Advertisement
Guest User

unit circle derived distribution

a guest
Jul 13th, 2015
254
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.64 KB | None | 0 0
  1. X_pdf(x) = 0.5
  2. Y = f(X) = sqrt(1-X^2)
  3.  
  4. Y_pdf(y) =
  5. Y_cdf'(y) =
  6. ( P( Y < y ) )' =
  7. ( P( f(X) < y ) )' =
  8. ( P( sqrt(1-X^2) < y ) )' =
  9. ( P( 1-X^2 < y^2 ) )' =
  10. ( P( -1+X^2 > -y^2 ) )' =
  11. ( P( X^2 > 1-y^2 ) )' =
  12. ( P( sqrt(X^2) > sqrt(1-y^2) ) )' =
  13. ( P( |X| > sqrt(1-y^2) ) )' =
  14. ( P( -X > sqrt(1-y^2) OR X > sqrt(1-y^2) ) )' =
  15. ( P( X < -sqrt(1-y^2) OR X > sqrt(1-y^2) ) )' =
  16.  
  17. by the OR rule, P(A OR B) = P(A) + P(B) - P(A AND B):
  18.  
  19. ( P( X < -sqrt(1-y^2) ) + P( X > sqrt(1-y^2) ) - P( X < -sqrt(1-y^2) AND X > sqrt(1-y^2) ) )' =
  20.  
  21. by the AND rule, P(A AND B) = P(A) * P(B|A) = P(B) * P(A|B):
  22.  
  23. ( P( X < -sqrt(1-y^2) ) + P( X > sqrt(1-y^2) ) - P( X < -sqrt(1-y^2) ) * P( X > sqrt(1-y^2) | X < -sqrt(1-y^2) ) )' =
  24.  
  25. the probability that X > sqrt(1-y^2) is zero, given that X < -sqrt(1-y^2)
  26.  
  27. ( P( X < -sqrt(1-y^2) ) + P( X > sqrt(1-y^2) ) - P( X < -sqrt(1-y^2) ) * 0 )' =
  28. ( P( X < -sqrt(1-y^2) ) + P( X > sqrt(1-y^2) ) - 0 )' =
  29. ( P( X < -sqrt(1-y^2) ) + P( X > sqrt(1-y^2) ) )' =
  30. ( X_cdf( -sqrt(1-y^2) ) + (1-X_cdf( sqrt(1-y^2) )) )' =
  31.  
  32. performing the outer derivative:
  33.  
  34. X_cdf'( -sqrt(1-y^2) ) - X_cdf'( sqrt(1-y^2) ) =
  35.  
  36. performing the remaining derivatives using the chain rule:
  37.  
  38. X_pdf( -sqrt(1-y^2) ) * (-0.5*(1-y^2)^-0.5)*(-2*y) - X_pdf( sqrt(1-y^2) ) * (0.5*(1-y^2)^-0.5)*(-2*y) =
  39. X_pdf( -sqrt(1-y^2) ) * y/sqrt(1-y^2) + X_pdf( sqrt(1-y^2) ) * y/sqrt(1-y^2) =
  40. y/sqrt(1-y^2) * ( X_pdf(-sqrt(1-y^2)) + X_pdf(sqrt(1-y^2)) ) =
  41. y/sqrt(1-y^2) * ( 0.5 + 0.5 ) =
  42. y/sqrt(1-y^2)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement