1.  
  2. // This code is released under the MIT license (see below).
  3. //
  4. // The MIT License
  5. //
  6. // Copyright (c) 2012 Dominique Wurtz (www.blaukraut.info)
  7. //
  8. // Permission is hereby granted, free of charge, to any person obtaining a copy
  9. // of this software and associated documentation files (the "Software"), to deal
  10. // in the Software without restriction, including without limitation the rights
  11. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. // copies of the Software, and to permit persons to whom the Software is
  13. // furnished to do so, subject to the following conditions:
  14. //
  15. // The above copyright notice and this permission notice shall be included in
  16. // all copies or substantial portions of the Software.
  17. //
  18. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. // THE SOFTWARE.
  25.  
  26. #ifndef __DIODE_LADDER_FILTER_HPP__
  27. #define __DIODE_LADDER_FILTER_HPP__
  28.  
  29. #include <cmath>
  30. #include <algorithm>
  31.  
  32. // Emulation of Diode ladder lowpass filter as found in Roland TB303 or EMS VCS3
  33. //
  34. // Version 0.2 (04/05/2012) greatly simplified equations; add highpass filter in feedback path
  35. // Version 0.1 (04/03/2012) initial version
  36.  
  37. class DiodeLadderFilter
  38. {
  39. public:
  40.  
  41.     DiodeLadderFilter()
  42.     {
  43.         std::fill(z, z + 5, 0);
  44.         set_q(0);
  45.     }
  46.  
  47.     // fc: normalized cutoff frequency in the range [0..1] => 0 HZ .. Nyquist
  48.     void set_feedback_hpf_cutoff(const double fc)
  49.     {
  50.         const double K = fc * M_PI;
  51.         ah = (K - 2) / (K + 2);
  52.         bh = 2 / (K + 2);
  53.     }
  54.  
  55.     void reset()
  56.     {
  57.         if (k < 17) std::fill(z, z + 5, 0);
  58.     }
  59.  
  60.     // q: resonance in the range [0..1]
  61.     void set_q(const double q)
  62.     {
  63.         assert(q >= 0 && q <= 1.);
  64.         k = 20 * q;
  65.         A = 1 + 0.5*k; // resonance gain compensation
  66.     }
  67.  
  68.     // Process one sample.
  69.     //
  70.     // x: input signal
  71.     // fc: normalized cutoff frequency in the range [0..1] => 0 HZ .. Nyquist
  72.     __forceinline double tick(const double x, const double fc)
  73.     {
  74.         assert(fc > 0 && fc < 1);
  75.         const double a = M_PI * fc; // PI is Nyquist frequency
  76.         // a = 2 * tan(0.5*a); // dewarping, not required with 2x oversampling
  77.         const double ainv = 1/a;
  78.         const double a2 = a*a;
  79.         const double b = 2*a + 1;
  80.         const double b2 = b*b;
  81.         const double c = 1 / (2*a2*a2 - 4*a2*b2 + b2*b2);
  82.         const double g0 = 2*a2*a2*c;
  83.         const double g = g0 * bh;
  84.  
  85.         // current state
  86.         const double s0 = (a2*a*z[0] + a2*b*z[1] + z[2]*(b2 - 2*a2)*a + z[3]*(b2 - 3*a2)*b) * c;
  87.         const double s = bh*s0 - z[4];
  88.  
  89.         // solve feedback loop (linear)
  90.         double y5 = (g*x + s) / (1 + g*k);
  91.  
  92.         // input clipping
  93.         const double y0 = clip(x - k*y5);
  94.         y5 = g*y0 + s;
  95.  
  96.         // compute integrator outputs
  97.         const double y4 = g0*y0 + s0;
  98.         const double y3 = (b*y4 - z[3]) * ainv;
  99.         const double y2 = (b*y3 - a*y4 - z[2]) * ainv;
  100.         const double y1 = (b*y2 - a*y3 - z[1]) * ainv;
  101.  
  102.         // update filter state
  103.         z[0] += 4*a*(y0 - y1 + y2);
  104.         z[1] += 2*a*(y1 - 2*y2 + y3);
  105.         z[2] += 2*a*(y2 - 2*y3 + y4);
  106.         z[3] += 2*a*(y3 - 2*y4);
  107.         z[4] = bh*y4 + ah*y5;
  108.  
  109.         return A*y4;
  110.     }
  111.    
  112. private:
  113.     double k, A;
  114.     double z[5]; // filter memory (4 integrators plus 1st order HPF)
  115.     double ah, bh; // feedback HPF coeffs
  116.  
  117.     static __forceinline double clip(const double x)
  118.     {
  119.         return x / (1 + abs(x));
  120.     }
  121. };
  122.  
  123. #endif // __DIODE_LADDER_FILTER_HPP__