Advertisement
Guest User

Untitled

a guest
Dec 9th, 2016
89
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.50 KB | None | 0 0
  1. from __future__ import print_function
  2.  
  3. # Import MNIST data
  4. from tensorflow.examples.tutorials.mnist import input_data
  5. mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
  6.  
  7. import tensorflow as tf
  8.  
  9. # Parameters
  10. learning_rate = 0.001
  11. training_epochs = 250
  12. batch_size = 100
  13. display_step = 1
  14.  
  15. # Network Parameters
  16. n_hidden_1 = 500 #256 # 1st layer number of features
  17. n_hidden_2 = 500 #256 # 2nd layer number of features
  18. n_hidden_3 = 500 #256 # 3nd layer number of features
  19. n_hidden_4 = 500 #256 # 3nd layer number of features
  20. n_input = 784 # MNIST data input (img shape: 28*28)
  21. n_classes = 10 # MNIST total classes (0-9 digits)
  22.  
  23. # tf Graph input
  24. x = tf.placeholder("float", [None, n_input])
  25. y = tf.placeholder("float", [None, n_classes])
  26.  
  27.  
  28. # Create model
  29. def multilayer_perceptron(x, weights, biases):
  30. # Hidden layer with RELU activation
  31. layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
  32. layer_1 = tf.nn.relu(layer_1)
  33. # Hidden layer with RELU activation
  34. layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
  35. layer_2 = tf.nn.relu(layer_2)
  36. # Hidden layer with RELU activation
  37. layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
  38. layer_3 = tf.nn.relu(layer_3)
  39. # layer 4
  40. layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
  41. layer_4 = tf.nn.relu(layer_4)
  42. # Output layer with linear activation
  43. out_layer = tf.matmul(layer_4, weights['out']) + biases['out']
  44. return out_layer
  45.  
  46. # Store layers weight & bias
  47. weights = {
  48. 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
  49. 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
  50. 'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
  51. 'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4])),
  52. 'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes]))
  53. }
  54. biases = {
  55. 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
  56. 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
  57. 'b3': tf.Variable(tf.random_normal([n_hidden_3])),
  58. 'b4': tf.Variable(tf.random_normal([n_hidden_4])),
  59. 'out': tf.Variable(tf.random_normal([n_classes]))
  60. }
  61.  
  62. # Construct model
  63. pred = multilayer_perceptron(x, weights, biases)
  64.  
  65. # Define loss and optimizer
  66. cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
  67. optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
  68.  
  69. # Initializing the variables
  70. init = tf.initialize_all_variables()
  71.  
  72. # Launch the graph
  73. with tf.Session() as sess:
  74. sess.run(init)
  75.  
  76. # Training cycle
  77. for epoch in range(training_epochs):
  78. avg_cost = 0.
  79. total_batch = int(mnist.train.num_examples/batch_size)
  80. # Loop over all batches
  81. for i in range(total_batch):
  82. batch_x, batch_y = mnist.train.next_batch(batch_size)
  83. # Run optimization op (backprop) and cost op (to get loss value)
  84. _, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
  85. y: batch_y})
  86. # Compute average loss
  87. avg_cost += c / total_batch
  88. # Display logs per epoch step
  89. if epoch % display_step == 0:
  90. print("Epoch:", '%04d' % (epoch+1), "cost=", \
  91. "{:.9f}".format(avg_cost))
  92. print("Optimization Finished!")
  93.  
  94. # Test model
  95. correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
  96. # Calculate accuracy
  97. accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
  98. print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement