Advertisement
Guest User

INTERCAL documentation manual

a guest
Nov 4th, 2013
239
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
INTERCAL 122.56 KB | None | 0 0
  1. .\" Note: This is both a current manual and an archeological exhibit.
  2. .\" All revisions must be properly conditioned on the c string so that
  3. .\" it's still possible to format the INTERCAL-72 manual.  Only outright
  4. .\" errors should be corrected -- each of these is marked with CORRECTION
  5. .\" and an explanatory comment.
  6. .\"
  7. .\"    This document is free; you can redistribute it and/or modify
  8. .\"    it under the terms of the GNU General Public License as published by
  9. .\"    the Free Software Foundation; either version 2 of the License, or
  10. .\"    (at your option) any later version.
  11. .\"
  12. .\"    This document is distributed IN the hope that it will be amusing,
  13. .\"    but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. .\"    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15. .\"    GNU General Public License for more details.
  16. .\"
  17. .\"    You should have received a copy of the GNU General Public License
  18. .\"    along with this document; if NOT, WRITE to the Free Software
  19. .\"    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. .ND
  21. .ds vb V\v'-0.2'\h'-0.6'\-\v'0.2'
  22. .if n .ds es \o"O|"
  23. .if t .ds es \(es
  24. .if n .ds ct \o"c/"
  25. .if t .ds ct \(ct
  26. .if n .ds no \o"-'"
  27. .if t .ds no \(no
  28. .if n .ds ov -
  29. .if t .ds ov \(rn
  30. .INITR intercal.refs
  31. .TL
  32. THE INTERCAL PROGRAMMING LANGUAGE
  33. .br
  34. .if '\*c'y' REVISED REFERENCE MANUAL
  35. .if '!\*c'n' REFERENCE MANUAL
  36.  
  37. .AU "Donald R. Woods"
  38. .AF ""
  39. .AU "and"
  40. .AF ""
  41. .AU "James M. Lyon"
  42. .AF ""
  43. .if '\*c'y' \{\
  44. .AU ""
  45. .AU "C-INTERCAL revisions:"
  46. .AU "Louis Howell"
  47. .AF ""
  48. .AU "and"
  49. .AF ""
  50. .AU "Eric S. Raymond" \}
  51. .AF ""
  52. .AST ""
  53. .AS 2
  54. .ce 2
  55. \fICopyright (C) 1973 by Donald R. Woods
  56. and James M. Lyon\fR
  57. .if '\*c'y' \{\
  58. .ce 2
  59. \fICopyright (C) 1996, 1997 by Eric S. Raymond
  60. Redistribution encouraged under GPL\}
  61. .sp
  62. .ce 1
  63. (This version distributed with C-INTERCAL 0.18)
  64. .AE
  65. .MT 4
  66. .nr % 0
  67. .nr Hs 5
  68. .nr Ej 1
  69. .bp
  70. .H 1 "INTRODUCTION"
  71. .if '\*c'y' \{\
  72. .DS I F
  73. "But I DON'T want to go among mad people," Alice remarked.
  74. .P
  75. "Oh, you ca'n't help that," said the Cat: "We're all mad here. I'm
  76. mad. You're mad."
  77. .P
  78. "How DO you know I'm mad?" said Alice.
  79. .P
  80. "You must be," said the Cat, "or you wouldn't have COME here."
  81. .DE \}
  82. .P
  83. The names you are about to IGNORE are true. However, the story has been changed
  84. significantly. Any resemblance of the programming language portrayed here
  85. to other programming languages, living or dead, is purely coincidental.
  86. .H 2 "Origin and Purpose"
  87. .P
  88. The INTERCAL programming language was designed the morning of May 26, 1972
  89. by Donald R. Woods and James M. Lyon, at Princeton University. Exactly when
  90. IN the morning will become apparent IN the course of this manual.
  91. .ie '\*c'y' \{\
  92. .P
  93. Eighteen years later (GIVE or take a few months) Eric S. Raymond perpetrated
  94. a UNIX-hosted INTERCAL compiler as a weekend hack. The C-INTERCAL
  95. implementation has since been maintained and extended by an international
  96. community of technomasochists, including Louis Howell, Steve Swales,
  97. Michael Ernst, and Brian Raiter.
  98. .P
  99. (There was evidently an Atari implementation sometime between these
  100. two; notes on it got appended to the INTERCAL-72 manual. The culprits
  101. have sensibly declined to identify themselves.)
  102. .P
  103. INTERCAL \}
  104. .el It
  105. was inspired by one ambition: to have a compiler language which has nothing at
  106. all IN common with any other major language. By 'major' was meant anything
  107. with which the authors were at all familiar, e.g., FORTRAN, BASIC, COBOL,
  108. ALGOL, SNOBOL, SPITBOL, FOCAL, SOLVE, TEACH, APL, LISP, and PL/I. For the
  109. most part, INTERCAL has remained true to this goal, sharing only the basic
  110. elements such as variables, arrays, and the ability to DO I/O, and eschewing
  111. all conventional operations other than the assignment statement (FORTRAN
  112. "=").
  113. .H 2 "Acronym"
  114. .P
  115. The full name of the compiler is "Compiler Language With No Pronounceable
  116. Acronym", which is, for obvious reasons, abbreviated "INTERCAL".
  117. .H 2 "Acknowledgments"
  118. .P
  119. The authors are deeply indebted to Eric M. Van and Daniel J. Warmenhoven,
  120. without whose unwitting assistance this manual would still have been
  121. possible.
  122. .H 1 "FUNDAMENTAL CONCEPTS"
  123. .if '\*c'y' \{\
  124. .DS I F
  125. "There's nothing like eating hay when you're faint," the White King
  126. remarked to Alice, as he munched away.
  127. .P
  128. "I should think throwing cold water over you would be better," Alice
  129. suggested: "-- or some sal-volatile."
  130. .P
  131. "I didn't say there was nothing \fIbetter\fR," the King replied. "I
  132. said there was nothing \fIlike\fR it." Which Alice did NOT venture to
  133. deny.
  134. .DE \}
  135. .P
  136. IN this section an attempt is made to describe how and why INTERCAL may be
  137. used; i.e., what it is like and what it is good for.
  138. .H 2 "Sample Program"
  139. .SETR example1
  140. .P
  141. Shown below is a relatively simple INTERCAL program which will READ IN 32-bit
  142. unsigned integers, treat them as signed, 2's-complement numbers, and print OUT
  143. their absolute values. The program exits if the absolute value is zero. Note
  144. IN particular the inversion routine (statements 6 through 14), which could
  145. be greatly simplified if the subroutine library (see section
  146. .GETHN sublib
  147. ) were used.
  148. .P
  149. A more detailed analysis of a program is made IN section
  150. .GETHN proghints
  151.  of this manual.
  152. .\" Note: there was an error IN line 15 IN the original manual;
  153. .\" the operands of the third \(ct were swapped.
  154.  
  155. .DS L
  156. .cs R 24
  157.         DO (5) NEXT
  158.     (5) DO FORGET #1
  159.         PLEASE WRITE IN :1
  160.         DO .1 <- '\*(vb":1~'#32768\*(ct#0'"\*(ct#1'~#3
  161.         DO (1) NEXT
  162.         DO :1 <- "'\*(vb":1~'#65535\*(ct#0'"\*(ct#65535'
  163.                 ~'#0\*(ct#65535'"\*(ct"'\*(vb":1~'#0\*(ct#65535'"
  164.                 \*(ct#65535'~'#0\*(ct#65535'"
  165.         DO :2 <- #1
  166.         PLEASE DO (4) NEXT
  167.     (4) DO FORGET #1
  168.         DO .1 <- "\*(vb':1~:2'\*(ct#1"~#3
  169.         DO :1 <- "'\*(vb":1~'#65535\*(ct#0'"\*(ct":2~'#65535
  170.                 \*(ct#0'"'~'#0\*(ct#65535'"\*(ct"'\*(vb":1~'#0
  171.                 \*(ct#65535'"\*(ct":2~'#0\*(ct#65535'"'~'#0\*(ct#65535'"
  172.         DO (1) NEXT
  173.         DO :2 <- ":2~'#0\*(ct#65535'"
  174.                 \*(ct"'":2~'#65535\*(ct#0'"\*(ct#0'~'#32767\*(ct#1'"
  175.         DO (4) NEXT
  176.     (2) DO RESUME .1
  177.     (1) PLEASE DO (2) NEXT
  178.         PLEASE FORGET #1
  179.         DO READ OUT :1
  180.         PLEASE DO .1 <- '\*(vb"':1~:1'~#1"\*(ct#1'~#3
  181.         DO (3) NEXT
  182.         PLEASE DO (5) NEXT
  183.     (3) DO (2) NEXT
  184.         PLEASE GIVE UP
  185. .cs R
  186. .DE
  187. .H 2 "Uses for INTERCAL"
  188. .P
  189. INTERCAL's main advantage over other programming languages is its strict
  190. simplicity. It has few capabilities, and thus there are few restrictions to
  191. be kept IN mind. Since it is an exceedingly easy language to learn, one
  192. might expect it would be a good language for initiating novice programmers.
  193. Perhaps surprising, then, is the fact that it would be more likely to
  194. initiate a novice into a search for another line of work. As it turns OUT,
  195. INTERCAL is more useful (which isn't saying much) as a challenge to
  196. professional programmers.  Those who doubt this need only refer back to the
  197. sample program IN section
  198. .GETHN example1
  199. .\" CORRECTION:
  200. .\" The original manual counted 22 statements, incorrectly.
  201. \&. This 23-statement program took somewhere
  202. FROM 15 to 30 minutes to WRITE, whereas the same objectives can be achieved
  203. by single-statement programs IN either SNOBOL;
  204. .DS L
  205.         PLEASE INPUT POS(0) ('-' ! '')
  206.         + (SPAN('0123456789') $ OUTPUT)
  207.         + *NE(OUTPUT) :S(PLEASE)F(END)
  208. .DE
  209. or APL;
  210. .DS L
  211.         [1] \(->0\(!=\(sq\(<-\(or\(sq
  212. .DE
  213. Admittedly, neither of these is likely to appear more intelligible to
  214. anyone unfamiliar with the languages involved, but they took roughly 60
  215. seconds and 15 seconds, respectively, to WRITE. Such is the overwhelming
  216. power of INTERCAL!
  217. .P
  218. The other major importance of INTERCAL lies IN its seemingly inexhaustible
  219. capacity for amazing one's fellow programmers, confounding programming shop
  220. managers, winning friends, and influencing people. It is a well-known and
  221. oft-demonstrated fact that a person whose work is incomprehensible is held
  222. IN high esteem. For example, if one were to state that the simplest way to
  223. store a value of 65536 IN a 32-bit INTERCAL variable is:
  224. .DS L
  225.         DO :1 <- #0\*(ct#256
  226. .DE
  227. any sensible programmer would say that that was absurd. Since this is
  228. indeed the simplest method, the programmer would be made to look foolish IN
  229. front of his boss, who would of course happened to turn UP, as bosses are
  230. wont to DO. The effect would be no less devastating for the programmer
  231. having been correct.
  232. .H 1 "DESCRIPTION"
  233. .if '\*c'y' \{\
  234. .DS I F
  235. "I quite agree with you," said the Duchess; "and the moral of that
  236. is -- 'Be what you would seem to be' -- or, if you'd like it put more
  237. simply -- 'Never imagine yourself NOT to be otherwise than what it might
  238. appear to others that what you were or might have been was NOT
  239. otherwise than what you had been would have appeared to them to be
  240. otherwise."
  241. .P
  242. "I think I should understand that better," Alice said very politely,
  243. "if I had it written down: but I ca'n't quite follow it as you say
  244. it."
  245. .P
  246. "That's nothing to what I could say if I chose," the Duchess replied,
  247. IN a pleased tone.
  248. .DE \}
  249. .P
  250. The examples of INTERCAL programming which have appeared IN the preceding
  251. sections of this manual have probably seemed highly esoteric to the reader
  252. unfamiliar with the language. With the aim of making them more so, we
  253. present here a description of INTERCAL.
  254. .H 2 "Variables"
  255. .P
  256. INTERCAL allows only 2 different types of variables, the
  257. .B "16-bit integer"
  258. and the
  259. .B "32-bit integer."
  260. These are represented by a spot (.) or two-spot
  261. (:), respectively, followed by any number between 1 and 65535, inclusive.
  262. These variables may contain only non-negative numbers; thus they have the
  263. respective ranges of values: 0 to 65535 and 0 to 4294967295. Note: .123 and
  264. :123 are two distinct variables. On the other hand, .1 and .0001 are
  265. identical.  Furthermore, the latter may \fInot\fR be written as 1E-3.
  266. .H 2 "Constants"
  267. .P
  268. .B Constants
  269. are 16-bit values only and may range FROM 0 to 65535. They are
  270. prefixed by a mesh (#). Caution! Under no circumstances confuse the mesh
  271. with the interleave operator, except under confusing circumstances!
  272. .H 2 "Arrays"
  273. .P
  274. .B Arrays
  275. are represented by a tail (,) for 16-bit values, or a hybrid (;) for
  276. 32-bit values, followed by a number between 1 and 65535, inclusive. The
  277. number is suffixed by the word SUB, followed by the subscripts, separated
  278. optionally by spaces. Subscripts may be any expressions, including those
  279. involving subscripted variables. This occasionally leads to ambiguous
  280. constructions, which are resolved as discussed IN section
  281. .GETHN precedence
  282. \&.  Definition
  283. of array dimensions will be discussed later IN greater detail, since
  284. discussing it IN less detail would be difficult. As before, ,123 and ;123
  285. are distinct.  IN summary, .123, :123, #123, ,123, and ;123 are all
  286. distinct.
  287. .H 2 "Operators"
  288. .P
  289. INTERCAL recognizes 5 operators -- 2 binary and 3 unary \*F. PLEASE be kind to
  290. our operators: they may NOT be very intelligent, but they're all we've got.
  291. IN a sense, all 5 operators are binary, as they are all bit-oriented, but
  292. it is NOT our purpose here to quibble about bits of trivia.
  293. .if '\*c'y' \{\
  294. .FS
  295. Other operators are also available with C-INTERCAL's non-standard
  296. dialects; see section
  297. .GETHN tri_intercal
  298. \&.
  299. .FE \}
  300. .H 3 "Binary Operators"
  301. .P
  302. The binary operators are \fBinterleave\fR (also called \fBmingle\fR)
  303. and \fBselect\fR, which
  304. are represented by a change (\*(ct) and a sqiggle [sic] (~), respectively.
  305. .if '\*c'y' \{\
  306. (IN C-INTERCAL's ASCII environment, EBCDIC \*(ct is replaced by a big
  307. money ($), but \*(ct can be used if encoded IN Latin-1 as \e0xA2
  308. or UTF-8 as 0xC2A2.) \}
  309. .P
  310. The interleave operator takes two 16-bit values and produces a 32-bit result
  311. by alternating the bits of the operands. Thus, #65535\*(ct#0 has the 32-bit
  312. binary form 101010....10 or 2863311530 decimal, while #0\*(ct#65535 =
  313. 0101....01 binary = 1431655765 decimal, and #255\*(ct#255 is equivalent to
  314. #65535.
  315. .P
  316. The select operator takes FROM the first operand whichever bits correspond
  317. to 1's IN the second operand, and packs these bits to the right IN the result.
  318. Both operands are automatically padded on the left with zeros to 32 bits
  319. before the selection takes place, so the variable types are unrestricted.
  320. If more than 16 bits are selected, the result is a 32-bit value, otherwise
  321. it is a 16-bit value. For example, #179~#201 (binary value 10110011~11001001)
  322. selects FROM the first argument the 8th, 7th, 4th, and 1st FROM last bits,
  323. namely, 1001, which = 9. But #201~#179 selects FROM binary 11001001 the 8th,
  324. 6th, 5th, 2nd, and 1st FROM last bits, giving 10001 = 17. #179~#179 has the
  325. value 31, while #201~#201 has the value 15.
  326. .P
  327. Perhaps a simpler way of understanding the operation of the select operator
  328. .\" CORRECTION:
  329. .\" "IN Figure 1" was originally "on the following page (Figure 1)"
  330. .\" We can't rely on the page boundaries any more.
  331. would be to examine the logic diagram IN Figure 1, which
  332. performs the select operation upon two 8-bit values, A and B. The gates used
  333. are Warmenhovian logic gates, which means the outputs have four possible
  334. values: low, high, undefined (value of an uninitialized flip-flop), and
  335. oscillating (output of a NOR gate with one input low and the other input
  336. connected to the output). These values are represented symbolically
  337. by '0', '1', '?', and '\*(es'.
  338. Note IN particular that, while NOT-0 is 1 and NOT-1
  339. is 0 as IN two-valued logic, NOT-? is ? and NOT-\*(es is \*(es. The functions
  340. of the various gates are listed IN Table 1.
  341. .if n \{\
  342. .P
  343. [Warning: The following picture will be garbled or missing.
  344. Get a better output device.]
  345. .sp 1 \}
  346. .PS
  347. # The CIRCUITOUS DIAGRAM, Figure 1 of the INTERCAL manual.
  348. #
  349. # Transcribed to PIC by Eric S. Raymond FROM the paper original.
  350. # The transcription is topologically correct but NOT geometrically perfect.
  351. #
  352. # I discovered late IN the process that the gate spacing to gate width
  353. # ratio should be 6/5, NOT 5/5. The only place the difference shows is
  354. # IN the zigzag part of the adventitious lead below gate 37, which is
  355. # a bit narrower IN this version than IN the paper original.
  356. #
  357. # Minor liberties have been taken with the sizes of some features at the
  358. # left and right sides to fit the diagram on a letter-sized page.  The
  359. # A/B input leads should really be a whole boxwidth wide, and the bus line
  360. # rectangle was slightly wider and further right IN the paper original.
  361. # Also, there are only 15 "New York" terminals rather than 16, and IN the
  362. # original the bus terminal label texts were rotated 90 degrees clockwise.
  363. #
  364. # The whole diagram can be scaled horizontally or vertically by changing
  365. # the boxwid and boxht variables.  At default scale the values boxwid =
  366. # 0.60 boxht = 0.525 reproduce the paper version most exactly; they get
  367. # the gate grid and leads nearly perfect.
  368. #
  369. scale=6/5       # This is how we scale the whole thing to fit on 8.5x11
  370. boxwid = 0.60
  371. boxht = 0.525
  372. linewid = boxwid
  373. lineht = boxht
  374. movewid = boxwid
  375. moveht = boxht
  376.  
  377. # Offset of top and bottom pins FROM gate midline
  378. define pinoffset {(2/3)}
  379.  
  380. define warmengate {
  381. # Draw a Warmenhovian gate box
  382.         [
  383.                 box invis;
  384.                 line FROM last box .sw \
  385.                         to last box .nw \
  386.                         to 1/2 <last box .ne, last box .n> \
  387.                         to 1/2 <last box .e, last box .ne> \
  388.                         to 1/2 <last box .e, last box .se> \
  389.                         to 1/2 <last box .se, last box .s> \
  390.                         to last box .sw;
  391.                 IN: last box .w;
  392.                 UP: pinoffset <last box .w, last box .nw>
  393.                 DN: pinoffset <last box .w, last box .sw>
  394.                 OUT: last box .e;
  395.                 "$1" at last box .center;
  396.         ]
  397. }
  398.  
  399. [ # Beginning of diagram object
  400.  
  401. # Draw the gate array
  402. copy thru % move to (($1-1) * movewid * 2, ($2-1) * moveht * 2); warmengate($3) % until "END"
  403. 0 1  6
  404. 0 2  6
  405. 0 3  1
  406. 0 4  1
  407. 0 5  1
  408. 0 6  1
  409. 0 7  1
  410. 0 8  1
  411. 0 9  1
  412. 0 10 1
  413. END
  414. copy thru % move to ((boxwid + movewid * 7 / 5) + ($1-2) * movewid * 2, ($2-1) * moveht * 2); warmengate($3) % until "END"
  415. 1 1  1
  416. 1 2  2
  417. 1 3  2
  418. 1 4  2
  419. 1 5  2
  420. 1 6  2
  421. 1 7  2
  422. 1 8  2
  423. 1 9  2
  424. 1 10 2
  425. 2 1  1
  426. 2 2  7
  427. 2 3  4
  428. 2 4  3
  429. 2 5  3
  430. 2 6  3
  431. 2 7  7
  432. 2 8  3
  433. 2 9  7
  434. 2 10 3
  435. 3 1  1
  436. 3 2  3
  437. 3 3  3
  438. 3 4  4
  439. 3 5  4
  440. 3 6  3
  441. 3 7  3
  442. 3 8  3
  443. 3 9  3
  444. 3 10 3
  445. 4 1  1
  446. 4 2  4
  447. 4 3  5
  448. 4 4  5
  449. 4 5  4
  450. 4 6  5
  451. 4 7  4
  452. 4 8  3
  453. 4 9  2
  454. 4 10 1
  455. END
  456.  
  457. # Draw bus line:
  458. BUSLINE: box with .sw at 41st [].se + (boxwid/2, 0) \
  459.                 wid (boxwid / 2) \
  460.                 ht (50th [].n.y - 41st [] .s.y)
  461. copy thru % move to $1 / 40 <last box .n, last box .s>; "$2"  % until "END"
  462. 9  B
  463. 11  U
  464. 13  S
  465. 17  L
  466. 19  I
  467. 21  N
  468. 23  E
  469. 30  8
  470. END
  471. define newyork {
  472.         line right boxwid/3
  473.         box invis "" "TO" "NEW" "YORK" ""
  474. }
  475. define philly {
  476.         line right boxwid/3
  477.         box invis "" "TO" "PHILA-" "DELPHIA" ""
  478. }
  479. for i = 0 to 14 DO {
  480.         move to (i+1)/18 <BUSLINE.ne,BUSLINE.se>
  481.         newyork
  482. }
  483. move to (i+1)/18 <BUSLINE.ne,BUSLINE.se>
  484. philly
  485.  
  486. define dot {circle rad 0.03 filled 1}
  487.  
  488. # Place a junction dot wherever we are
  489. define junction % {dot at Here}; %
  490.  
  491. # Draw inputs
  492. define inwidth {boxwid*3/4}
  493. define drawinputs {
  494.         line left inwidth FROM $1.UP;
  495.         "A" at last line .end - (0.1, 0) rjust;
  496.         "$2" at last line .end - (0.05, 0.1) rjust;
  497.         move to last line .center; A$2: junction
  498.         line left inwidth FROM $1.DN;
  499.         "B" at last line .end - (0.1, 0) rjust;
  500.         "$2" at last line .end - (0.05, 0.1) rjust;
  501.         move to last line .center; B$2: junction
  502. }
  503. drawinputs(3rd [],8)
  504. drawinputs(4th [],7)
  505. drawinputs(5th [],6)
  506. drawinputs(6th [],5)
  507. drawinputs(7th [],4)
  508. drawinputs(8th [],3)
  509. drawinputs(9rd [],2)
  510. # Gate 10 inputs have to be done by hand
  511.  
  512. define go {move to $1;}
  513.  
  514. # Define `gate' to *refer* to nth gate
  515. define gate {`$1'th []}
  516.  
  517. # Go to specified pin of given gate
  518. define pin {gate($1).$2}
  519.  
  520. # We exploit the quantization of lead placements here
  521. # Draw FROM left edge of box $1 quanta of inter-box horizontal distance
  522. define left_mv {line left boxwid * $1 / 5;}
  523. # Draw FROM right edge of box $1 quanta of inter-box horizontal distance
  524. define right_mv {line right boxwid * $1 / 5;}
  525. # Draw FROM top pin of box $1 quanta of inter-box vertical distance UP
  526. define up_mv {line UP (boxht * (2 - pinoffset)) * $1 / 4;}
  527. # Draw FROM bottom pin of box $1 quanta of inter-box vertical distance down
  528. define dn_mv {line down (boxht * (2 - pinoffset)) * $1 / 4;}
  529.  
  530. # Draw FROM here to given object, with directional constraint
  531. define vert {line UP ($1.y - Here.y);}
  532. define horz {line right ($1.x - Here.x);}
  533. define zig {vert($1) horz($1)}
  534. define to_bus {line to (BUSLINE.w, Here)}
  535.  
  536. define ground {
  537.         dn_mv(1)
  538.         [
  539.         boxwid = boxwid * (3/4)
  540.         boxht = boxht / 3
  541.         box invis
  542.         line FROM last box .ne to last box .nw
  543.         line FROM 1/3 <last box.e,last box.c> to 1/3 <last box.w,last box.c>
  544.         line FROM 2/3 <last box.se,last box.s> to 2/3 <last box.sw,last box.s>
  545.         ]
  546. }
  547.  
  548. # Now all those connections
  549. # Gate 1:
  550. go(pin(1,OUT)) right_mv(3) CORNER:Here; zig(pin(12,DN))
  551. go(CORNER) vert(pin(1,UP)) \
  552.         {junction horz(pin(11,UP))} \
  553.         up_mv(2) junction
  554.         horz(gate(32).e) right_mv(3) junction
  555.         {zig(pin(43,IN))}
  556.         horz(gate(42).e) right_mv(1) junction
  557.         {to_bus}
  558.         vert(pin(43,UP)) up_mv(2) to_bus
  559.  
  560. # Gate 2
  561. go(pin(2,OUT)) right_mv(2) zig(pin(12,UP))
  562. # Gate 3
  563. go(A8) up_mv(1) horz(gate(13).e) right_mv(3) zig(pin(23,IN))
  564. go(B8) dn_mv(1) horz(gate(13))
  565.         right_mv(1) dn_mv(1)
  566.         horz(gate(23).e) right_mv(2) dn_mv(2) horz(pin(32,UP))
  567. go(pin(3,OUT)) right_mv(2)
  568.         vert(gate(3).UP) up_mv(3)
  569.         horz(gate(13).e) right_mv(2)
  570.         vert(gate(15,UP)) up_mv(4)      #??? DON'T know why 4 is necessary
  571.         horz(gate(16).w) left_mv(1)
  572.         vert(gate(6).w) up_mv(4)
  573.         left_mv(2) zig(pin(7,OUT))
  574. # Gate 4
  575. go(A7) up_mv(1) horz(gate(14).e) right_mv(1) zig(pin(24,UP))
  576. go(B7) dn_mv(1) horz(gate(4))
  577.         right_mv(1) dn_mv(1)
  578.         horz(gate(14).e) right_mv(3)
  579.         vert(pin(26,UP)) up_mv(1)
  580.         horz(gate(25)) up_mv(2)
  581.         horz(gate(25).e) right_mv(4)
  582.         vert(pin(38,UP)) up_mv(1)
  583.         horz(gate(48).e) right_mv(1)
  584.         vert(pin(47,DN)) dn_mv(1)
  585.         horz(gate(47).w) left_mv(3)
  586.         vert(gate(46).DN) dn_mv(2) right_mv(2)
  587.         vert(gate(45).DN) dn_mv(2) left_mv(3)
  588.         vert(gate(44).DN) right_mv(3) dn_mv(2)
  589.         horz(gate(33).w) left_mv(1)
  590.         vert(gate(33).DN) dn_mv(3)
  591.         horz(gate(32).e) up_mv(2)
  592.         horz(gate(42).e) dn_mv(2) line down boxwid/5
  593.         to_bus
  594. go(pin(4,OUT)) right_mv(3) junction
  595.         {zig(pin(13,UP))}
  596.         vert(pin(4,UP)) up_mv(3) junction
  597.         {right_mv(3) zig(pin(15,IN))}
  598.         left_mv(2) vert(pin(7,UP)) up_mv(3)
  599.         right_mv(3) zig(pin(19,DN))
  600. # Gate 5
  601. go(A6) up_mv(1) horz(gate(15).e) right_mv(1) vert(pin(15,UP)) junction
  602.         {horz(pin(25,UP))}
  603.         vert(pin(15,DN)) dn_mv(1)
  604.         horz(gate(25).e) right_mv(1)
  605.         zig(pin(34,UP))
  606. go(B6) dn_mv(2) horz(gate(25).e) dn_mv(1) right_mv(4)
  607.         vert(pin(24,DN)) dn_mv(1)
  608.         horz(gate(34).e) right_mv(1)
  609.         vert(pin(32,DN)) dn_mv(1)
  610.         right_mv(3) zig(pin(42,IN))
  611. go(pin(5,OUT)) right_mv(5) junction
  612.         {vert(pin(14,IN)) junction {horz(pin(14,IN))} zig(pin(13,IN)) }
  613.         vert(pin(17,DN)) junction {horz(pin(17,DN))} zig(pin(18,DN))
  614. # Gate 6
  615. go(A5) up_mv(1) horz(gate(16).e) right_mv(1) zig(pin(26,UP))
  616. go(B5) dn_mv(2) horz(gate(26).e) right_mv(3) zig(pin(34,IN))
  617. go(pin(6,OUT)) right_mv(4) junction
  618.         {horz(pin(16,IN))}
  619.         vert(pin(15,DN)) junction
  620.         {horz(pin(15,DN))}
  621.         vert(pin(14,DN)) junction
  622.         {horz(pin(14,DN))}
  623.         zig(pin(13,DN))
  624. # Gate 7
  625. go(A4) up_mv(1) horz(gate(27).e) right_mv(3) vert(pin(37,IN)) junction
  626.         {horz(pin(37,IN))}
  627.         vert(pin(37,DN)) dn_mv(2) right_mv(1) junction
  628.         {zig(pin(36,IN))}
  629.         horz(gate(37).e) right_mv(3)
  630.         zig(pin(45,IN))
  631. go(B4) dn_mv(2) horz(gate(17).e) right_mv(4)
  632.         vert(pin(26,DN)) dn_mv(1)
  633.         horz(gate(26).e) dn_mv(2)
  634.         right_mv(4) vert(pin(35,DN)) dn_mv(1)
  635.         horz(gate(35).e) right_mv(2) junction
  636.         {zig(pin(45,UP))} {zig(pin(44,UP))}
  637. # Gate 8
  638. go(A3) up_mv(1) horz(gate(28).e) right_mv(1) zig(pin(38,UP))
  639. go(B3) dn_mv(2) horz(gate(28).e) right_mv(2) zig(pin(37,UP))
  640. go(pin(8,OUT)) right_mv(6) junction
  641.         {zig(pin(17,IN))}
  642.         up_mv(4) left_mv(1) vert(pin(19,UP)) junction
  643.         {horz(pin(19,UP))}
  644.         zig(pin(20,UP))
  645. # Gate 9
  646. go(A2) up_mv(1) horz(gate(19).e) right_mv(1) zig(pin(28,UP))
  647. go(B2) dn_mv(2) horz(gate(39).e) right_mv(1)
  648.         vert(pin(38,DN)) dn_mv(2) right_mv(2) zig(pin(47,IN))
  649. go(pin(9,OUT)) right_mv(3) junction
  650.         {zig(pin(20,DN))}
  651.         {horz(pin(19,IN))}
  652.         vert(pin(16,DN)) junction
  653.         {horz(pin(16,DN))}
  654.         zig(pin(15,UP))
  655. # Gate 10
  656. line left inwidth FROM 10th[].UP;
  657. "A" at last line .end - (0.1, 0) rjust;
  658. "1" at last line .end - (0.05, 0.1) rjust;
  659. move to last line .center; A1: junction
  660. line left inwidth FROM 10th [].DN;
  661. "B" at last line .end - (0.1, 0) rjust;
  662. "1" at last line .end - (0.05, 0.1) rjust;
  663. move to 1/2 <last line .center, last line .start>; B1: junction
  664. go(A1) vert(pin(10,DN)) dn_mv(1) horz(gate(20).e) right_mv(2) zig(pin(30,UP))
  665. go(B1) dn_mv(2) horz(gate(30).e) right_mv(1) junction
  666.         {zig(pin(39,UP))}
  667.         right_mv(3) zig(pin(40,DN))
  668. go(pin(10,OUT)) right_mv(2) junction
  669.         {horz(pin(20,IN))}
  670.         vert(pin(18,UP)) junction
  671.         {horz(pin(18,UP))}
  672.         vert(pin(16,UP)) junction
  673.         {horz(pin(16,UP))}
  674.         zig(pin(14,UP))
  675. # Gate 11
  676. go(pin(11, DN)) left_mv(3) vert(pin(11,UP)) up_mv(1) \
  677.         horz(gate(31).e) right_mv(1) zig(pin(41,DN))
  678. go(pin(11,OUT)) right_mv(2) zig(pin(21,DN))
  679. # Gate 12
  680. go(pin(12,OUT)) right_mv(3) junction
  681.         {horz(pin(22,IN))}
  682.         vert(pin(12,UP)) up_mv(1)
  683.         horz(gate(12).w) left_mv(3)
  684.         zig(pin(12,IN))
  685. # Gate 13
  686. go(pin(13,OUT)) right_mv(1) zig(pin(23,UP))
  687. # Gate 14
  688. go(pin(14,OUT)) horz(pin(24,IN))
  689. # Gate 15
  690. go(pin(15,OUT)) horz(pin(25,IN))
  691. # Gate 16
  692. go(pin(16,OUT)) right_mv(2) junction
  693.         {horz(pin(26,IN))}
  694.         vert(pin(27,UP)) junction
  695.         {horz(pin(27,UP))}
  696.         zig(pin(29,DN))
  697. # Gate 17
  698. go(pin(17,OUT)) horz(pin(27,IN))
  699. # Gate 18
  700. go(pin(18,OUT)) right_mv(3) junction
  701.         {horz(pin(28,IN))}
  702.         zig(pin(27,DN))
  703. # Gate 19
  704. go(pin(19,OUT)) horz(pin(29,IN))
  705. # Gate 20
  706. go(pin(20,OUT)) right_mv(3) junction
  707.         {horz(pin(30,IN))}
  708.         zig(pin(29,UP))
  709. # Gate 21
  710. go(pin(21,UP)) left_mv(2) vert(pin(21,DN)) ground
  711. go(pin(21,OUT)) right_mv(2) junction
  712.         {zig(pin(31,DN))}
  713.         up_mv(2) junction
  714. # Gate 22
  715. go(pin(22,UP)) left_mv(3) up_mv(2) junction
  716. go(pin(22,DN)) left_mv(4)
  717.         vert(pin(22,UP)) up_mv(3) right_mv(3)
  718.         vert(pin(23,UP)) up_mv(3)
  719.         horz(gate(23).e) right_mv(2)
  720.         vert(pin(25,UP)) left_mv(1)
  721.         vert(pin(28,DN)) right_mv(1)
  722.         zig(pin(40,IN))
  723. go(pin(22,OUT)) right_mv(3) junction
  724.         {horz(pin(32,IN))}
  725.         {zig(pin(33,IN))}
  726.         zig(pin(31,UP))
  727. # Gate 23
  728. go(pin(23,OUT)) right_mv(1)
  729.         vert(gate(23).DN) dn_mv(1)
  730.         horz(gate(33)) right_mv(1)
  731.         dn_mv(1) to_bus
  732. # Gate 24
  733. go(pin(24,OUT)) right_mv(1) zig(pin(33,UP))
  734. # Gate 25
  735. go(pin(25,OUT)) horz(pin(35,IN))
  736. # Gate 26
  737. go(pin(26,OUT)) right_mv(2) vert(pin(26,DN)) dn_mv(1) junction
  738.         {to_bus}
  739.         zig(pin(35,UP))
  740. # Gate 27
  741. go(pin(27,OUT)) right_mv(2) zig(pin(36,UP))
  742. # Gate 28
  743. go(pin(28,OUT)) right_mv(3) junction
  744.         {horz(pin(38,IN))}
  745.         vert(pin(38, DN)) dn_mv(1) to_bus
  746. # Gate 29
  747. go(pin(29,OUT)) right_mv(3) junction
  748.         {horz(pin(39,IN))}
  749.         {vert(pin(39, DN)) dn_mv(1) to_bus}
  750.         zig(pin(40,UP))
  751. # Gate 30
  752. go(pin(30,OUT)) right_mv(1)
  753.         vert(pin(30,DN)) dn_mv(1)
  754.         horz(gate(40).e) right_mv(2)
  755.         zig(pin(50,UP))
  756. # Gate 31
  757. go(pin(31,OUT)) right_mv(2) zig(pin(41,UP))
  758. # Gate 32
  759. go(pin(32,OUT)) right_mv(2) vert(pin(32,UP)) junction
  760.         {horz(pin(42,UP))}
  761.         up_mv(1) to_bus
  762. # Gate 33
  763. go(pin(33,OUT)) right_mv(2) zig(pin(43,UP))
  764. # Gate 34
  765. go(pin(34,OUT)) right_mv(3) junction
  766.         {horz(pin(44,IN))}
  767.         vert(pin(44, DN)) dn_mv(1) to_bus
  768. # Gate 35
  769. go(pin(35,OUT)) right_mv(1) dn_mv(1) right_mv(2) dn_mv(1) to_bus
  770. # Gate 36
  771. go(pin(36,OUT)) horz(pin(46,IN))
  772. # Gate 37
  773. go(pin(37,OUT)) right_mv(2) vert(pin(48,UP)) junction
  774.         {horz(pin(48,UP))}
  775.         zig(pin(49,DN))
  776. # Gate 38
  777. go(pin(38,OUT)) right_mv(3) junction
  778.         {horz(pin(48,IN))}
  779.         vert(pin(48,DN)) right_mv(1) dn_mv(3) left_mv(3)
  780.         vert(pin(47,UP)) junction
  781.         {horz(pin(47,UP))}
  782.         zig(pin(46,UP))
  783. # Gate 39
  784. go(pin(39,OUT)) right_mv(3) junction
  785.         {horz(pin(49,IN))}
  786.         {vert(pin(49, DN)) dn_mv(2) to_bus}
  787.         zig(pin(50,IN))
  788. # Gate 40
  789. go(pin(40,OUT)) right_mv(1)
  790.         vert(pin(40,DN))
  791.         dn_mv(2) junction
  792.         {horz(gate(40).w); dn_mv(1); horz(gate(40).e); right_mv(1)}
  793.         dn_mv(1) junction
  794.         zig(pin(49,UP))
  795. # Gate 41
  796. # (should be right_mv(2) but we've squeezed the bus line a bit left)
  797. go(pin(41,OUT)) right_mv(1) vert(pin(41,DN)) ground
  798. # Gate 42
  799. go(pin(42,OUT)) to_bus
  800. # Gate 43
  801. go(pin(43,OUT)) to_bus
  802. # Gate 44
  803. go(pin(44,OUT)) to_bus
  804. # Gate 45
  805. go(pin(45,OUT)) to_bus
  806. # Gate 46
  807. go(pin(46,OUT)) to_bus
  808. # Gate 47
  809. go(pin(47,OUT)) to_bus
  810. # Gate 48
  811. go(pin(48,OUT)) to_bus
  812. # Gate 49
  813. go(pin(49,OUT)) to_bus
  814. # Gate 50
  815. go(pin(50,OUT)) to_bus
  816. # The adventitious lead
  817. go(pin(17,OUT)) right_mv(1)
  818.         {vert(pin(17,UP)) up_mv(3) horz(gate(17))}
  819.         vert(pin(17,DN)) dn_mv(1)
  820.         horz(gate(27).w) dn_mv(1) horz(gate(27).e)
  821.         dn_mv(1) horz(gate(36).w)
  822.         up_mv(2) right_mv(1) dn_mv(2)
  823.         right_mv(1) up_mv(2) right_mv(1) dn_mv(2)
  824.         right_mv(1) up_mv(2) right_mv(1)
  825.         vert(pin(37,DN)) right_mv(4) dn_mv(2)
  826.         right_mv(3) dn_mv(1) left_mv(3)
  827.         vert(pin(46,DN)) left_mv(3) dn_mv(3)
  828.         horz(gate(36).w) up_mv(1) horz(gate(36)) right_mv(1)
  829.  
  830. ] # End of diagram object
  831. .PE
  832. .ce 1
  833. FIGURE 1. CIRCUITOUS DIAGRAM
  834. .bp
  835. .sp 10
  836. .ps 8
  837. .vs 10
  838. .nf
  839. .cs R 24
  840. .ec %
  841. .ds EO %(ci%v'-0.08'%h'-0.67'+%v'0.08'
  842. .%" This is dodgy, but it's the last place es is used
  843. .if n .ds es %o"O|"
  844. .if t .ds es %(es
  845.    __________________________________________________________
  846.   |\                                                         \
  847.   | \ 1. Logic gate.  Inputs A, B.  Output O = AB.            \
  848.   |  \                                                         \
  849.   | \ \ 2. Logic gate.  Inputs A, B, C.  Output O = A+BC.       \
  850.   | |\ \                                                         \
  851.   | | \ \ 3. Logic gate.  Inputs A, B.  Output O = A+AB.          \
  852.   | |  \ \                                                         \
  853.   | |  |\ \ 4. Logic gate.  Inputs A, B.  Output O = AB %*(EO -(A+-B)   \
  854.   | |  | \ \                                                         \
  855.   | |  |  \ \ 5. Logic gate.  Inputs A, B.  Output O = A%*(EOA + AA       \
  856.   | |  |   \ \                                                         \
  857.   | |  |    \ \ 6. Uninitialized flip-flop.  Inputs none.  Output O = ? \
  858.   | |  |     \ \                                                         \
  859.   | |  |      \ \ 7. Flip-flop-flap.  Inputs A, B, C.  Output O = 1 if    \
  860.   | |  |       \ \    A=0 or B+C=0 and A=1.  O = 0 if AC=1, B=0.  O = %*(es if \
  861.   | |  |        \ \    AB=1, C=0.  O = ? if ABC=1.  O as yet undetermined   \
  862.   | |  |         \ \    for other Warmenhovian inputs.  See Figure 2.        \
  863.   | |  |          \ \                                                         \
  864.   | |  |           \ \ 8. Bus line.                                            \
  865.   | |  |            \ \_________________________________________________________\
  866.   | |  |             \ |                                                         |
  867.   | |  |             | |  _____________________________________________________  |
  868.   | |  |             | |  |                              | |  |             | |  |
  869.   | |  |             | |  |                              | |  |             | |  |
  870.   | |  |             | |  |                              | |  |             | |  |
  871.   | |  |             | |  |                              | |  |             | |  |
  872.   | |  |             | |  |                              | |  |             | |  |
  873.    \|__|             | |  |                               \|__|             | |  |
  874.                      | |  |                                                 | |  |
  875.                      | |  |                                                 | |  |
  876.                      | |  |                                                 | |  |
  877.                      | |  |                                                 | |  |
  878.                      | |  |                                                 | |  |
  879.                      | |  |                                                 | |  |
  880.                      | |  |                                                 | |  |
  881.                      | |  |                                                 | |  |
  882.                      | |  |                                                 | |  |
  883.                      | |  |                                                 | |  |
  884.                      | |  |                                                 | |  |
  885.                      | |  |                                                 | |  |
  886.                      | |  |                                                 | |  |
  887.                      | |  |                                                 | |  |
  888.                      | |  |                                                 | |  |
  889.                      | |  |                                                 | |  |
  890.                      | |  |                                                 | |  |
  891.                      | |  |                                                 | |  |
  892.                       \|__|                                                  \|__|
  893. .ec \
  894. .cs R
  895. .fi
  896. .ps 10
  897. .vs 12
  898. .sp
  899. .ce 1
  900. Table 1.  Logical (and other) functions.
  901. .bp
  902. .if n \{\
  903. .P
  904. [Warning: The following picture will be garbled or missing.
  905. Get a better output device.] \}
  906. .sp 10
  907. .PS
  908. # The FLIP FLAP FLOP, Figure 2 of the INTERCAL manual
  909. down;
  910. A: warmengate();
  911. move; move;
  912. B: warmengate();
  913. move; move;
  914. C: warmengate();
  915. move; move;
  916. D: warmengate();
  917. dot at 1st [];
  918. dot at 2nd [];
  919. dot at 3rd [];
  920. circle rad 0.06 at last [];
  921. line FROM last circle.w to last circle.e;
  922. line FROM last circle.n to last circle.s;
  923. line left 3 FROM A.UP; "A" rjust
  924. line left 3 FROM B.IN; "B" rjust
  925. line left 3 FROM C.UP; "C" rjust
  926. line left 2 FROM C.IN then down 2 then left; "1" rjust
  927. right; circle rad 0.06 with .w at A.OUT;
  928. line right 0.5; junction {line right 1.5; "D" ljust}
  929. line down 0.25; X1: Here
  930. line left 0.5 FROM A.IN; line down 0.25; X2: Here
  931. line left 0.5 FROM B.UP; line UP 0.25; line to X1;
  932. line right 1.0 FROM D.OUT; vert(B.UP) line UP 0.25; line to X2;
  933. right; circle rad 0.06 with .w at B.OUT;
  934. line right 0.5; vert(C.DN) line down 0.25; X3: Here;
  935. line left 0.25 FROM D.UP then UP 0.25 then to X3;
  936. right; circle rad 0.06 with .w at C.OUT;
  937. line right 0.3; vert(C.DN) line down 0.25; X4: Here
  938. line left 0.5 FROM D.IN; vert(D.UP) line UP 0.25 then to X4;
  939. .PE
  940. .sp 10
  941. .ce 1
  942. FIGURE 2. FLIP FLAP FLOP
  943. .bp
  944. .if n \{\
  945. .P
  946. [Warning: The following picture will be garbled or missing.
  947. Get a better output device.] \}
  948. .PS
  949. [
  950.         NYC: box ht 4 wid 0.5 "9";
  951.         for i = 0 to 16 DO {
  952.                 move to (i+1)/18 <NYC.nw,NYC.sw>
  953.                 line left 0.5
  954.         }
  955.         for i = 0 to 8 DO {
  956.                 move to (i+1)/10 <NYC.ne,NYC.se>
  957.                 line right 0.5
  958.         }
  959. ]
  960. move right FROM last [].w;
  961. box invis wid 6 \
  962.       "GATE TYPE 9.  BLACK BOX" ljust \
  963.       "INPUTS A1-8,  B1-8.    " ljust \
  964.       "OUTPUT O1-8 = A1-8~B1-8" ljust
  965. .PE
  966. .sp 10
  967. .ce 1
  968. FIGURE 1  (CONTINUED).  NEW YORK
  969. .bp
  970. .if '\*c'y' \{\
  971. .H 4 "Return type of SELECT"
  972. .P
  973. INTERCAL-72 defined the return type of a select operation
  974. to depend on the number of bits selected. The C-INTERCAL compiler
  975. takes the easier route of defining the return type to be that of
  976. the right operand, independent of its actual value. This form has
  977. the advantage that all types can be determined at compile time.
  978. Putting IN run-time type-checking would add significant overhead and
  979. complication, to effect a very minor change IN language semantics.
  980. .P
  981. The only time this distinction makes any difference is when a unary
  982. operator is applied to the select result. This happens extremely
  983. rarely IN practice, the only known instance being the 32-bit
  984. greater-than test IN the standard library, where an XOR operator is
  985. applied to the result of selecting a number against itself. The
  986. INTERCAL-72 authors first select the result against #65535\*(ct#65535 to
  987. insure that XOR sees a 32-bit value. With the current compiler this
  988. extra step is unnecessary, but harmless.
  989. .P
  990. The cautious programmer should WRITE code that DOES NOT depend on
  991. the compiler version being used. We therefore suggest the following
  992. guideline for determining the select return type:
  993. .P
  994. A select operation with a 16-bit right operand returns a 16-bit
  995. value. The return type of a select operation with a 32-bit right
  996. operand is undefined, but is guaranteed to be an acceptable input
  997. to a mingle operation so long as 16 or fewer bits are actually
  998. selected. Correct code should NOT depend on whether the return
  999. type is 16 or 32 bits.\}
  1000. .H 3 "Unary Operators"
  1001. .P
  1002. The unary operators are & (logical \fBAND\fR), V (logical \fBOR\fR),
  1003. and \*(vb (logical
  1004. \fBXOR\fR). This last character is obtained by overpunching a worm (\-) on a V
  1005. (V).
  1006. .if '\*c'y' \{\
  1007. (IN C-INTERCAL, \*(vb is replaced by what (?). The compiler recognizes
  1008. V<backspace>- as a valid equivalent, IN case you are concerned about
  1009. compatibility with the Princeton compiler.
  1010. IN version 0.20 and later, the Unicode character U+2200 FOR ALL,
  1011. which looks exactly like V<backspace>- or an upside-down `A'
  1012. is also accepted IN UTF-8 form.) \}
  1013. The operator is inserted between the spot, two-spot, mesh, or
  1014. what-have-you, and the integer, thus: .&123, #\*(vb123. Multiple unary
  1015. operators may NOT be concatenated, thus the form #\*(vb&123 is invalid. This
  1016. will be covered later when precedence is discussed. These operators perform
  1017. their respective logical operations on all pairs of adjacent bits, the
  1018. result FROM the first and last bits going into the first bit of the result.
  1019. The effect is that of rotating the operand one place to the right and
  1020. ANDing, ORing, or XORing with its initial value. Thus, #&77 (binary =
  1021. 1001101) is binary 0000000000000100 = 4, #V77 is binary 1000000001101111 =
  1022. 32879, and #\*(vb77 is binary 1000000001101011 = 32875.
  1023. .H 3 "Precedence"
  1024. .SETR precedence
  1025. .P
  1026. Precedence of operators is as follows:
  1027. .sp 10
  1028. (The remainder of this page intentionally left blank)\*F
  1029. .FS
  1030. Keep IN mind that the aim IN designing INTERCAL was to have no
  1031. precedents.
  1032. .FE
  1033. .bp
  1034. .P
  1035. This precedence (or lack thereof) may be overruled by grouping expressions
  1036. between pairs of sparks (') or rabbit-ears ("). Thus '#165\*(ct#203'~#358
  1037. (binary value '10100101\*(ct11001011'~101100110) has the value 15, but
  1038. #165\*(ct'#203~#358' has the value 34915, and #165\*(ct#203~#358 is invalid
  1039. syntax and is completely valueless (except perhaps as an educational tool
  1040. to the programmer). A unary operator is applied to a sparked or rabbit-eared
  1041. expression by inserting the operator immediately following the opening spark
  1042. or ears. Thus, the invalid expression #\*(vb&123,
  1043. which was described earlier,
  1044. could be coded as '\*(vb#&123' or '\*(vb"&#123"'.
  1045. Note: IN the interests of
  1046. simplifying the sometimes overly-complex form of expressions, INTERCAL allows
  1047. a spark-spot combination ('.) to be replaced with a wow (!). Thus '.1~.2'
  1048. is equivalent to !1~.2', and 'V.1\*(ct.2' is equivalent to "V!1\*(ct.2'".
  1049. .P
  1050. Combining a rabbit-ears with a spot to form a rabbit (\o'".') is NOT permitted,
  1051. although the programmer is free to use it should he find an EBCDIC reader
  1052. which will properly translate a 12-3-7-8 punch.
  1053. .P
  1054. Sparks and/or rabbit-ears must also be used to distinguish among such
  1055. otherwise ambiguous subscripted and multiply-subscripted expressions as:
  1056. .DS L
  1057.         ,1 SUB #1 ~ #2
  1058.         ,1 SUB ,2 SUB #1 #2 #3
  1059.         ,1 SUB " ,2 SUB " ,3 SUB #1 " #2 " " #3 "
  1060. .DE
  1061. The third case may be isolated into either of its possible interpretations
  1062. by simply changing some pairs of rabbit-ears to sparks, instead of adding
  1063. more ears (which would only confuse the issue further). Ambiguous cases are
  1064. defined as those for which the compiler being used finds a legitimate
  1065. interpretation which is different FROM that which the user had IN mind. See
  1066. also section
  1067. .GETHN princeton
  1068. \&.
  1069. .H 1 "STATEMENTS"
  1070. .if '\*c'y' \{\
  1071. .DS I F
  1072. "There's glory for you!"
  1073. .P
  1074. "I DON'T know what you mean by 'glory,'" Alice said.
  1075. .P
  1076. Humpty Dumpty smiled contemptuously. "Of course you DON'T -- till I tell
  1077. you. I meant 'there's a nice knock-down argument for you!'"
  1078. .P
  1079. "But 'glory' doesn't mean 'a nice knock-down argument.'" Alice
  1080. objected.
  1081. .P
  1082. "When \fII\fR use a word," Humpty Dumpty said, IN a rather scornful
  1083. tone, "it means just what I choose it to mean -- neither more nor less."
  1084. .DE \}
  1085. .P
  1086. IN this section is described the format of INTERCAL statements.
  1087. .H 2 "General Format"
  1088. .P
  1089. Statements may be entered IN 'free format'. That is, more than one statement
  1090. may occur on a single card, and a statement may begin on one card and end
  1091. on a later one. Note that if this is done, all intervening cards and portions
  1092. thereof must be part of the same statement. That this restriction is necessary
  1093. is immediately apparent FROM the following example of what might occur if
  1094. statements could be interlaced.
  1095. .DS L
  1096.         DO .1 <- ".1\*(ct'&:51~"#\*(vb1c!12~;&75SUB"\*(vb'V.1~
  1097.         DO .2 <- '"!1\*(ct"&';\*(vb79SUB",&7SUB:173"'~!\*(vb9\*(ct
  1098.         .2'\*(ct,&1SUB:5~#33578"'"'"~'#65535\*(ct"\*(vb'V#&85'"'
  1099.         #8196'"'~.1"\*(ct.2'~'#&5\*(ct"'#1279\*(ct#4351'~#65535"'
  1100. .DE
  1101. The above statements are obviously meaningless. (For that matter, so are
  1102. the statements
  1103. .DS L
  1104.         DO .1 <- ".1\*(ct"&:51~"#\*(vb1\*(ct!12~;&75SUB"\*(vb'V.1~
  1105.         .2'\*(ct,&1SUB:5~#333578"'"'"~#65535\*(ct"\*(vb'V#&85'"'
  1106.         DO .2 <- '"!1\*(ct"&';\*(vb79SUB",&7SUB:173"'~!\*(vb9\*(ct
  1107.         #8196'"'~.1"\*(ct.2'~'#&5\*(ct"'#1279\*(ct#4351'~#65535"'
  1108. .DE
  1109. but this is NOT of interest here.)
  1110. .P
  1111. Spaces may be used freely to enhance program legibility (or at least reduce
  1112. program illegibility), with the restriction that no word of a statement
  1113. identifier (see section
  1114. .GETHN identifiers
  1115. ) may contain any spaces.
  1116. .H 2 "Labels"
  1117. .P
  1118. A statement may begin with a
  1119. .B "logical line label"
  1120. enclosed IN wax-wane pairs
  1121. (()). A statement may NOT have more than one label, although it is possible
  1122. to omit the label entirely. A line label is any integer FROM 1 to 65535,
  1123. which must be unique within each program. The user is cautioned, however,
  1124. that many line labels between 1000 and 1999 are used IN the INTERCAL System
  1125. Library functions.
  1126. .H 2 "Identifiers and Qualifiers"
  1127. .SETR identifiers
  1128. .P
  1129. After the line label (if any), must follow one of the following statement
  1130. identifiers: DO, PLEASE, or PLEASE DO. These may be used interchangeably to
  1131. improve the aesthetics of the program. The identifier is then followed by
  1132. either, neither, or both of the following optional parameters (qualifiers):
  1133. (1) either of the character strings NOT or N'T, which causes the statement
  1134. to be automatically abstained FROM (see section
  1135. .GETHN ABSTAIN
  1136. ) when execution
  1137. begins, and (2) a number between 0 and 100, preceded by a double-oh-seven
  1138. (%), which causes the statement to have only the specified percent chance
  1139. of being executed each time it is encountered IN the course of execution.
  1140. .H 2 "Statements"
  1141. .P
  1142. Following the qualifiers (or, if none are used, the identifier) must occur
  1143. one of the
  1144. .ie '\*c'y' \{\
  1145. 14 \}
  1146. .el \{\
  1147. 13 \}
  1148. valid operations. (Exception: see section
  1149. .GETHN comments
  1150. \&.) These are
  1151. described individually IN sections
  1152. .GETHN calculate
  1153.  through
  1154. .GETHN last_statement
  1155. \&.
  1156. .H 3 "Calculate"
  1157. .SETR calculate
  1158. .P
  1159. The INTERCAL equivalent of the half-mesh (=) IN FORTRAN, BASIC, PL/I, and
  1160. others, is represented by an angle (<) followed by a worm (-). This
  1161. combination is READ 'gets'. 32-bit variables may be assigned 16-bit values,
  1162. which are padded on the left with 16 zero bits. 16-bit variables may be
  1163. assigned 32-bit values only if the value is less than 65535. Thus, to
  1164. invert the least significant bit of the first element of 16-bit
  1165. 2-dimensional array number 1, one could WRITE:
  1166. .DS
  1167. ,1SUB#1#1 <- '\*(vb",1SUB#1#1"\*(ct#1'~'#0\*(ct#65535'
  1168. .DE
  1169. Similarly to SNOBOL and SPITBOL, INTERCAL uses the angle-worm to define the
  1170. dimensions of arrays. An example will probably best describe the format.
  1171. To define 32-bit array number 7 as 3-dimensional, the first dimension being
  1172. seven, the second being the current value of 16-bit variable number seven,
  1173. and the third being the current value of the seventh element of 16-bit array
  1174. number seven (which is one-dimensional) mingled with the last three bits of
  1175. 32-bit variable number seven, one would WRITE (just before they came to take
  1176. him away):
  1177. .DS
  1178. ;7 <- #7 BY .7 BY ",7SUB#7"\*(ct':7~#7'
  1179. .DE
  1180. This is, of course, different FROM the statement:
  1181. .DS
  1182. ;7 <- #7 BY .7 BY ,7SUB"#7\*(ct':7~#7'"
  1183. .DE
  1184. INTERCAL also permits the redefining of array dimensioning, which is done
  1185. the same way as is the initial dimensioning. All values of items IN an array
  1186. are lost upon redimensioning, unless they have been STASHed (see section
  1187. .GETHN STASH
  1188. ), IN which case restoring them also restores the old dimensions.
  1189. .H 3 "NEXT"
  1190. .SETR NEXT
  1191. .P
  1192. The NEXT statement is used both for subroutine calls and for unconditional
  1193. transfers. This statement takes the form:
  1194. .DS
  1195. DO (label) NEXT
  1196. .DE
  1197. (or, of course,
  1198. .DS
  1199. PLEASE DO (label) NEXT
  1200. .DE
  1201. etc.), where (label) represents any logical line label which appears IN the
  1202. program. The effect of such a statement is to transfer control to the
  1203. statement specified, and to store IN a push down list (which is initially
  1204. empty) the location FROM which the transfer takes place. Items may be
  1205. removed FROM this list and may be discarded or used to return to the
  1206. statement immediately following the NEXT statement. These operations are
  1207. described IN sections
  1208. .GETHN FORGET
  1209.  and
  1210. .GETHN RESUME
  1211.  respectively. The programmer is
  1212. generally advised to discard any stack entries which he DOES NOT intend to
  1213. utilize, since the stack has a maximum depth of 79 entries. A program's
  1214. attempting to initiate an 80th level of NEXTing will result IN the fatal
  1215. error message, "PROGRAM HAS DISAPPEARED INTO THE BLACK LAGOON."
  1216. .H 3 "FORGET"
  1217. .SETR FORGET
  1218. .P
  1219. The statement PLEASE FORGET exp, where exp represents any expression
  1220. (except colloquial and facial expressions), causes the expression to be
  1221. evaluated, and the specified number of entries to be removed FROM the
  1222. NEXTing stack and discarded. An attempt to FORGET more levels of NEXTing
  1223. than are currently stacked will cause the stack to be emptied, and no error
  1224. condition is indicated. This is because the condition is NOT considered to
  1225. be an error. As described IN section
  1226. .GETHN NEXT
  1227. \&, it is good programming practice
  1228. to execute a DO FORGET #1 after using a NEXT statement as an unconditional
  1229. transfer, so that the stack DOES NOT get cluttered UP with unused entries:
  1230. .DS L
  1231. .cs R 24
  1232.         DO (123) NEXT
  1233.         .
  1234.         .
  1235.   (123) DO FORGET #1
  1236. .cs R
  1237. .DE
  1238. .H 3 "RESUME"
  1239. .SETR RESUME
  1240. .P
  1241. The statement PLEASE RESUME exp has the same effect as FORGET, except that
  1242. program control is returned to the statement immediately following the NEXT
  1243. statement which stored IN the stack the last entry to be removed. Note that
  1244. a rough equivalent of the FORTRAN computed GO TO and BASIC ON exp GO TO is
  1245. performed by a sequence of the form:
  1246. .DS L
  1247. .cs R 24
  1248.         DO (1) NEXT
  1249.         .
  1250.         .
  1251.     (1) DO (2) NEXT
  1252.         PLEASE FORGET #1
  1253.         .
  1254.         .
  1255.     (2) DO RESUME .1
  1256. .cs R
  1257. .DE
  1258. Unlike the FORGET statement, an attempt to RESUME more levels of NEXTing than
  1259. has been stacked will cause program termination. See also section
  1260. .GETHN give_up
  1261. \&.
  1262. .H 3 "STASH"
  1263. .SETR STASH
  1264. .P
  1265. Since subroutines are NOT explicitly implemented IN INTERCAL, the NEXT and
  1266. RESUME statements must be used to execute common routines. However, as
  1267. these routines might use the same variables as the main program, it is
  1268. necessary for them to save the values of any variables whose values they
  1269. alter, and later restore them. This process is simplified by the STASH
  1270. statement, which has the form DO STASH list, where list represents a
  1271. string of one or more variable or array names, separated by intersections
  1272. (+). Thus
  1273. .DS
  1274. PLEASE STASH .123+:123+,123
  1275. .DE
  1276. stashes the values of two variables and one entire array. The values are
  1277. left intact, and copies thereof are saved for later retrieval by (what else?)
  1278. the RETRIEVE statement (see section
  1279. .GETHN RETRIEVE
  1280. ). It is NOT possible to STASH
  1281. single array items.
  1282. .H 3 "RETRIEVE"
  1283. .SETR RETRIEVE
  1284. .P
  1285. PLEASE RETRIEVE list restores the previously STASHed values of the variables
  1286. and arrays named IN the list. If a value has been stashed more than once,
  1287. the most recently STASHed values are RETRIEVEd, and a second RETRIEVE will
  1288. restore the second most recent values STASHed. Attempting to RETRIEVE a
  1289. value which has NOT been STASHed will result IN the error message, "THROW
  1290. STICK BEFORE RETRIEVING."
  1291. .H 3 "IGNORE"
  1292. .SETR IGNORE
  1293. .P
  1294. The statement DO IGNORE list causes all subsequent statements to have no
  1295. effect upon variables and/or arrays named IN the list. Thus, for example,
  1296. after the sequence
  1297. .DS L
  1298.         DO .1 <- #1
  1299.         PLEASE IGNORE .1
  1300.         DO .1 <- #0
  1301. .DE
  1302. 16-bit variable number 1 would have the value 1, NOT 0. Inputting (see
  1303. section
  1304. .GETHN input
  1305. ) into an IGNOREd variable also has no effect. The condition
  1306. is annulled via the REMEMBER statement (see section
  1307. .GETHN REMEMBER
  1308. ). Note that, when
  1309. a variable is being IGNOREd, its value, though immutable, is still
  1310. available for use IN expressions and the like.
  1311. .if '\*c'y' \{\
  1312. .P
  1313. Though the INTERCAL-72 manual laid down that the value of an IGNOREd
  1314. variable cannot change, it was unclear about whether or NOT a
  1315. statement which appears to change an IGNOREd variable is executed or
  1316. NOT. This may appear to be a "If a tree falls IN the forest ..." type
  1317. of question, but if the statement IN question has other side effects
  1318. it is NOT.
  1319. .P
  1320. Since another mechanism already exists for ABSTAINING FROM a
  1321. statement, C-INTERCAL's IGNORE only prevents the changing of the
  1322. specific variable IN question, NOT the execution of the entire
  1323. statement. IN the present version of the language this only makes
  1324. a difference for the WRITE IN (see
  1325. .GETHN input
  1326. ) and RETRIEVE (see
  1327. .GETHN RETRIEVE
  1328. ) statements. Attempting to WRITE IN
  1329. to an IGNOREd variable will cause a number to be READ FROM the input,
  1330. which will be discarded since it cannot be stored IN the variable.
  1331. Using RETRIEVE on an IGNOREd variable will pop the variable's STASH
  1332. stack without actually changing its value. \}
  1333. .H 3 "REMEMBER"
  1334. .SETR REMEMBER
  1335. .P
  1336. PLEASE REMEMBER list terminates the effect of the IGNORE statement for all
  1337. variables and/or arrays named IN the list. It DOES NOT matter if a variable
  1338. has been IGNOREd more than once, nor is it an error if the variable has NOT
  1339. been IGNOREd at all.
  1340. .H 3 "ABSTAIN"
  1341. .SETR ABSTAIN
  1342. .P
  1343. INTERCAL contains no simple equivalent to an IF statement or computed GO
  1344. TO, making it difficult to combine similar sections of code into a single
  1345. routine which occasionally skips around certain statements. The IGNORE
  1346. statement (see section
  1347. .GETHN IGNORE
  1348. ) is helpful IN some cases, but a more viable
  1349. method is often required. IN keeping with the goal of INTERCAL having
  1350. nothing IN common with any other language, this is made possible via the
  1351. ABSTAIN statement.
  1352. .P
  1353. This statement takes on one of two forms. It may NOT take on both at any one
  1354. time. DO ABSTAIN FROM (label) causes the statement whose logical line label
  1355. is (label) to be abstained FROM. PLEASE ABSTAIN FROM gerund list causes all
  1356. statements of the specified type(s) to be abstained FROM, as IN
  1357. .DS L
  1358. .ta .3i .6i T .6i
  1359.         PLEASE ABSTAIN FROM STASHING
  1360.         PLEASE ABSTAIN FROM IGNORING + FORGETTING
  1361.         PLEASE ABSTAIN FROM NEXTING
  1362.     or  PLEASE ABSTAIN FROM CALCULATING
  1363. .DE
  1364. Statements may also be automatically abstained FROM at the start of
  1365. execution via the NOT or N'T parameter (see section
  1366. .GETHN identifiers
  1367. ).
  1368. .P
  1369. If, IN the course of execution, a statement is encountered which is being
  1370. abstained FROM, it is ignored and control passes to the NEXT statement IN
  1371. the program (unless it, too, is being abstained FROM).
  1372. .P
  1373. The statement DO ABSTAIN FROM ABSTAINING is perfectly valid, as is DO ABSTAIN
  1374. FROM REINSTATING (although this latter is NOT usually recommended). However,
  1375. the statement DO ABSTAIN FROM GIVING UP is NOT accepted, even though DON'T
  1376. GIVE UP is.
  1377. .H 3 "REINSTATE"
  1378. .SETR REINSTATE
  1379. .P
  1380. The REINSTATE statement, like the ABSTAIN, takes as an argument either a
  1381. line label or a gerund list. No other form of argument is permitted. For
  1382. example, the following is an invalid argument:
  1383. .DS L
  1384.         Given: x\(!=0, y\(!=0,  Prove: x+y=0
  1385.         Since x\(!=0, then x+1\(!=1, x+a\(!=a, x+y\(!=y.
  1386.         But what is y? y is anything but 0.
  1387.         Thus x+y \(!= anything but 0.
  1388.         Since x+y cannot equal anything but 0, x+y=0.
  1389.                                                          Q.E.D.
  1390. .DE
  1391. REINSTATEment nullifies the effects of an abstention. Either form of
  1392. REINSTATEment can be used to "free" a statement, regardless of whether the
  1393. statement was abstained FROM by gerund list, line label, or NOT. Thus,
  1394. PLEASE REINSTATE REINSTATING is NOT necessarily an irrelevant statement,
  1395. since it might free a DON'T REINSTATE command or a REINSTATE the line label
  1396. of which was abstained FROM. However, DO REINSTATE GIVING UP is invalid,
  1397. and attempting to REINSTATE a GIVE UP statement by line label will have no
  1398. effect. Note that this insures that DON'T GIVE UP will always be a
  1399. "do-nothing" statement.
  1400. .H 3 "GIVE UP"
  1401. .SETR give_up
  1402. .P
  1403. PLEASE GIVE UP is used to exit FROM a program. It has the effect of a PLEASE
  1404. RESUME #80. DON'T GIVE UP, as noted IN section
  1405. .GETHN REINSTATE
  1406. \&, is effectively a null
  1407. statement.
  1408. .H 3 "Input"
  1409. .SETR input
  1410. .P
  1411. Input is accomplished with the statement DO WRITE IN list, where list
  1412. represents a string of variables and/or elements of arrays, separated by
  1413. intersections. Numbers are represented on cards, each number on a separate
  1414. card, by spelling OUT each digit (IN English) and separating the digits
  1415. with one or more spaces. A zero (0) may be spelled as either ZERO or OH.
  1416. Thus the range of (32-bit) input values permissible extends FROM ZERO (or
  1417. OH) through FOUR TWO NINE FOUR NINE SIX SEVEN TWO NINE FIVE.
  1418. .if '\*c'y' \{\
  1419. (For the convenience of aviators, C-INTERCAL accepts the spelling
  1420. NINER for NINE. IN the service of internationalization, C-INTERCAL
  1421. also accepts input digits IN Sanskrit, Basque, Tagalog, Classical
  1422. Nahuatl, Georgian, Kwakiutl, and Volapuk.) \}
  1423. .P
  1424. Attempting to WRITE IN a value greater than or equal to SIX FIVE FIVE THREE
  1425. SIX for a 16-bit variable will result IN the error message, "DON'T BYTE OFF
  1426. MORE THAN YOU CAN CHEW."
  1427. .if '\*c'y' \{\
  1428. .P
  1429. (See also section
  1430. .GETHN communication
  1431.  for a description of C-INTERCAL's character I/O.) \}
  1432. .H 3 "Output"
  1433. .P
  1434. Values may be output to the printer, one value per line, via the statement
  1435. DO READ OUT list, where the list contains variables, array elements, and/or
  1436. constants.  Output is IN the form of "extended" Roman numerals (also called
  1437. "butchered" Roman numerals), with an overline
  1438. .if t (\(rn)
  1439. indicating the value below
  1440. is "times 1000", and lower-case letters indicating "times 1000000". Zero
  1441. is indicated by an overline with no character underneath. Thus, the range
  1442. of (32-bit) output values possible is FROM
  1443. .if t \(rn
  1444. .if n \{\
  1445. .nf
  1446. _
  1447.  
  1448. .fi \}
  1449. through
  1450. .ie t \o"i\(rn"\o"v\(rn"ccxciv\o"C\(rn"\o"M\(rn"\o"L\(rn"\o"X\(rn"\o"V\(rn"\o"I\(rn"\o"I\(rn"CCXCV.
  1451. .el \{\
  1452. .br
  1453. .nf
  1454. __      ____________
  1455. ivccxcivCMLXVIICCXCV.
  1456. .fi \}
  1457. Note: For values whose residues modulo 1000000 are less than 4000, M is
  1458. used to represent 1000; for values whose residues are 4000 or greater,
  1459. .if t \o"I\(rn"
  1460. .if n \{\
  1461. .nf
  1462. _
  1463. I
  1464. .fi \}
  1465. .\" This is the one place we corrected the original manual.
  1466. is used. Thus #3999 would READ OUT as MMMCMXCIX \*F while #4000 would
  1467. .FS
  1468. The original INTERCAL-72 manual claimed
  1469. that #3999 should render as MMMIM, but the C-INTERCAL developers have
  1470. been unable to find an algorithm that DOES this and is consistent
  1471. with the rest of the rules.
  1472. .FE
  1473. readout as
  1474. .if t \o"I\(rn"\o"V\(rn".
  1475. .if n \{\
  1476. .nf
  1477. __
  1478. IV
  1479. .fi \}
  1480. Similar rules apply to the use of
  1481. .if t \o"M\(rn"
  1482. .if n \{\
  1483. .nf
  1484. _
  1485. M
  1486. .fi \}
  1487. and i for 1000000, and to that of m and
  1488. .if t \o"i\(rn"
  1489. .if n \{\
  1490. .nf
  1491. _
  1492. i
  1493. .fi \}
  1494. for 1000000000.
  1495. .if '\*c'y' \{\
  1496. .P
  1497. (See also section
  1498. .GETHN communication
  1499.  for a description of C-INTERCAL's character I/O.) \}
  1500. .if '\*c'y' \{\
  1501. .H 3 "COME FROM"
  1502. .P
  1503. IN which we try to precisely define a statement that should never
  1504. have been born, but is nevertheless one of the more useful statements
  1505. IN INTERCAL.
  1506. .H 4 "Background"
  1507. .P
  1508. The earliest known description of the COME FROM statement IN the computing
  1509. literature is IN [R. L. Clark, "A linguistic contribution to GOTO-less
  1510. programming," Commun. ACM 27 (1984), pp. 349-350], part of the famous April
  1511. Fools issue of CACM. The subsequent rush by language designers to include the
  1512. statement IN their languages was underwhelming, one might even say nonexistent.
  1513. It was therefore decided that COME FROM would be an appropriate addition
  1514. to C-INTERCAL.
  1515. .H 4 "Description"
  1516. .P
  1517. There are two useful ways to visualize the action of the COME FROM
  1518. statement. The simpler is to see that it acts like a GOTO when the
  1519. program is traced backwards IN time. More precisely, the statements
  1520. .DS L
  1521. (1)     DO <any statement>
  1522.         .
  1523.         .
  1524.         .
  1525. (2)     DO COME FROM (1)
  1526. .DE
  1527. should be thought of as being equivalent to
  1528. .DS L
  1529. (1)     DO <any statement>
  1530. (2)     DO GOTO (3)
  1531.         .
  1532.         .
  1533.         .
  1534. (3)     DO NOTHING
  1535. .DE
  1536. if INTERCAL actually had a GOTO statement at all, which of course it
  1537. doesn't.
  1538. .P
  1539. What this boils down to is that the statement DO COME FROM (label),
  1540. anywhere IN the program, places a kind of invisible trap door
  1541. immediately after statement (label). Execution or abstention of that
  1542. statement is immediately followed by an unconditional jump to the
  1543. COME FROM, unless the (label)ed statement is an executed NEXT, IN which
  1544. case the jump occurs if the program attempts to RESUME back to that
  1545. NEXT statement. It is an error for more than one COME FROM to refer
  1546. to the same (label).
  1547. .P
  1548. Modification of the target statement by ABSTAIN or by the % qualifier
  1549. affects only that statement, NOT the subsequent jump. Such
  1550. modifications to the COME FROM itself, however, DO affect the jump.
  1551. Encountering the COME FROM statement itself, rather than its target,
  1552. has no effect. \}
  1553. .SETR last_statement
  1554. .H 2 "Comments"
  1555. .SETR comments
  1556. .P
  1557. Unrecognizable statements, as noted IN section
  1558. .GETHN error_messages
  1559. \&, are flagged with a splat
  1560. (*) during compilation, and are NOT considered fatal errors unless they
  1561. are encountered during execution, at which time the statement (as input at
  1562. compilation time) is printed and execution is terminated. This allows for
  1563. an interesting (and, by necessity, unique) means of including comments IN
  1564. an INTERCAL listing. For example, the statement:
  1565. .sp 1
  1566. *       PLEASE NOTE THAT THIS LINE HAS NO EFFECT
  1567. .P
  1568. will be ignored during execution due to the inclusion of the NOT qualifier.
  1569. User-supplied error messages are also easy to implement:
  1570. .sp 1
  1571. *       DO SOMETHING ABOUT OVERFLOW IN ;3
  1572. .P
  1573. as are certain simple conditional errors:
  1574. .DS L
  1575. .cs R 24
  1576. * (123) DON'T YOU REALIZE THIS STATEMENT SHOULD ONLY BE ENCOUNTERED
  1577.                 ONCE?
  1578.         PLEASE REINSTATE (123)
  1579. .cs R
  1580. .DE
  1581. This pair of statements will cause an error exit the second time they are
  1582. encountered. Caution!! The appearance of a statement identifier IN an
  1583. intended comment will be taken as the beginning of a new
  1584. .\" CORRECTION:
  1585. .\" "comment example above" was originally "example on the preceding page"
  1586. .\" We can't rely on page boundaries any more.
  1587. statement. Thus, the first comment example above could NOT have been:
  1588. .sp 1
  1589. *       PLEASE NOTE THAT THIS LINE DOES NOTHING
  1590. .P
  1591. The third example, however, is valid, despite the appearance of two cases
  1592. of D-space-O, since INTERCAL DOES NOT IGNORE extraneous spaces IN statement
  1593. identifiers.
  1594. .if '\*c'y' \{\
  1595. .H 1 "OUTSIDE COMMUNICATION"
  1596. .if '\*c'y' \{\
  1597. .DS I F
  1598. She puzzled over this for some time, but at last a bright thought
  1599. struck her. "Why, it's a Looking-glass book, of course! And, if I hold
  1600. it UP to a glass, the words will all go the right way again."
  1601. .DE \}
  1602. .SETR communication
  1603. .P
  1604. IN which we try to remedy the fact that, due to I/O limitations, INTERCAL
  1605. can NOT even IN principle perform the same tasks as other languages. It
  1606. is hoped that this addition will permit INTERCAL users to waste vast
  1607. quantities of computer time well into the 21st century.
  1608. .H 2 "Motivation"
  1609. .P
  1610. One of the goals of INTERCAL was to provide a language which, though
  1611. different FROM all other languages, is nevertheless theoretically
  1612. capable of all the same tasks. INTERCAL-72 failed to
  1613. accomplish this because its I/O functions could NOT handle arbitrary
  1614. streams of bits, or even arbitrary sequences of characters. A
  1615. language which can't even send its input directly to its output
  1616. can hardly be considered as capable as other languages.
  1617. .H 2 "Turing Text Model"
  1618. .P
  1619. To remedy this problem, character I/O is now provided IN a form based
  1620. on the "Turing Text" model, originally proposed by Jon Blow. The
  1621. C-INTERCAL programmer can access this capability by placing a
  1622. one-dimensional array IN the list of items given to a WRITE IN or READ
  1623. OUT statement. On execution of the statement, the elements of the array
  1624. will, FROM first to last, be either loaded FROM the input or sent
  1625. to the output, as appropriate, IN the manner described below. There
  1626. is currently no support for I/O involving higher-dimensional arrays,
  1627. but some form of graphics might be a possible 2-D interpretation.
  1628. .P
  1629. The heart of the Turing Text model is the idea of a continuous loop
  1630. of tape containing, IN order, all the characters IN the machine's
  1631. character set. When a character is received by the input routine,
  1632. the tape is advanced the appropriate number of spaces to bring
  1633. that character under the tape head, and the number of spaces the
  1634. tape was moved is the number that is actually seen by the INTERCAL
  1635. program. Another way to say this is that the number placed IN an
  1636. INTERCAL array is the difference between the character just
  1637. received and the previous character, modulo the number of characters
  1638. IN the machine character set.
  1639. .P
  1640. Output works IN just the opposite fashion, except that the characters
  1641. being output COME FROM the other side of the tape. FROM this position
  1642. the characters on the tape appear to be IN reverse order, and are
  1643. individually backwards as well. (We would show you what it looks
  1644. like, but we DON'T have a font with backwards letters available.
  1645. Use your imagination.) The effect is that a number is taken OUT
  1646. of an INTERCAL array, subtracted FROM the last character output --
  1647. i.e., the result of the last subtraction -- and then sent on down
  1648. the output channel. The only catch is that the character as seen
  1649. by the INTERCAL program is the mirror-image of the character as
  1650. seen by the machine and the user. The bits of the character are
  1651. therefore taken IN reverse order as it is sent to the output.
  1652. Note that this bit reversal affects only the character seen by
  1653. the outside world; it DOES NOT affect the character stored internally
  1654. by the program, FROM which the NEXT output number will be subtracted.
  1655. All subtractions are done modulo the number of characters IN the
  1656. character set.
  1657. .P
  1658. Two different tapes are used for input and output to allow for
  1659. future expansion of the language to include multiple input and
  1660. output channels. Both tapes start at character 0 when a program
  1661. begins execution. On input, when an end-of-file marker is reached
  1662. the number placed IN the array is one greater than the
  1663. highest-numbered character on the tape.
  1664. .H 2 "Example Program"
  1665. .P
  1666. If all this seems terribly complicated, it should be made perfectly
  1667. clear by the following example program, which simply maps its input
  1668. to its output (like a simplified UNIX "cat"). It assumes that
  1669. characters are 8 bits long, but that's fine since the current version
  1670. of C-INTERCAL DOES too. It uses the standard library routines for addition
  1671. and subtraction.
  1672. .DS L
  1673. .cs R 24
  1674.         DO ,1 <- #1
  1675.         DO .4 <- #0
  1676.         DO .5 <- #0
  1677.         DO COME FROM (30)
  1678.         DO WRITE IN ,1
  1679.         DO .1 <- ,1SUB#1
  1680.         DO (10) NEXT
  1681.         PLEASE GIVE UP
  1682. (20)    PLEASE RESUME '?.1$#256'~'#256$#256'
  1683. (10)    DO (20) NEXT
  1684.         DO FORGET #1
  1685.         DO .2 <- .4
  1686.         DO (1000) NEXT
  1687.         DO .4 <- .3~#255
  1688.         DO .3 <- !3~#15'$!3~#240'
  1689.         DO .3 <- !3~#15'$!3~#240'
  1690.         DO .2 <- !3~#15'$!3~#240'
  1691.         DO .1 <- .5
  1692.         DO (1010) NEXT
  1693.         DO .5 <- .2
  1694.         DO ,1SUB#1 <- .3
  1695. (30)    PLEASE READ OUT ,1
  1696. .cs R
  1697. .DE
  1698. For each number received IN the input array, the program first tests
  1699. the #256 bit to see if the end of file has been reached. If NOT, the
  1700. previous input character is subtracted off to obtain the current
  1701. input character. Then the order of the bits is reversed to find
  1702. OUT what character should be sent to the output, and the result
  1703. is subtracted FROM the last character sent. Finally, the difference
  1704. is placed IN an array and given to a READ OUT statement. See?
  1705. We told you it was simple! \}
  1706. .if '\*c'y' \{\
  1707. .H 1 "TriINTERCAL"
  1708. .if '\*c'y' \{\
  1709. .DS I F
  1710. "-- oh dear, how puzzling it all is! I'll try if I know all the things
  1711. I used to know. Let me see: four times five is twelve, and four times
  1712. six is thirteen, and four times seven is -- oh dear! I shall never get
  1713. to twenty at that rate!"
  1714. .DE \}
  1715. .SETR tri_intercal
  1716. .P
  1717. IN which it is revealed that bitwise operations are too ordinary for
  1718. hard-core INTERCAL programmers, and extensions to other bases are
  1719. discussed. These are NOT, strictly speaking, extensions to INTERCAL
  1720. itself, but rather new dialects sharing most of the features of the
  1721. parent language.
  1722. .H 2 "Motivation"
  1723. .P
  1724. INTERCAL is really a pretty sissy language. It tries hard to be
  1725. different, but when you get right down to its roots, what DO you find?
  1726. You find bits, that's what. Plain old ones and zeroes, IN groups of
  1727. 16 and 32, just like every other language you've ever heard of. And
  1728. what operations can you perform on these bits? The INTERCAL operators
  1729. may arrange and permute them IN weird and wonderful ways, but at the
  1730. bit level the operators are the same AND, OR and XOR you've seen
  1731. countless times before.
  1732. .P
  1733. Once the prospective INTERCAL programmer masters the unusual syntax,
  1734. she finds herself working with the familiar Boolean operators on
  1735. perfectly ordinary unsigned integer words. Even the constants she uses
  1736. are familiar. After all, who would NOT immediately recognize #65535
  1737. and #32768? It may take a just a moment more to figure OUT #65280,
  1738. and #21845 and #43690 could be puzzles until she notices that they
  1739. sum to #65535, but basically she's still on her home turf. The 16-bit
  1740. limit on constants actually works IN the programmer's favor by insuring
  1741. that very long anonymous constants cannot appear IN INTERCAL programs.
  1742. And this is IN a language that is supposed to be different FROM any
  1743. other!
  1744. .H 2 "Abandon All Hope..."
  1745. .P
  1746. Standard INTERCAL is based on variables consisting of ordinary bits
  1747. and familiar Boolean operations on those bits. IN pursuit of uniqueness,
  1748. it seems appropriate to provide a new dialect, otherwise identical to
  1749. INTERCAL, which instead uses variables consisting of trits, i.e. ternary
  1750. digits, and operators based on tritwise logical operations. This is
  1751. intended to be a separate dialect, rather than an extension to INTERCAL
  1752. itself, for a number of reasons. Doing it this way avoids word-length
  1753. conflicts, DOES NOT spoil the elegance of the Spartan INTERCAL operator
  1754. set, and dodges the objections of those who might feel it too great an
  1755. alteration to the original language. Primarily, though, giving INTERCAL
  1756. programmers the ability to switch numeric base at will amounts to
  1757. excessive functionality. So much better that a programmer choose a base
  1758. at the outset and then be forced to stick with it for the remainder of
  1759. the program.
  1760. .H 2 "Compiler Operation"
  1761. .P
  1762. The same compiler, ick, supports both INTERCAL and TriINTERCAL.
  1763. This has the advantage that future bug fixes and additions to the
  1764. language NOT related to arithmetic immediately apply to both versions.
  1765. The compiler recognizes INTERCAL source files by the extension '.i',
  1766. and TriINTERCAL source files by the extension '.3i'. It's as simple
  1767. as that. There is no way to mix INTERCAL and TriINTERCAL source IN
  1768. the same program, and it is NOT always possible to determine which
  1769. dialect a program is written IN just by looking at the source code.
  1770. .H 2 "Data Types"
  1771. .P
  1772. The two TriINTERCAL data types are 10-trit unsigned integers and
  1773. 20-trit unsigned integers. All INTERCAL syntax for distinguishing
  1774. data types is ported to these new types IN the obvious way. Small
  1775. words may contain numbers FROM #0 to #59048; large words may contain
  1776. numbers FROM #0$#0 to #59048$#59048. Errors are signaled for constants
  1777. greater than #59048 and for attempts to WRITE IN numbers too large
  1778. for a given variable or array element to hold.
  1779. .P
  1780. Note that though TriINTERCAL considers all numbers to be unsigned,
  1781. nothing prevents the programmer FROM implementing arithmetic operations
  1782. that treat their operands as signed. Three's complement is one obvious
  1783. choice, but balanced ternary notation is also a possibility. This
  1784. latter is a very pretty and symmetrical system IN which all 2 trits
  1785. are treated as if they had the value -1.
  1786. .H 2 "Operators"
  1787. .P
  1788. The TriINTERCAL operators are designed to inherit the relevant properties
  1789. of the standard INTERCAL operators, so that both can be considered as
  1790. merely different aspects of the same Platonic ideal. (NOT that the word
  1791. "ideal" is ever particularly relevant when used IN connection with
  1792. INTERCAL.)
  1793. .H 3 "Binary Operators I"
  1794. .P
  1795. The binary operators carry over FROM the original language with only
  1796. minor changes. The mingle operator ($) creates a 20-trit word by
  1797. alternating trits FROM its two 10-trit operands. The select operator (~)
  1798. is a little more complicated, since the ternary tritmask may contain 0, 1,
  1799. and 2 trits. If we observe that the select operation on binary operands
  1800. amounts to a bitwise AND and some rearrangement of bits, it seems
  1801. appropriate to base the select for ternary operands on a tritwise AND IN
  1802. the analogous fashion. We therefore postpone the definition of select
  1803. until we know what a tritwise AND looks like.
  1804. .H 3 "Unary Operators"
  1805. .P
  1806. The unary operators IN INTERCAL are all derived FROM the familiar
  1807. Boolean operations on single bits. To extend these operations to trits,
  1808. we first ask ourselves what the important properties of these operations
  1809. are that we wish to be preserved, then design the tritwise operators so
  1810. that they behave IN a similar fashion.
  1811. .H 4 "Unary Logical Operators"
  1812. .P
  1813. Let's start with AND and OR. To begin with, these can be considered
  1814. "choice" or "preference" operators, as they always return one of their
  1815. operands. AND can be described as wanting to return 0, but returning 1
  1816. if it is given no other choice, i.e., if both operands are 1. Similarly,
  1817. OR wants to return 1 but returns 0 if that is its only choice. FROM
  1818. this it is immediately apparent that each operator has an identity
  1819. element that "always loses", and a dominator element that "always wins".
  1820. .P
  1821. AND and OR are commutative and associative, and each distributes
  1822. over the other. They are also symmetric with each other, IN the sense
  1823. that AND looks like OR and OR looks like AND when the roles of 0 and 1
  1824. are interchanged (De Morgan's Laws). This symmetry property seems to be
  1825. a key element to the idea that these are logical, rather than arithmetic,
  1826. operators. IN a three-valued logic we would similarly expect a
  1827. three-way symmetry among the three values 0, 1 and 2 and the three
  1828. operators AND, OR and (of course) BUT.
  1829. .P
  1830. The following tritwise operations have all the desired properties:
  1831. OR returns the greater of its two operands. That is, it returns 2 if
  1832. it can get it, else it tries to return 1, and it returns 0 only if both
  1833. operands are 0. AND wants to return 0, will return 2 if it can't get
  1834. 0, and returns 1 only if forced. BUT wants 1, will take 0, and tries
  1835. to avoid 2. The equivalents to De Morgan's Laws apply to rotations
  1836. of the three elements, e.g., 0 -> 1, 1 -> 2, 2 -> 0. Each operator
  1837. distributes over exactly one other operator, so the property
  1838. "X distributes over Y" is NOT transitive. The question of which way
  1839. this distributivity ring goes around is left as an exercise for the
  1840. student.
  1841. .P
  1842. IN TriINTERCAL programs the whirlpool (@) denotes the unary tritwise
  1843. BUT operation. You can think of the whirlpool as drawing values
  1844. preferentially towards the central value 1. Alternatively, you can
  1845. think of it as drawing your soul and your sanity inexorably down ...
  1846. .P
  1847. On the other hand, MAYBE it's best you \fInot\fR think of it that way.
  1848. .P
  1849. A few comments about how these operators can be used. OR acts like
  1850. a tritwise maximum operation. AND can be used with tritmasks. 0's
  1851. IN a mask wipe OUT the corresponding elements IN the other operand,
  1852. while 1's let the corresponding elements pass through unchanged. 2's
  1853. IN a mask consolidate the values of nonzero elements, as both 1's and
  1854. 2's IN the other operand yield 2's IN the output. BUT can be used to
  1855. create "partial tritmasks". 0's IN a mask let BUT eliminate 2's FROM
  1856. the other operand while leaving other values unchanged. Of course,
  1857. the symmetry property guarantees that the operators DON'T really
  1858. behave differently FROM each other IN any fundamental way; the apparent
  1859. differences COME FROM the intuitive view that a 0 trit is "NOT set"
  1860. while a 1 or 2 trit is "set".
  1861. .H 4 "Binary Operators II"
  1862. .P
  1863. At this point we can define select, since we now know what the
  1864. tritwise AND looks like. Select takes the binary tritwise AND of
  1865. its two operands. It shifts all the trits of the result corresponding
  1866. to 2's IN the right operand over to the right (low) end of the result,
  1867. then follows them with all the output trits corresponding to 1's IN
  1868. the right operand. Trits corresponding to 0's IN the right operand,
  1869. which are all 0 anyway, occupy the remaining space at the left end of
  1870. the output word. Both 10-trit and 20-trit operands are accepted,
  1871. and are padded with zeroes on the left if necessary. The output
  1872. type is determined the same way as IN standard C-INTERCAL.
  1873. .H 4 "Unary Arithmetic Operators"
  1874. .P
  1875. Now that we've got all that settled, what about XOR? This is
  1876. easily the most-useful of the three unary INTERCAL operators,
  1877. because it combines IN one package the operations ADD WITHOUT CARRY,
  1878. SUBTRACT WITHOUT BORROW, BITWISE NOT-EQUAL, and BITWISE NOT. IN
  1879. TriINTERCAL we can't have all of these IN the same operator, since
  1880. addition and subtraction are no longer the same thing. The solution
  1881. is to split the XOR concept into two operators. The ADD WITHOUT CARRY
  1882. operation is represented by the new sharkfin (^), while the old
  1883. what (?) represents SUBTRACT WITHOUT BORROW. The reason for this
  1884. choice is so that what (?) will also represent the TRITWISE NOT-EQUAL
  1885. operation.
  1886. .P
  1887. Note that what (?), unlike the other four unary operators, is NOT
  1888. symmetrical. It should be thought of as rotating its operand one trit
  1889. to the right (with wraparound) and then subtracting off the trits of
  1890. the original number. These subtractions are done without borrowing,
  1891. i.e., trit-by-trit modulo 3.
  1892. .H 3 "Examples"
  1893. .P
  1894. The TriINTERCAL operators really aren't all that bad once you get
  1895. used to them. Let's look at a few examples to show how they can
  1896. be used IN practice. IN all of these examples the input value is
  1897. contained IN the 10-trit variable .3.
  1898. .P
  1899. IN INTERCAL, single-bit values often have to be converted FROM
  1900. {0,1} to {1,2} for use IN RESUME statements. Examples of how to DO
  1901. this appear IN the original manual. IN TriINTERCAL the expression
  1902. "^.3$#1"~#1 sends 0 -> 1 and 1 -> 2. If the 1-trit input value can
  1903. take on any of its three possible states, however, we will also have
  1904. to deal with the 2 case. The expression "V.3$#1"~#1 sends {0,1} -> 1
  1905. and 2 -> 2. To test if a trit is set, we can use "V'"&.3$#2"~#1'$#1"~#1,
  1906. sending 0 -> 1 and {1,2} -> 2. To reverse the test we use
  1907. "?'"&.3$#2"~#1'$#1"~#1, sending 0 -> 2 and {1,2} -> 1. Note that we
  1908. have NOT been taking full advantage of the new select operator. These
  1909. last two expressions can be simplified into "V!3~#2'$#1"~#1 and
  1910. "?!3~#2'$#1"~#1, which perform exactly the same mappings. Finally, if
  1911. we need a 3-way test, we can use "@'"^.3$#7"~#4'$#2"~#10, which
  1912. obviously sends 0 -> 1, 1 -> 2, and 2 -> 3.
  1913. .P
  1914. For an unrelated example, the expression "^.3$.3"~"#0$#29524"
  1915. converts all of the 1-trits of .3 into 2's and all of the 2-trits
  1916. into 1's. IN balanced ternary, where 2-trits represent -1 values,
  1917. this is the negation operation.
  1918. .H 2 "Beyond Ternary..."
  1919. .P
  1920. While we're at it, we might as well extend this multiple bases
  1921. business a little farther. The ick compiler actually recognizes
  1922. filename suffixes of the form '.Ni', where N is any number FROM 2
  1923. to 7. 2 of course gives standard INTERCAL, while 3 gives TriINTERCAL.
  1924. We cut off before 8 because octal notation is the smallest base used
  1925. to facilitate human-to-machine communication, and this seems quite
  1926. contrary to the basic principles behind INTERCAL. The small data
  1927. types hold 16 bits, 10 trits, 8 quarts, 6 quints, 6 sexts, or 5 septs,
  1928. and the large types are always twice this size.
  1929. .P
  1930. As for operators, ? is always SUBTRACT WITHOUT BORROW, and ^
  1931. is always ADD WITHOUT CARRY. V is the OR operation and always
  1932. returns the max of its inputs. & is the AND operation, which chooses
  1933. 0 if possible but otherwise returns the max of the inputs. @ is BUT,
  1934. which prefers 1, then 0, then the max of the remaining possibilities.
  1935. Rather than add more special symbols forever, a numeric modifier may
  1936. be placed directly before the @ to indicate the operation
  1937. that prefers one of the digits NOT already represented. Thus IN files
  1938. ending IN '.5i', the permitted unary operators are ?, ^, &, @, 2@, 3@,
  1939. and V. Use of such barbarisms as 0@ to represent &
  1940. are NOT permitted, nor is the use of @ or ^ IN files with either
  1941. of the extensions '.i' or '.2i'. Why NOT? You just can't, that's why.
  1942. DON'T ask so many questions.
  1943. .P
  1944. As a closing example, we note that IN balanced quinary notation,
  1945. where 3 means -2 and 4 means -1, the negation operation can be written
  1946. as either
  1947. .DS L
  1948.   DO .1 <- "^'"^.3$.3"~"#0$#3906"'$'"^.3$.3"~"#0$#3906"'"~"#0$#3906"
  1949. .DE
  1950. or as
  1951. .DS L
  1952.   DO .1 <- "^.3$.3"~"#0$#3906"
  1953.   DO .1 <- "^.1$.1"~"#0$#3906"
  1954. .DE
  1955. These work because multiplication by -1 is the same as multiplication
  1956. by 4, modulo 5.
  1957. .P
  1958. Now go beat your head against the wall for a while.\}
  1959. .H 1 "SUBROUTINE LIBRARY"
  1960. .if '\*c'y' \{\
  1961. .DS I F
  1962. "You DON'T know what you're talking about!" cried Humpty Dumpty. "How
  1963. many days are there IN a year?"
  1964. .P
  1965. "Three hundred and sixty-five," said Alice.
  1966. .P
  1967. "And how many birthdays have you?"
  1968. .P
  1969. "One."
  1970. .P
  1971. "And if you take one FROM three hundred and sixty-five, what remains?"
  1972. .P
  1973. "Three hundred and sixty-four, of course."
  1974. .P
  1975. Humpty Dumpty looked doubtful. "I'd rather see that done on paper," he
  1976. said.
  1977. .DE \}
  1978. .SETR sublib
  1979. .P
  1980. INTERCAL provides several built-IN subroutines to which control can be
  1981. transferred to perform various operations. These operations include many
  1982. useful functions which are NOT easily representable IN INTERCAL, such as
  1983. addition, subtraction, etc.
  1984. .H 2 "Usage"
  1985. .P
  1986. IN general, the operands are .1, .2, etc., or :1, :2, etc., and the result(s)
  1987. are stored IN what would have been the NEXT operand(s). For instance, one
  1988. routine adds .1 to .2 and stores the sum IN .3, with .4 being used to indicate
  1989. overflow. All variables NOT used for results are left unchanged.
  1990. .H 2 "Available Functions"
  1991. .SETR functions
  1992. .P
  1993. At the time of this writing, only the most fundamental operations are offered
  1994. IN the library, as a more complete selection would require prohibitive time
  1995. and core to implement. These functions, along with their corresponding entry
  1996. points (entered via DO (entry) NEXT) are listed below.
  1997. .DS L
  1998. .cs R 24
  1999.  (1000) .3 <- .1 plus .2, error exit on overflow
  2000.  (1009) .3 <- .1 plus .2
  2001.         .4 <- #1 if no overflow, else .4 <- #2
  2002.  (1010) .3 <- .1 minus .2, no action on overflow
  2003.  (1020) .1 <- .1 plus #1, no action on overflow
  2004.  (1030) .3 <- .1 times .2, error exit on overflow
  2005.  (1039) .3 <- .1 times .2
  2006.         .4 <- #1 if no overflow, else .4 <- #2
  2007.  (1040) .3 <- .1 divided by .2
  2008.         .3 <- #0 if .2 is #0
  2009.  (1050) .2 <- :1 divided by .1, error exit on overflow
  2010.         .2 <- #0 if .1 is #0
  2011.  
  2012.  (1500) :3 <- :1 plus :2, error exit on overflow
  2013.  (1509) :3 <- :1 plus :2
  2014.         :4 <- #1 if no overflow, else :4 <- #2
  2015.  (1510) :3 <- :1 minus :2, no action on overflow
  2016.  (1520) :1 <- .1 concatenated with .2
  2017.  (1525) This subroutine is intended solely for internal
  2018.         use within the subroutine library and is therefore
  2019.         NOT described here. Its effect is to shift .3
  2020.         logically 8 bits to the left.
  2021.  (1530) :1 <- .1 times .2
  2022.  (1540) :3 <- :1 times :2, error exit on overflow
  2023.  (1549) :3 <- :1 times :2
  2024.         :4 <- #1 if no overflow, else :4 <- #2
  2025.  (1550) :3 <- :1 divided by :2
  2026.         :3 <- #0 if :2 is #0
  2027.  
  2028.  (1900) .1 <- uniform random no. FROM #0 to #65535
  2029.  (1910) .2 <- normal random no. FROM #0 to .1, with
  2030.               standard deviation .1 divided by #12
  2031. .cs R
  2032. .DE
  2033. .if '\*c'y' \{\
  2034. .H 2 "Automagical Inclusion Of The Subroutine Library"
  2035. .P
  2036. The C-INTERCAL compiler will automatically include the system library if a DO
  2037. (1xxx) NEXT statement is used, and if no (1xxx) labels are defined anywhere,
  2038. where (1xxx) is a label IN the 1000-1999 range, inclusive. This was NOT
  2039. an INTERCAL-72 feature. \}
  2040. .H 1 "PROGRAMMING HINTS"
  2041. .if '\*c'y' \{\
  2042. .DS I F
  2043. "If any one of them can explain it," said Alice, "I'll GIVE him
  2044. sixpence. \fII\fR DON'T believe there's an atom of meaning IN it."
  2045. The jury all wrote down, on their slates, "\fIShe\fR doesn't
  2046. believe there's an atom of meaning IN it," but none of them attempted
  2047. to explain the paper.
  2048. .P
  2049. "If there's no meaning IN it," said the King, "that saves a world of
  2050. trouble, you know, as we needn't try to find any. And yet, I DON'T
  2051. know," he went on, spreading OUT the verses on one knee, and looking
  2052. at them with one eye: "I seem to see some meaning IN them, after
  2053. all...."
  2054. .DE \}
  2055. .SETR proghints
  2056. .P
  2057. For the user looking to become more familiar with the INTERCAL language, we
  2058. present IN this section an analysis of a complex program, as well as some
  2059. suggested projects for the ambitious programmer.
  2060. .P
  2061. Considering the effort involved IN writing an INTERCAL program, it was
  2062. decided IN putting together this manual to use an already existing program
  2063. for instructive analysis. Since there was only one such program available,
  2064. we have proceeded to use it. It is known as the "INTERCAL System Library."
  2065. .H 2 "Description"
  2066. .P
  2067. .\" CORRECTION:
  2068. .\" "is IN section {section}" was "on the second page following"
  2069. .\" We can't rely on the page breaks any more.
  2070. The program listing is IN section
  2071. .GETHN syslib
  2072. \&. It is IN the same
  2073. format as would be produced by the Princeton INTERCAL compiler IN FORMAT
  2074. mode with WIDTH=62 (see section
  2075. .GETHN princeton
  2076. ). For a description of the functions
  2077. performed by the Library, see section
  2078. .GETHN functions
  2079. \&.
  2080. .H 2 "Analysis"
  2081. .P
  2082. We shall NOT attempt to discuss here the algorithms used, but rather we
  2083. shall point OUT some of the general techniques applicable to a wide range
  2084. of problems.
  2085. .P
  2086. Statements 10, 14, 15, and 26 make UP a virtual "computed GO TO". When
  2087. statement 10 is executed, control passes eventually to statement 16 or 11,
  2088. depending on whether .5 contains #1 or #2, respectively. The value of .5
  2089. is determined IN statement 9, which demonstrates another handy technique.
  2090. To turn an expression, exp, with value #0 or #1, into #1 or #2 (for use IN
  2091. a "GO TO"), use "\*(vb'exp'\*(ct#1"~#3.
  2092. To reverse the condition (i.e., convert #0
  2093. to #2 and leave #1 alone) use "\*(vb'exp'\*(ct#2"~#3.
  2094. .P
  2095. Certain conditions are easily checked. For example, to test for zero,
  2096. select the value FROM itself and select the bottom bit (see statement 54).
  2097. To test for all bits being 1's, select the value FROM itself and select the
  2098. top bit.
  2099. .\" CORRECTION:
  2100. .\" "statements 219 and 220" were "statement 192 and 193", but there
  2101. .\" is no such test there.
  2102. .\" Also, last sentence had parenthetical "(see statement 261)".  NOT
  2103. .\" only DOES 261 contain no such test, the library as a whole doesn't
  2104. .\" seem to either.
  2105. The test for greater than, performed IN
  2106. statements 219 and 220 on 32-bit values, employs binary logical operations,
  2107. which are performed as follows:
  2108. .DS
  2109. \&'\*(vb.1\*(ct.2'~'#0\*(ct#65535'
  2110. .DE
  2111. for 16-bit values or, for 32-bit values:
  2112. .DS L
  2113.         "'\*(vb":1~'#65535\*(ct30'"\*(ct":2~'#65535\*(ct#0'"'~'#0
  2114.         \*(ct#65535'"\*(ct"'\*(vb":1~'#0\*(ct#65535'"\*(ct":2~'#0
  2115.         \*(ct#65535'"'~'#0\*(ct#65535'"
  2116. .DE
  2117. (The proofs are left as an exercise to the reader.)
