# Untitled

By: a guest on Jul 15th, 2012  |  syntax: None  |  size: 1.79 KB  |  hits: 17  |  expires: Never
Text below is selected. Please press Ctrl+C to copy to your clipboard. (⌘+C on Mac)
1. Nsolve rantz not possible to plot
2. ClearAll["Global`*"];
3. cinv1 = 40;
4. cinv2 = 4;
5. cinv3 = 3;
6. h2 = 1.4;
7. h3 = 1.2;
8. alpha = 0.04;
9. z = 20;
10. p = 0.06;
11. cop1 = 0;
12. cop2 = 1;
13. cop3 = 1.5;
14. l2 = 0.1;
15. l3 = 0.17;
16. teta2 = 0.19;
17. teta3 = 0.1;
18. co2 = -0.1;
19.
20. smax = 40;
21. c = 1;
22.
23. Plot[Solve[{s12 == ((cinv1 -
24.          cinv2) + ((cinv2 - cinv3)*((s12 teta2)/(
25.           Sqrt[ (teta2 - teta3)] Sqrt[
26.            c s12^2 teta2 - (2 alpha z)/c]))))/((1/(teta2 -
27.            teta3))*((teta2*cop3 - teta3*cop2) + (teta2*h3*l3*E^(p*t) -
28.             teta3*h2*l2*E^(p*t)))), s12 > 0}, s12, Reals], {t, 0, 10}]
29.
30. "*Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result*"
31. "*Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result*"
32. "*Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result*"
33. *"General::stop: "Further output of !(*
34. StyleBox[
35. RowBox[{"Solve", "::", "ratnz"}], "MessageName"]) will be suppressed during this calculation""*
36.
37. s2 = Solve[{s12 - ((cinv1 - cinv2) + ((cinv2 - cinv3) ((s12 teta2)/
38.           (Sqrt[(teta2 - teta3)] Sqrt[c s12^2 teta2 - (2 alpha z)/c]))))/
39.            ((1/(teta2 - teta3))*((teta2*cop3 - teta3*cop2) +
40.            (teta2*h3*l3*E^(p*t) - teta3*h2*l2*E^(p*t))))} == 0, s12];
41. Plot[s12 /. s2 , {t, 0, 59}]
42.
43. f1a = s12 /. a;
44.
45. f1 = Transpose[{b, f1a}];
46.
47. ceiling1 = ListLinePlot[{f1},
48. PlotRange -> {{0, 20}, {0, 40}},PlotStyle -> {Black, Dotted, Thickness[0.003]}];
49.
50. curve1 = Interpolation[f1];
51. intersec2a = FindRoot[curve1[x2] - t12[x2, l2], {x2, 0}];
52. intersec2 = x2 /. intersec2a;