlan(priv, j); } } else { /* vlan disabled: * isolate all ports, but connect them to the cpu port */ for (i = 0; i < dev->ports; i++) { if (i == AR8216_PORT_CPU) continue; portmask[i] = BIT(AR8216_PORT_CPU); portmask[AR8216_PORT_CPU] |= BIT(i); } } /* update the port destination mask registers and tag settings */ for (i = 0; i < dev->ports; i++) { priv->chip->setup_port(priv, i, portmask[i]); } ar8xxx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar8xxx_sw_reset_switch(struct switch_dev *dev) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); int i; mutex_lock(&priv->reg_mutex); memset(&priv->vlan, 0, sizeof(struct ar8xxx_priv) - offsetof(struct ar8xxx_priv, vlan)); for (i = 0; i < AR8X16_MAX_VLANS; i++) priv->vlan_id[i] = i; /* Configure all ports */ for (i = 0; i < dev->ports; i++) priv->chip->init_port(priv, i); priv->mirror_rx = false; priv->mirror_tx = false; priv->source_port = 0; priv->monitor_port = 0; priv->chip->init_globals(priv); mutex_unlock(&priv->reg_mutex); return ar8xxx_sw_hw_apply(dev); } static int ar8xxx_sw_set_reset_mibs(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); unsigned int len; int ret; if (!ar8xxx_has_mib_counters(priv)) return -EOPNOTSUPP; mutex_lock(&priv->mib_lock); len = priv->dev.ports * priv->chip->num_mibs * sizeof(*priv->mib_stats); memset(priv->mib_stats, '\0', len); ret = ar8xxx_mib_flush(priv); if (ret) goto unlock; ret = 0; unlock: mutex_unlock(&priv->mib_lock); return ret; } static int ar8xxx_sw_set_mirror_rx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); mutex_lock(&priv->reg_mutex); priv->mirror_rx = !!val->value.i; ar8xxx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar8xxx_sw_get_mirror_rx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); val->value.i = priv->mirror_rx; return 0; } static int ar8xxx_sw_set_mirror_tx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); mutex_lock(&priv->reg_mutex); priv->mirror_tx = !!val->value.i; ar8xxx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar8xxx_sw_get_mirror_tx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); val->value.i = priv->mirror_tx; return 0; } static int ar8xxx_sw_set_mirror_monitor_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); mutex_lock(&priv->reg_mutex); priv->monitor_port = val->value.i; ar8xxx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar8xxx_sw_get_mirror_monitor_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); val->value.i = priv->monitor_port; return 0; } static int ar8xxx_sw_set_mirror_source_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); mutex_lock(&priv->reg_mutex); priv->source_port = val->value.i; ar8xxx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar8xxx_sw_get_mirror_source_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); val->value.i = priv->source_port; return 0; } static int ar8xxx_sw_set_port_reset_mib(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); int port; int ret; if (!ar8xxx_has_mib_counters(priv)) return -EOPNOTSUPP; port = val->port_vlan; if (port >= dev->ports) return -EINVAL; mutex_lock(&priv->mib_lock); ret = ar8xxx_mib_capture(priv); if (ret) goto unlock; ar8xxx_mib_fetch_port_stat(priv, port, true); ret = 0; unlock: mutex_unlock(&priv->mib_lock); return ret; } static int ar8xxx_sw_get_port_mib(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev); const struct ar8xxx_chip *chip = priv->chip; u64 *mib_stats; int port; int ret; char *buf = priv->buf; int i, len = 0; if (!ar8xxx_has_mib_counters(priv)) return -EOPNOTSUPP; port = val->port_vlan; if (port >= dev->ports) return -EINVAL; mutex_lock(&priv->mib_lock); ret = ar8xxx_mib_capture(priv); if (ret) goto unlock; ar8xxx_mib_fetch_port_stat(priv, port, false); len += snprintf(buf + len, sizeof(priv->buf) - len, "Port %d MIB counters\n", port); mib_stats = &priv->mib_stats[port * chip->num_mibs]; for (i = 0; i < chip->num_mibs; i++) len += snprintf(buf + len, sizeof(priv->buf) - len, "%-12s: %llu\n", chip->mib_decs[i].name, mib_stats[i]); val->value.s = buf; val->len = len; ret = 0; unlock: mutex_unlock(&priv->mib_lock); return ret; } static struct switch_attr ar8xxx_sw_attr_globals[] = { { .type = SWITCH_TYPE_INT, .name = "enable_vlan", .description = "Enable VLAN mode", .set = ar8xxx_sw_set_vlan, .get = ar8xxx_sw_get_vlan, .max = 1 }, { .type = SWITCH_TYPE_NOVAL, .name = "reset_mibs", .description = "Reset all MIB counters", .set = ar8xxx_sw_set_reset_mibs, }, { .type = SWITCH_TYPE_INT, .name = "enable_mirror_rx", .description = "Enable mirroring of RX packets", .set = ar8xxx_sw_set_mirror_rx_enable, .get = ar8xxx_sw_get_mirror_rx_enable, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "enable_mirror_tx", .description = "Enable mirroring of TX packets", .set = ar8xxx_sw_set_mirror_tx_enable, .get = ar8xxx_sw_get_mirror_tx_enable, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "mirror_monitor_port", .description = "Mirror monitor port", .set = ar8xxx_sw_set_mirror_monitor_port, .get = ar8xxx_sw_get_mirror_monitor_port, .max = AR8216_NUM_PORTS - 1 }, { .type = SWITCH_TYPE_INT, .name = "mirror_source_port", .description = "Mirror source port", .set = ar8xxx_sw_set_mirror_source_port, .get = ar8xxx_sw_get_mirror_source_port, .max = AR8216_NUM_PORTS - 1 }, }; static struct switch_attr ar8327_sw_attr_globals[] = { { .type = SWITCH_TYPE_INT, .name = "enable_vlan", .description = "Enable VLAN mode", .set = ar8xxx_sw_set_vlan, .get = ar8xxx_sw_get_vlan, .max = 1 }, { .type = SWITCH_TYPE_NOVAL, .name = "reset_mibs", .description = "Reset all MIB counters", .set = ar8xxx_sw_set_reset_mibs, }, { .type = SWITCH_TYPE_INT, .name = "enable_mirror_rx", .description = "Enable mirroring of RX packets", .set = ar8xxx_sw_set_mirror_rx_enable, .get = ar8xxx_sw_get_mirror_rx_enable, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "enable_mirror_tx", .description = "Enable mirroring of TX packets", .set = ar8xxx_sw_set_mirror_tx_enable, .get = ar8xxx_sw_get_mirror_tx_enable, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "mirror_monitor_port", .description = "Mirror monitor port", .set = ar8xxx_sw_set_mirror_monitor_port, .get = ar8xxx_sw_get_mirror_monitor_port, .max = AR8327_NUM_PORTS - 1 }, { .type = SWITCH_TYPE_INT, .name = "mirror_source_port", .description = "Mirror source port", .set = ar8xxx_sw_set_mirror_source_port, .get = ar8xxx_sw_get_mirror_source_port, .max = AR8327_NUM_PORTS - 1 }, }; static struct switch_attr ar8xxx_sw_attr_port[] = { { .type = SWITCH_TYPE_NOVAL, .name = "reset_mib", .description = "Reset single port MIB counters", .set = ar8xxx_sw_set_port_reset_mib, }, { .type = SWITCH_TYPE_STRING, .name = "mib", .description = "Get port's MIB counters", .set = NULL, .get = ar8xxx_sw_get_port_mib, }, }; static struct switch_attr ar8xxx_sw_attr_vlan[] = { { .type = SWITCH_TYPE_INT, .name = "vid", .description = "VLAN ID (0-4094)", .set = ar8xxx_sw_set_vid, .get = ar8xxx_sw_get_vid, .max = 4094, }, }; static const struct switch_dev_ops ar8xxx_sw_ops = { .attr_global = { .attr = ar8xxx_sw_attr_globals, .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_globals), }, .attr_port = { .attr = ar8xxx_sw_attr_port, .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_port), }, .attr_vlan = { .attr = ar8xxx_sw_attr_vlan, .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_vlan), }, .get_port_pvid = ar8xxx_sw_get_pvid, .set_port_pvid = ar8xxx_sw_set_pvid, .get_vlan_ports = ar8216_sw_get_ports, .set_vlan_ports = ar8216_sw_set_ports, .apply_config = ar8xxx_sw_hw_apply, .reset_switch = ar8xxx_sw_reset_switch, .get_port_link = ar8xxx_sw_get_port_link, }; static const struct switch_dev_ops ar8327_sw_ops = { .attr_global = { .attr = ar8327_sw_attr_globals, .n_attr = ARRAY_SIZE(ar8327_sw_attr_globals), }, .attr_port = { .attr = ar8xxx_sw_attr_port, .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_port), }, .attr_vlan = { .attr = ar8xxx_sw_attr_vlan, .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_vlan), }, .get_port_pvid = ar8xxx_sw_get_pvid, .set_port_pvid = ar8xxx_sw_set_pvid, .get_vlan_ports = ar8327_sw_get_ports, .set_vlan_ports = ar8327_sw_set_ports, .apply_config = ar8xxx_sw_hw_apply, .reset_switch = ar8xxx_sw_reset_switch, .get_port_link = ar8xxx_sw_get_port_link, }; static int ar8xxx_id_chip(struct ar8xxx_priv *priv) { u32 val; u16 id; int i; val = priv->read(priv, AR8216_REG_CTRL); if (val == ~0) return -ENODEV; id = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION); for (i = 0; i < AR8X16_PROBE_RETRIES; i++) { u16 t; val = priv->read(priv, AR8216_REG_CTRL); if (val == ~0) return -ENODEV; t = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION); if (t != id) return -ENODEV; } priv->chip_ver = (id & AR8216_CTRL_VERSION) >> AR8216_CTRL_VERSION_S; priv->chip_rev = (id & AR8216_CTRL_REVISION); switch (priv->chip_ver) { case AR8XXX_VER_AR8216: priv->chip = &ar8216_chip; break; case AR8XXX_VER_AR8236: priv->chip = &ar8236_chip; break; case AR8XXX_VER_AR8316: priv->chip = &ar8316_chip; break; case AR8XXX_VER_AR8327: priv->mii_lo_first = true; priv->chip = &ar8327_chip; break; case AR8XXX_VER_AR8337: priv->mii_lo_first = true; priv->chip = &ar8327_chip; break; default: pr_err("ar8216: Unknown Atheros device [ver=%d, rev=%d]\n", priv->chip_ver, priv->chip_rev); return -ENODEV; } return 0; } static void ar8xxx_mib_work_func(struct work_struct *work) { struct ar8xxx_priv *priv; int err; priv = container_of(work, struct ar8xxx_priv, mib_work.work); mutex_lock(&priv->mib_lock); err = ar8xxx_mib_capture(priv); if (err) goto next_port; ar8xxx_mib_fetch_port_stat(priv, priv->mib_next_port, false); next_port: priv->mib_next_port++; if (priv->mib_next_port >= priv->dev.ports) priv->mib_next_port = 0; mutex_unlock(&priv->mib_lock); schedule_delayed_work(&priv->mib_work, msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY)); } static int ar8xxx_mib_init(struct ar8xxx_priv *priv) { unsigned int len; if (!ar8xxx_has_mib_counters(priv)) return 0; BUG_ON(!priv->chip->mib_decs || !priv->chip->num_mibs); len = priv->dev.ports * priv->chip->num_mibs * sizeof(*priv->mib_stats); priv->mib_stats = kzalloc(len, GFP_KERNEL); if (!priv->mib_stats) return -ENOMEM; return 0; } static void ar8xxx_mib_start(struct ar8xxx_priv *priv) { if (!ar8xxx_has_mib_counters(priv)) return; schedule_delayed_work(&priv->mib_work, msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY)); } static void ar8xxx_mib_stop(struct ar8xxx_priv *priv) { if (!ar8xxx_has_mib_counters(priv)) return; cancel_delayed_work(&priv->mib_work); } static struct ar8xxx_priv * ar8xxx_create(void) { struct ar8xxx_priv *priv; priv = kzalloc(sizeof(struct ar8xxx_priv), GFP_KERNEL); if (priv == NULL) return NULL; mutex_init(&priv->reg_mutex); mutex_init(&priv->mib_lock); INIT_DELAYED_WORK(&priv->mib_work, ar8xxx_mib_work_func); return priv; } static void ar8xxx_free(struct ar8xxx_priv *priv) { kfree(priv->mib_stats); kfree(priv); } static struct ar8xxx_priv * ar8xxx_create_mii(struct mii_bus *bus) { struct ar8xxx_priv *priv; priv = ar8xxx_create(); if (priv) { priv->mii_bus = bus; priv->read = ar8xxx_mii_read; priv->write = ar8xxx_mii_write; } return priv; } static int ar8xxx_probe_switch(struct ar8xxx_priv *priv) { struct switch_dev *swdev; int ret; ret = ar8xxx_id_chip(priv); if (ret) return ret; swdev = &priv->dev; swdev->cpu_port = AR8216_PORT_CPU; swdev->ops = &ar8xxx_sw_ops; if (chip_is_ar8316(priv)) { swdev->name = "Atheros AR8316"; swdev->vlans = AR8X16_MAX_VLANS; swdev->ports = AR8216_NUM_PORTS; } else if (chip_is_ar8236(priv)) { swdev->name = "Atheros AR8236"; swdev->vlans = AR8216_NUM_VLANS; swdev->ports = AR8216_NUM_PORTS; } else if (chip_is_ar8327(priv)) { swdev->name = "Atheros AR8327"; swdev->vlans = AR8X16_MAX_VLANS; swdev->ports = AR8327_NUM_PORTS; swdev->ops = &ar8327_sw_ops; } else if (chip_is_ar8337(priv)) { swdev->name = "Atheros AR8337"; swdev->vlans = AR8X16_MAX_VLANS; swdev->ports = AR8327_NUM_PORTS; swdev->ops = &ar8327_sw_ops; } else { swdev->name = "Atheros AR8216"; swdev->vlans = AR8216_NUM_VLANS; swdev->ports = AR8216_NUM_PORTS; } ret = ar8xxx_mib_init(priv); if (ret) return ret; return 0; } static int ar8xxx_start(struct ar8xxx_priv *priv) { int ret; priv->init = true; ret = priv->chip->hw_init(priv); if (ret) return ret; ret = ar8xxx_sw_reset_switch(&priv->dev); if (ret) return ret; priv->init = false; ar8xxx_mib_start(priv); return 0; } static int ar8xxx_phy_config_init(struct phy_device *phydev) { struct ar8xxx_priv *priv = phydev->priv; struct net_device *dev = phydev->attached_dev; int ret; if (WARN_ON(!priv)) return -ENODEV; if (chip_is_ar8327(priv) || chip_is_ar8337(priv)) return 0; priv->phy = phydev; if (phydev->addr != 0) { if (chip_is_ar8316(priv)) { /* switch device has been initialized, reinit */ priv->dev.ports = (AR8216_NUM_PORTS - 1); priv->initialized = false; priv->port4_phy = true; ar8316_hw_init(priv); return 0; } return 0; } ret = ar8xxx_start(priv); if (ret) return ret; /* VID fixup only needed on ar8216 */ if (chip_is_ar8216(priv)) { dev->phy_ptr = priv; dev->priv_flags |= IFF_NO_IP_ALIGN; dev->eth_mangle_rx = ar8216_mangle_rx; dev->eth_mangle_tx = ar8216_mangle_tx; } return 0; } static int ar8xxx_phy_read_status(struct phy_device *phydev) { struct ar8xxx_priv *priv = phydev->priv; struct switch_port_link link; int ret; if (phydev->addr != 0) return genphy_read_status(phydev); ar8216_read_port_link(priv, phydev->addr, &link); phydev->link = !!link.link; if (!phydev->link) return 0; switch (link.speed) { case SWITCH_PORT_SPEED_10: phydev->speed = SPEED_10; break; case SWITCH_PORT_SPEED_100: phydev->speed = SPEED_100; break; case SWITCH_PORT_SPEED_1000: phydev->speed = SPEED_1000; break; default: phydev->speed = 0; } phydev->duplex = link.duplex ? DUPLEX_FULL : DUPLEX_HALF; /* flush the address translation unit */ mutex_lock(&priv->reg_mutex); ret = priv->chip->atu_flush(priv); mutex_unlock(&priv->reg_mutex); phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); return ret; } static int ar8xxx_phy_config_aneg(struct phy_device *phydev) { if (phydev->addr == 0) return 0; return genphy_config_aneg(phydev); } static const u32 ar8xxx_phy_ids[] = { 0x004dd033, 0x004dd034, /* AR8327 */ 0x004dd036, /* AR8337 */ 0x004dd041, 0x004dd042, }; static bool ar8xxx_phy_match(u32 phy_id) { int i; for (i = 0; i < ARRAY_SIZE(ar8xxx_phy_ids); i++) if (phy_id == ar8xxx_phy_ids[i]) return true; return false; } static bool ar8xxx_is_possible(struct mii_bus *bus) { unsigned i; for (i = 0; i < 4; i++) { u32 phy_id; phy_id = mdiobus_read(bus, i, MII_PHYSID1) << 16; phy_id |= mdiobus_read(bus, i, MII_PHYSID2); if (!ar8xxx_phy_match(phy_id)) { pr_debug("ar8xxx: unknown PHY at %s:%02x id:%08x\n", dev_name(&bus->dev), i, phy_id); return false; } } return true; } static int ar8xxx_phy_probe(struct phy_device *phydev) { struct ar8xxx_priv *priv; struct switch_dev *swdev; int ret; /* skip PHYs at unused adresses */ if (phydev->addr != 0 && phydev->addr != 4) return -ENODEV; if (!ar8xxx_is_possible(phydev->bus)) return -ENODEV; mutex_lock(&ar8xxx_dev_list_lock); list_for_each_entry(priv, &ar8xxx_dev_list, list) if (priv->mii_bus == phydev->bus) goto found; priv = ar8xxx_create_mii(phydev->bus); if (priv == NULL) { ret = -ENOMEM; goto unlock; } ret = ar8xxx_probe_switch(priv); if (ret) goto free_priv; swdev = &priv->dev; swdev->alias = dev_name(&priv->mii_bus->dev); ret = register_switch(swdev, NULL); if (ret) goto free_priv; pr_info("%s: %s rev. %u switch registered on %s\n", swdev->devname, swdev->name, priv->chip_rev, dev_name(&priv->mii_bus->dev)); found: priv->use_count++; if (phydev->addr == 0) { if (ar8xxx_has_gige(priv)) { phydev->supported = SUPPORTED_1000baseT_Full; phydev->advertising = ADVERTISED_1000baseT_Full; } else { phydev->supported = SUPPORTED_100baseT_Full; phydev->advertising = ADVERTISED_100baseT_Full; } if (chip_is_ar8327(priv) || chip_is_ar8337(priv)) { priv->phy = phydev; ret = ar8xxx_start(priv); if (ret) goto err_unregister_switch; } } else { if (ar8xxx_has_gige(priv)) { phydev->supported |= SUPPORTED_1000baseT_Full; phydev->advertising |= ADVERTISED_1000baseT_Full; } } phydev->priv = priv; list_add(&priv->list, &ar8xxx_dev_list); mutex_unlock(&ar8xxx_dev_list_lock); return 0; err_unregister_switch: if (--priv->use_count) goto unlock; unregister_switch(&priv->dev); free_priv: ar8xxx_free(priv); unlock: mutex_unlock(&ar8xxx_dev_list_lock); return ret; } static void ar8xxx_phy_detach(struct phy_device *phydev) { struct net_device *dev = phydev->attached_dev; if (!dev) return; dev->phy_ptr = NULL; dev->priv_flags &= ~IFF_NO_IP_ALIGN; dev->eth_mangle_rx = NULL; dev->eth_mangle_tx = NULL; } static void ar8xxx_phy_remove(struct phy_device *phydev) { struct ar8xxx_priv *priv = phydev->priv; if (WARN_ON(!priv)) return; phydev->priv = NULL; if (--priv->use_count > 0) return; mutex_lock(&ar8xxx_dev_list_lock); list_del(&priv->list); mutex_unlock(&ar8xxx_dev_list_lock); unregister_switch(&priv->dev); ar8xxx_mib_stop(priv); ar8xxx_free(priv); } static struct phy_driver ar8xxx_phy_driver = { .phy_id = 0x004d0000, .name = "Atheros AR8216/AR8236/AR8316", .phy_id_mask = 0xffff0000, .features = PHY_BASIC_FEATURES, .probe = ar8xxx_phy_probe, .remove = ar8xxx_phy_remove, .detach = ar8xxx_phy_detach, .config_init = ar8xxx_phy_config_init, .config_aneg = ar8xxx_phy_config_aneg, .read_status = ar8xxx_phy_read_status, .driver = { .owner = THIS_MODULE }, }; int __init ar8xxx_init(void) { return phy_driver_register(&ar8xxx_phy_driver); } void __exit ar8xxx_exit(void) { phy_driver_unregister(&ar8xxx_phy_driver); } module_init(ar8xxx_init); module_exit(ar8xxx_exit); MODULE_LICENSE("GPL");