  2118. .P
  2119. Testing for greater-than with 16-bit values is somewhat simpler and is done
  2120. with the pair of statements:
  2121. .DS L
  2122.         DO .C <- '\*(vb.A\*(ct.B'~'#0\*(ct#65535'
  2123.         DO .C <- '&"'.A~.C'~'"\*(vb'\*(vb.C~.C'\*(ct#32768"
  2124.                 ~"#0\*(ct#65535"'"\*(ct".C~.C"'~#1
  2125. .DE
  2126. This sets .C (a dummy variable) to #1 if .A > .B, and #0 otherwise. The
  2127. expression may be expanded as described above to instead set .C to #1 or
  2128. #2.
  2129. .P
  2130. Note also IN statement 220 the occurrence of ~"#65535\*(ct#65535". Although
  2131. these operations select the entire value, they are NOT extraneous, as they
  2132. ensure that the forthcoming \*(vbs will be operating on 32-bit values.
  2133. .P
  2134. IN several virtual computed GO TOs the DO FORGET #1 (statement 15 IN the
  2135. earlier example) has been omitted, since the NEXT transfer of control would
  2136. be a DO RESUME #1.  By making this a DO RESUME #2 instead, the FORGET may
  2137. be forgotten.
  2138. .P
  2139. IN statement 64, note that .2 is STASHed twice by a single statement. This
  2140. is perfectly legal.
  2141. .P
  2142. Lastly, note IN statements 243 and 214 respectively, expressions for
  2143. shifting 16- and 32-bit variables logically one place to the left.
  2144. Statement 231 demonstrates right-shifting for 32-bit variables.
  2145. .bp
  2146. .H 2 "Program Listing"
  2147. .SETR syslib
  2148. .DS L
  2149. .cs R 24
  2150. .\" CORRECTION:
  2151. .\" This is the corrected system library, NOT the rather buggy original.
  2152. .\" Can be semi-mechanically generated FROM the syslib.i file with
  2153. .\"   sed syslib.i -e 1d -e '/\$/s//\\*(ct/g' -e '/?/s//\\*(vb/g' | nl | expand
  2154.  \" but you have to
  2155. .\" (a) restore the splat on line 13  DOUBLE OR SINGLE PRECISION OVERFLOW
  2156. .\" (b) restore the splat on line 254 PLEASE NOTE ....
  2157. .\" (c) appropriately conditionalize lines 289-294
  2158. .\" (d) manually break lines where they wrap
  2159.      1          (1000)  PLEASE IGNORE .4
  2160.      2                  PLEASE ABSTAIN FROM (1005)
  2161.      3          (1009)  DO STASH .1 + .2 + .5 + .6
  2162.      4                  DO .4 <- #1
  2163.      5                  DO (1004) NEXT
  2164.      6          (1004)  PLEASE FORGET #1
  2165.      7                  DO .3 <- '\*(vb.1\*(ct.2'~'#0\*(ct#65535'
  2166.      8                  DO .6 <- '&.1\*(ct.2'~'#0\*(ct#65535'
  2167.      9                  PLEASE DO .5 <- "\*(vb!6~#32768'\*(ct#1"~#3
  2168.     10                  DO (1002) NEXT
  2169.     11                  DO .4 <- #2
  2170.     12          (1005)  DO (1006) NEXT
  2171. *   13          (1999)  DOUBLE OR SINGLE PRECISION OVERFLOW
  2172.     14          (1002)  DO (1001) NEXT
  2173.     15          (1006)  PLEASE FORGET #1
  2174.     16                  DO .5 <- '\*(vb"!6~.6'~#1"\*(ct#1'~#3
  2175.     17                  DO (1003) NEXT
  2176.     18                  DO .1 <- .3
  2177.     19                  DO .2 <- !6\*(ct#0'~'#32767\*(ct#1'
  2178.     20                  DO (1004) NEXT
  2179.     21          (1003)  DO (1001) NEXT
  2180.     22                  DO REINSTATE (1005)
  2181.     23          (1007)  PLEASE RETRIEVE .1 + .2 + .5 + .6
  2182.     24                  DO REMEMBER .4
  2183.     25                  PLEASE RESUME #2
  2184.     26          (1001)  DO RESUME .5
  2185.     27          (1010)  DO STASH .1 + .2 + .4
  2186.     28                  DO .4 <- .1
  2187.     29                  DO .1 <- '\*(vb.2\*(ct#65535'~'#0\*(ct#65535'
  2188.     30                  DO (1020) NEXT
  2189.     31                  PLEASE DO .2 <- .4
  2190.     32                  PLEASE DO (1009) NEXT
  2191.     33                  DO RETRIEVE .1 + .2 + .4
  2192.     34                  PLEASE RESUME #1
  2193.     35          (1020)  DO STASH .2 + .3
  2194.     36                  DO .2 <- #1
  2195.     37                  PLEASE DO (1021) NEXT
  2196.     38          (1021)  DO FORGET #1
  2197.     39                  DO .3 <- "\*(vb!1~.2'\*(ct#1"~#3
  2198.     40                  PLEASE DO .1 <- '\*(vb.1\*(ct.2'~'#0\*(ct#65535'
  2199.     41                  DO (1022) NEXT
  2200.     42                  DO .2 <- !2\*(ct#0'~'#32767\*(ct#1'
  2201.     43                  DO (1021) NEXT
  2202.     44          (1023)  PLEASE RESUME .3
  2203.     45          (1022)  DO (1023) NEXT
  2204.     46                  PLEASE RETRIEVE .2 + .3
  2205.     47                  PLEASE RESUME #2
  2206.     48          (1030)  DO ABSTAIN FROM (1033)
  2207.     49                  PLEASE ABSTAIN FROM (1032)
  2208.     50          (1039)  DO STASH :1 + .5
  2209.     51                  DO (1530) NEXT
  2210.     52                  DO .3 <- :1~#65535
  2211.     53                  PLEASE DO .5 <- :1~'#65280\*(ct#65280'
  2212.     54                  DO .5 <- '\*(vb"!5~.5'~#1"\*(ct#1'~#3
  2213.     55                  DO (1031) NEXT
  2214.     56          (1032)  DO (1033) NEXT
  2215.     57                  DO (1999) NEXT
  2216.     58          (1031)  DO (1001) NEXT
  2217.     59          (1033)  DO .4 <- .5
  2218.     60                  DO REINSTATE (1032)
  2219.     61                  PLEASE REINSTATE (1033)
  2220.     62                  DO RETRIEVE :1 + .5
  2221.     63                  PLEASE RESUME #2
  2222.     64          (1040)  PLEASE STASH .1 + .2 + .2 + :1 + :2 + :3
  2223.     65                  DO .2 <- #0
  2224.     66                  DO (1520) NEXT
  2225.     67                  DO STASH :1
  2226.     68                  PLEASE RETRIEVE .2
  2227.     69                  DO .1 <- .2
  2228.     70                  DO .2 <- #0
  2229.     71                  PLEASE DO (1520) NEXT
  2230.     72                  DO :2 <- :1
  2231.     73                  DO RETRIEVE .1 + .2 + :1
  2232.     74                  DO (1550) NEXT
  2233.     75                  PLEASE DO .3 <- :3
  2234.     76                  DO RETRIEVE :1 + :2 + :3
  2235.     77                  DO RESUME #1
  2236.     78          (1050)  PLEASE STASH :2 + :3 + .5
  2237.     79                  DO :2 <- .1
  2238.     80                  PLEASE DO (1550) NEXT
  2239.     81                  DO .5 <- :3~'#65280\*(ct#65280'
  2240.     82                  DO .5 <- '\*(vb"!5~.5'~#1"\*(ct#1'~#3
  2241.     83                  DO (1051) NEXT
  2242.     84                  DO (1999) NEXT
  2243.     85          (1051)  DO (1001) NEXT
  2244.     86                  DO .2 <- :3
  2245.     87                  PLEASE RETRIEVE :2 + :3 + .5
  2246.     88                  DO RESUME #2
  2247.     89          (1500)  PLEASE ABSTAIN FROM (1502)
  2248.     90                  PLEASE ABSTAIN FROM (1506)
  2249.     91          (1509)  PLEASE STASH :1 + .1 + .2 + .3 + .4 + .5 + .6
  2250.     92                  DO .1 <- :1~#65535
  2251.     93                  PLEASE DO .2 <- :2~#65535
  2252.     94                  DO (1009) NEXT
  2253.     95                  DO .5 <- .3
  2254.     96                  PLEASE DO .6 <- .4
  2255.     97                  DO .1 <- :1~'#65280\*(ct#65280'
  2256.     98                  DO .2 <- :2~'#65280\*(ct#65280'
  2257.     99                  DO (1009) NEXT
  2258.    100                  DO .1 <- .3
  2259.    101                  PLEASE DO (1503) NEXT
  2260.    102                  DO .6 <- .4
  2261.    103                  DO .2 <- #1
  2262.    104                  DO (1009) NEXT
  2263.    105                  DO .1 <- .3
  2264.    106                  DO (1501) NEXT
  2265.    107          (1504)  PLEASE RESUME .6
  2266.    108          (1503)  DO (1504) NEXT
  2267.    109          (1501)  DO .2 <- .5
  2268.    110                  DO .5 <- '\*(vb"'&.6\*(ct.4'~#1"\*(ct#2'~#3
  2269.    111                  DO (1505) NEXT
  2270.    112          (1506)  DO (1502) NEXT
  2271.    113                  PLEASE DO (1999) NEXT
  2272.    114          (1505)  DO (1001) NEXT
  2273.    115          (1502)  DO :4 <- .5
  2274.    116                  DO (1520) NEXT
  2275.    117                  DO :3 <- :1
  2276.    118                  PLEASE RETRIEVE :1 + .1 + .2 + .3 + .4 + .5 + .6
  2277.    119                  DO REINSTATE (1502)
  2278.    120                  DO REINSTATE (1506)
  2279.    121                  PLEASE RESUME #3
  2280.    122          (1510)  DO STASH :1 + :2 + :4
  2281.    123                  DO :1 <- "'\*(vb":2~'#65535\*(ct#0'"\*(ct#65535'
  2282.                             ~'#0\*(ct#65535'"\*(ct"'\*(vb":2~'#0\*(ct#65535'
  2283.                             "\*(ct#65535'~'#0\*(ct#65535'"
  2284.    124                  DO :2 <- #1
  2285.    125                  DO (1509) NEXT
  2286.    126                  PLEASE RETRIEVE :1
  2287.    127                  DO :2 <- :3
  2288.    128                  PLEASE DO (1509) NEXT
  2289.    129                  DO RETRIEVE :2 + :4
  2290.    130                  PLEASE RESUME #1
  2291.    131          (1520)  PLEASE STASH .3 + .4
  2292.    132                  DO .3 <- .1~#43690
  2293.    133                  DO (1525) NEXT
  2294.    134                  PLEASE DO .4 <- 'V.3\*(ct".2~#43690"'~'#0\*(ct#65535'
  2295.    135                  DO .3 <- .1~#21845
  2296.    136                  PLEASE DO (1525) NEXT
  2297.    137                  DO :1 <- .4\*(ct"'V.3\*(ct".2~#21845"'~'#0\*(ct#65535'"
  2298.    138                  PLEASE RETRIEVE .3 + .4
  2299.    139                  DO RESUME #1
  2300.    140          (1525)  DO .3 <- '"'"'"!3\*(ct#0'~'#32767\*(ct#1'"\*(ct#0'
  2301.                             ~'#32767\*(ct#1'"\*(ct#0'~'#16383\*(ct#3'"\*(ct#0'
  2302.                             ~'#4095\*(ct#15'
  2303.    141                  PLEASE RESUME #1
  2304.    142          (1530)  DO STASH :2 + :3 + .3 + .5
  2305.    143                  DO :1 <- #0
  2306.    144                  DO :2 <- .2
  2307.    145                  DO .3 <- #1
  2308.    146                  DO (1535) NEXT
  2309.    147          (1535)  PLEASE FORGET #1
  2310.    148                  DO .5 <- "\*(vb!1~.3'\*(ct#1"~#3
  2311.    149                  DO (1531) NEXT
  2312.    150                  DO (1500) NEXT
  2313.    151                  DO :1 <- :3
  2314.    152                  PLEASE DO (1533) NEXT
  2315.    153          (1531)  PLEASE DO (1001) NEXT
  2316.    154          (1533)  DO FORGET #1
  2317.    155                  DO .3 <- !3\*(ct#0'~'#32767\*(ct#1'
  2318.    156                  DO :2 <- ":2~'#0\*(ct#65535'"\*(ct"'":2~'#32767
  2319.                             \*(ct#0'"\*(ct#0'~'#32767\*(ct#1'"
  2320.    157                  PLEASE DO .5 <- "\*(vb!3~.3'\*(ct#1"~#3
  2321.    158                  DO (1532) NEXT
  2322.    159                  DO (1535) NEXT
  2323.    160          (1532)  DO (1001) NEXT
  2324.    161                  PLEASE RETRIEVE :2 + :3 + .3 + .5
  2325.    162                  DO RESUME #2
  2326.    163          (1540)  PLEASE ABSTAIN FROM (1541)
  2327.    164                  DO ABSTAIN FROM (1542)
  2328.    165          (1549)  PLEASE STASH :1 + :2 + :4 + :5 + .1 + .2 + .5
  2329.    166                  DO .1 <- :1~#65535
  2330.    167                  PLEASE DO .2 <- :2~'#65280\*(ct#65280'
  2331.    168                  DO .5 <- :1~'#65280\*(ct#65280'
  2332.    169                  DO (1530) NEXT
  2333.    170                  DO :3 <- :1
  2334.    171                  DO .2 <- :2~#65535
  2335.    172                  PLEASE DO (1530) NEXT
  2336.    173                  DO :5 <- :1
  2337.    174                  DO .1 <- .5
  2338.    175                  DO (1530) NEXT
  2339.    176                  DO :4 <- :1
  2340.    177                  PLEASE DO :1 <- ":3~'#65280\*(ct#65280'"
  2341.                             \*(ct":4~'#65280\*(ct#65280'"
  2342.    178                  DO .5 <- ':1~:1'~#1
  2343.    179                  DO .2 <- :2~'#65280\*(ct#65280'
  2344.    180                  DO (1530) NEXT
  2345.    181                  PLEASE DO .5 <- '"':1~:1'~#1"\*(ct.5'~#3
  2346.    182                  DO .1 <- :3~#65535
  2347.    183                  DO .2 <- #0
  2348.    184                  DO (1520) NEXT
  2349.    185                  PLEASE DO :2 <- :1
  2350.    186                  PLEASE DO .1 <- :4~#65535
  2351.    187                  DO (1520) NEXT
  2352.    188                  DO (1509) NEXT
  2353.    189                  DO .5 <- !5\*(ct":4~#3"'~#15
  2354.    190                  DO :1 <- :3
  2355.    191                  DO :2 <- :5
  2356.    192                  DO (1509) NEXT
  2357.    193                  PLEASE DO .5 <- !5\*(ct":4~#3"'~#172
  2358.    194                  DO .5 <- '\*(vb"!5~.5'~#1"\*(ct#1'~#3
  2359.    195                  PLEASE RETRIEVE :4
  2360.    196          (1541)  DO :4 <- .5
  2361.    197                  DO (1543) NEXT
  2362.    198          (1542)  DO (1544) NEXT
  2363.    199                  PLEASE DO (1999) NEXT
  2364.    200          (1543)  DO (1001) NEXT
  2365.    201          (1544)  DO REINSTATE (1541)
  2366.    202                  PLEASE REINSTATE (1542)
  2367.    203                  PLEASE RETRIEVE :1 + :2 + :5 + .1 + .2 + .5
  2368.    204                  DO RESUME #2
  2369.    205          (1550)  DO STASH :1 + :4 + :5 + .5
  2370.    206                  DO :3 <- #0
  2371.    207                  DO .5 <- '\*(vb"':2~:2'~#1"\*(ct#1'~#3
  2372.    208                  PLEASE DO (1551) NEXT
  2373.    209                  DO :4 <- #1
  2374.    210                  PLEASE DO (1553) NEXT
  2375.    211          (1553)  DO FORGET #1
  2376.    212                  DO .5 <- '\*(vb":2~'#32768\*(ct#0'"\*(ct#2'~#3
  2377.    213                  DO (1552) NEXT
  2378.    214                  DO :2 <- ":2~'#0\*(ct#65535'"\*(ct"'":2~'#32767
  2379.                             \*(ct#0'"\*(ct#0'~'#32767\*(ct#1'"
  2380.    215                  PLEASE DO :4 <- ":4~'#0\*(ct#65535'"\*(ct"'":4
  2381.                             ~'#32767\*(ct#0'"\*(ct#0'~'#32767\*(ct#1'"
  2382.    216                  DO (1553) NEXT
  2383.    217          (1552)  DO (1001) NEXT
  2384.    218          (1556)  PLEASE FORGET #1
  2385.    219                  DO :5 <- "'\*(vb":1~'#65535\*(ct#0'"\*(ct":2
  2386.                             ~'#65535\*(ct#0'"'~'#0\*(ct#65535'"\*(ct"'
  2387.                             \*(vb":1~'#0\*(ct#65535'"\*(ct":2~'#0\*(ct
  2388.                             #65535'"'~'#0\*(ct#65535'"
  2389.    220                  DO .5 <- '\*(vb"'&"':2~:5'~'"'\*(vb"'\*(vb":5~:5
  2390.                             "~"#65535\*(ct#65535"'~'#65535\*(ct#0'"\*(ct
  2391.                             #32768'~'#0\*(ct#65535'"\*(ct"'\*(vb":5~:5"
  2392.                             ~"#65535\*(ct#65535"'~'#0\*(ct#65535'"'"\*(ct"'
  2393.                             :5~:5'~#1"'~#1"\*(ct#2'~#3
  2394.    221                  DO (1554) NEXT
  2395.    222                  DO :5 <- :3
  2396.    223                  DO (1510) NEXT
  2397.    224                  PLEASE DO :1 <- :3
  2398.    225                  DO :3 <- "'V":4~'#65535\*(ct#0'"\*(ct":5~'#65535
  2399.                             \*(ct#0'"'~'#0\*(ct#65535'"\*(ct"'V":4~'#0
  2400.                             \*(ct#65535'"\*(ct":5~'#0\*(ct#65535'"'~'#0
  2401.                             \*(ct#65535'"
  2402.    226                  DO (1555) NEXT
  2403.    227          (1554)  PLEASE DO (1001) NEXT
  2404.    228          (1555)  DO FORGET #1
  2405.    229                  DO .5 <- "\*(vb':4~#1'\*(ct#2"~#3
  2406.    230                  DO (1551) NEXT
  2407.    231                  DO :2 <- ":2~'#0\*(ct#65534'"\*(ct":2~'#65535\*(ct#0'"
  2408.    232                  DO :4 <- ":4~'#0\*(ct#65534'"\*(ct":4~'#65535\*(ct#0'"
  2409.    233                  PLEASE DO (1556) NEXT
  2410.    234          (1551)  DO (1001) NEXT
  2411.    235                  PLEASE RETRIEVE :1 + :4 + :5 + .5
  2412.    236                  PLEASE RESUME #2
  2413.    237          (1900)  DO STASH .2 + .3 + .5
  2414.    238                  DO .1 <- #0
  2415.    239                  DO .2 <- #1
  2416.    240                  PLEASE DO (1901) NEXT
  2417.    241          (1901)  DO FORGET #1
  2418.    242                  DO %50 .1 <- 'V.1\*(ct.2'~'#0\*(ct#65535'
  2419.    243                  DO .2 <- !2\*(ct#0'~'#32767\*(ct#1'
  2420.    244                  PLEASE DO .5 <- "\*(vb!2~.2'\*(ct#1"~#3
  2421.    245                  DO (1902) NEXT
  2422.    246                  DO (1901) NEXT
  2423.    247          (1902)  DO (1001) NEXT
  2424.    248                  DO RETRIEVE .2 + .3 + .5
  2425.    249                  PLEASE RESUME #2
  2426.    250          (1910)  PLEASE STASH .1 + .3 + .5 + :1 + :2 + :3
  2427.    251                  DO .3 <- #65524
  2428.    252                  DO :1 <- #6
  2429.    253                  DO (1911) NEXT
  2430. *  254                  PLEASE NOTE THAT YOU CAN'T GET THERE FROM HERE
  2431.    255          (1912)  DO (1001) NEXT
  2432.    256          (1911)  DO FORGET #1
  2433.    257                  PLEASE DO (1900) NEXT
  2434.    258                  DO :2 <- .1
  2435.    259                  DO (1500) NEXT
  2436.    260                  PLEASE DO :1 <- :3
  2437.    261                  DO .1 <- .3
  2438.    262                  DO (1020) NEXT
  2439.    263                  PLEASE DO .3 <- .1
  2440.    264                  DO .5 <- '\*(vb"!3~.3'~#1"\*(ct#2'~#3
  2441.    265                  DO (1912) NEXT
  2442.    266                  DO .1 <- #12
  2443.    267                  PLEASE DO (1050) NEXT
  2444.    268                  DO RETRIEVE .1
  2445.    269                  DO (1530) NEXT
  2446.    270                  DO :2 <- #32768
  2447.    271                  DO (1500) NEXT
  2448.    272                  PLEASE DO .2 <- :3~'#65280\*(ct#65280'
  2449.    273                  PLEASE RETRIEVE .3 + .5 + :1 + :2 + :3
  2450.    274                  DO RESUME #1
  2451. .cs R
  2452. .DE
  2453. .bp
  2454. .H 2 "Programming Suggestions"
  2455. .P
  2456. For the novice INTERCAL programmer, we provide here a list of suggested
  2457. INTERCAL programming projects:
  2458. .P
  2459. WRITE an integer exponentiation subroutine.  :1 <- .1 raised to the .2 power.
  2460. .P
  2461. WRITE a double-precision sorting subroutine. Given 32-bit array ;1 of size
  2462. :1, sort the contents into numerically increasing order, leaving the results
  2463. IN ;1.
  2464. .P
  2465. Generate a table of prime numbers.
  2466. .P
  2467. Put together a floating-point library, using 32-bit variables to represent
  2468. floating-point numbers (let the upper half be the mantissa and the lower
  2469. half be the characteristic).  The library should be capable of performing
  2470. floating-point addition, subtraction, multiplication, and division, as well
  2471. as the natural logarithm function.
  2472. .P
  2473. Program a Fast Fourier Transform (FFT).  This project would probably entail
  2474. the writing of the floating-point library as well as sine and cosine functions.
  2475. .P
  2476. Calculate, to :1 places, the value of pi.
  2477. .if '\*c'y' \{\
  2478. .P
  2479. (Working programs for each of these projects are included IN the
  2480. C-INTERCAL distribution's pit directory of sample code.) \}
  2481. .bp
  2482. .H 1 "ERROR MESSAGES"
  2483. .if '\*c'y' \{\
  2484. .DS I F
  2485. Alice felt dreadfully puzzled. The Hatter's remark seemed to her to
  2486. have no sort of meaning IN it, and yet it was certainly English. "I
  2487. DON'T quite understand you," she said, as politely as she could.
  2488. .DE \}
  2489. .SETR error_messages
  2490. .P
  2491. Due to INTERCAL's implementation of comment lines (see section 4.5), most
  2492. error messages are produced during execution instead of during compilation.
  2493. All errors except those NOT causing immediate termination of program execution
  2494. are treated as fatal.
  2495. .H 2 "Format"
  2496. .P
  2497. All error messages appear IN the following form:
  2498. .DS L
  2499.         ICLnnnI (error message)
  2500.                 ON THE WAY TO STATEMENT nnnn
  2501.                 CORRECT SOURCE AND RESUBMIT
  2502. .DE
  2503. The message varies depending upon the error involved.  For undecodable
  2504. statements the message is the statement itself.  The second line tells
  2505. which statement would have been executed NEXT had the error NOT occurred.
  2506. Note that if the error is due to 80 attempted levels of NEXTing, the
  2507. statement which would have been executed NEXT need NOT be anywhere near the
  2508. statement causing the error.
  2509. .H 2 "Messages"
  2510. .P
  2511. Brief descriptions of the different error types are listed below according
  2512. to message number.
  2513. .BL
  2514. .LI 000
  2515. An undecodable statement has been encountered IN the course of
  2516. execution. Note that keypunching errors can be slightly disastrous,
  2517. since if 'FORGET' were misspelled F-O-R-G-E-R, the results would
  2518. probably NOT be those desired. Extreme misspellings may have even
  2519. more surprising consequences. For example, misspelling 'FORGET'
  2520. R-E-S-U-M-E could have drastic results.
  2521. .LI 017
  2522. An expression contains a syntax error.
  2523. .LI 079
  2524. Improper use has been made of statement identifiers.
  2525. .LI 099
  2526. Improper use has been made of statement identifiers.
  2527. .LI 123
  2528. Program has attempted 80 levels of NEXTing.
  2529. .LI 129
  2530. Program has attempted to transfer to a non-existent line label.
  2531. .LI 139
  2532. An ABSTAIN or REINSTATE statement references a non-existent line label.
  2533. .LI 182
  2534. A line label has been multiply defined.
  2535. .LI 197
  2536. An invalid line label has been encountered.
  2537. .LI 200
  2538. An expression involves an unidentified variable.
  2539. .LI 240
  2540. An attempt has been made to GIVE an array a dimension of zero.
  2541. .LI 241
  2542. Invalid dimensioning information was supplied IN defining or using
  2543. an array.
  2544. .LI 275
  2545. A 32-bit value has been assigned to a 16-bit variable.
  2546. .LI 436
  2547. A retrieval has been attempted for an unSTASHed value.
  2548. .LI 533
  2549. A WRITE IN statement or interleave (\*(ct) operation has produced a
  2550. value requiring over 32 bits to represent.
  2551. .LI 562
  2552. Insufficient data.
  2553. .LI 579
  2554. Input data is invalid.
  2555. .LI 621
  2556. The expression of a RESUME statement evaluated to #0.
  2557. .LI 632
  2558. Program execution was terminated via a RESUME statement instead of
  2559. GIVE UP.
  2560. .LI 633
  2561. Execution has passed beyond the last statement of the program.
  2562. .LI 774
  2563. A compiler error has occurred (see section
  2564. .GETHN princeton
  2565. ).
  2566. .LI 778
  2567. .ie '\*c'n' \{\
  2568. An unexplainable compiler error has occurred (see J. Lyon or D. Woods)\}.
  2569. .el An unexplainable compiler error has occurred.
  2570. .LE
  2571. .if '\*c'y' \{\
  2572. .P
  2573. The following error codes are new IN C-INTERCAL:
  2574. .BL
  2575. .LI 111
  2576. You tried to use a C-INTERCAL extension with the `traditional' flag on.
  2577. .LI 127
  2578. Can't find syslib.i file when it's needed for magical inclusion.
  2579. .LI 222
  2580. OUT of STASH space, or attempt to STASH an undeclared array.
  2581. .LI 333
  2582. Too many variables.
  2583. .LI 444
  2584. A COME FROM statement references a non-existent line label.
  2585. .LI 555
  2586. More than one COME FROM references the same label.
  2587. .LI 666
  2588. Too many source lines.
  2589. .LI 777
  2590. No such source file.
  2591. .LI 888
  2592. Can't open C output file.
  2593. .LI 999
  2594. Can't open C skeleton file.
  2595. .LI 998
  2596. Source file name with invalid extension (use .i or .[2-7]i).
  2597. .LI 997
  2598. Illegal possession of a controlled unary operator.
  2599. .LE \}
  2600. .if '\*c'y' \{\
  2601. .H 1 "The C-INTERCAL Compiler"
  2602. .if '\*c'y' \{\
  2603. .DS I F
  2604. "And yet it was a very clever pudding to invent."
  2605. .P
  2606. "What did you mean it to be made of?" Alice asked, hoping to cheer him
  2607. UP, for the poor Knight seemed quite low-spirited about it.
  2608. .P
  2609. "It began with blotting-paper," the Knight answered with a groan.
  2610. .P
  2611. "That wouldn't be very nice, I'm afraid --"
  2612. .P
  2613. "NOT very nice \fIalone\fR," he interrupted, quite eagerly, "but
  2614. you've no idea what a difference it makes, mixing it with other
  2615. things -- such as gunpowder and sealing-wax."
  2616. .DE \}
  2617. .P
  2618. This section describes the use of ick, the C-INTERCAL
  2619. compiler. Information specific to the other known INTERCAL compilers
  2620. appears IN the following sections. These sections are less useful,
  2621. since the other compilers are no longer available, but they are
  2622. retained to provide a sense of history, and because any information
  2623. regarding INTERCAL is really too scarce to discard.
  2624. .H 2 "Character Set"
  2625. .P
  2626. The C-INTERCAL compiler uses ASCII rather than EBCDIC. We follow the
  2627. Atari implementation (see section
  2628. .GETHN atari
  2629. ) by (a) replacing the change sign (\*(ct) with
  2630. big money ($) as the mingle operator, and (b) replacing the
  2631. bookworm (\*(vb) symbol with what (?) as the XOR operator.
  2632. .P
  2633. Version 0.18 and later versions accept the Latin-1 (ISO 8859-1)
  2634. character set, which is a superset of ASCII.  As a result,
  2635. 0xA2 (\*(ct), 0xA3 (quid), and 0xA4 (zlotnik) are accepted as mingle
  2636. operators.
  2637. .P
  2638. Version 0.20 and later versions also accept UTF-8 as an alternative
  2639. to Latin-1.  The above three currency operators will be accepted IN
  2640. either Latin-1 or UTF-8 format.  UTF-8 format is required if you
  2641. wish to use any of EURO-CURRENCY SIGN, COLON SIGN (that's Costa Rican dinero,
  2642. NOT the Intercal two-spot),
  2643. CRUZEIRO SIGN, FRENCH FRANC SIGN, LIRA SIGN, MILL SIGN, NAIRA SIGN,
  2644. PESETA SIGN, RUPEE SIGN, WON SIGN, NEW SHEQEL SIGN, DONG SIGN, EURO SIGN,
  2645. BENGALI RUPEE MARK, BENGALI RUPEE SIGN, or THAI CURRENCY SYMBOL BAHT.
  2646. (Isn't internationalization wonderful?)
  2647. Furthermore, you can use the Intercal character FOR ALL to represent
  2648. the what operator.
  2649. .H 2 "Usage and Compilation Options"
  2650. .P
  2651. To compile an INTERCAL program `foo.i' to executable code, just DO
  2652.  
  2653.         ick foo.i
  2654.  
  2655. There's a -c option that leaves the generated C code IN place for
  2656. inspection (suppressing compilation to machine code), a -d option that
  2657. enables verbose parse reporting FROM the yacc/bison parser, a -t
  2658. option that requires strict INTERCAL-72 compliance (rejecting COME
  2659. FROM and the extensions for bases other than two), a -b option that
  2660. disables the INTERCAL-72 random-bug feature (error 774), and an -O option
  2661. that enables the (hah!) optimizer. Invoking ick -? prints a usage
  2662. message.
  2663. .P
  2664. Another compilation switch affects C-INTERCAL's runtime behavior. The `-C'
  2665. option forces output IN "clockface" mode, for superstitious users who
  2666. believe writing "IV" upside-down offends IVPITER and would rather
  2667. see IIII.
  2668. .H 2 "Runtime Options"
  2669. .P
  2670. Every C-INTERCAL runtime also accepts certain options at runtime.
  2671. These include [+/-]help, [+/-]traditional, and [+/-]wimpmode.
  2672. The help option (with either + or -) triggers a 'usage' message. The
  2673. +traditional option is presently a no-op.
  2674. .P
  2675. Steve explains: "The wimpmode option is the most interesting. I found
  2676. myself always running my test programs with filters on both ends to
  2677. work around the \&'nifty' INTERCAL number representations. This was so
  2678. painful that I decided it would be \fIless\fR painful (and a lot less
  2679. code) if I added a 'wimp' option. With the +wimpmode option, the user
  2680. is subjected to a humiliating message about what a wimp he or she is
  2681. to use this mode, but after that is allowed to use conventional
  2682. numerical notation. While such a mode doubtless violates to some
  2683. extent the INTERCAL philosophy, the fact that an 'unbutcher' command
  2684. has been posted clearly indicates the need for it. Anyway ... if you
  2685. DON'T like it, DON'T use it ... the default is -wimpmode
  2686. (i.e. \fInot\fR wimp mode)."
  2687. .H 2 "PLEASE Politesse Checking"
  2688. .P
  2689. A feature of INTERCAL-72 NOT documented IN the original manual was that it
  2690. required a certain level of politesse FROM the programmer. If fewer than
  2691. 1/5th of the program statements included the PLEASE qualifier, the program
  2692. would be rejected as insufficiently polite. If more than 1/3rd of them
  2693. included PLEASE, the program would be rejected as excessively polite.
  2694. .P
  2695. This check has been implemented IN C-INTERCAL. To assist programmers IN
  2696. coping with it, the intercal.el mode included with the distribution randomly
  2697. expands "DO " IN entered source to "PLEASE DO" 1/4th of the time.
  2698. .H 2 "Localization: Ancient Roman"
  2699. Version 0.18 and later versions of C-Intercal have been
  2700. localized for Ancient Roman as well as English-speaking locales.
  2701. This means that Latin-language keywords are accepted as equivalents
  2702. for the English-based ones traditionally used.
  2703. See src/lexer.l for details, as we DO NOT propose to break
  2704. Priscian's head (publicly expose our ignorance of Latin) here.   \}
  2705. .if '\*c'y' \{\
  2706. .\" This is the same text as the ATARI NOTES at the end of the manual.
  2707. .H 1 "The Atari Implementation"
  2708. .if '\*c'y' \{\
  2709. .DS I F
  2710. "Perhaps it doesn't understand English," thought Alice. "I daresay
  2711. it's a French mouse, COME over with William the Conqueror." (For, with
  2712. all her knowledge of history, Alice had no very clear notion how long
  2713. ago anything had happened.)
  2714. .DE \}
  2715. .SETR atari
  2716. .P
  2717. The Atari implementation of INTERCAL differs FROM the original Princeton
  2718. version primarily IN the use of ASCII rather than EBCDIC. Since there is no
  2719. "change" sign (\*(ct) IN ASCII, we have substituted the "big money" ($) as the
  2720. mingle operator. We feel that this correctly represents the increasing cost
  2721. of software IN relation to hardware. (Consider that IN 1970 one could get
  2722. RUNOFF for free, to run on a $20K machine, whereas today a NOT quite as
  2723. powerful formatter costs $99 and runs on a $75 machine.) We also feel that
  2724. there should be no defensible contention that INTERCAL has any sense.
  2725. Also, since overpunches are difficult to READ on the average VDT, the
  2726. exclusive-or operator may be written ?. This correctly expresses the
  2727. average person's reaction on first encountering exclusive-or, especially on
  2728. a PDP-11. Note that IN both of these cases, the over-punched symbol may
  2729. also be used if one is masochistic, or concerned with portability to the
  2730. Princeton compiler. The correct over-punch for "change" is "c<backspace>/"
  2731. and the correct over-punch for \*(vb is "V<backspace>-". These codes will be
  2732. properly printed if you have a proper printer, and the corresponding EBCDIC
  2733. code will be produced by the /IBM option on the LIST command. \}
  2734. .if '\*c'n' \{\
  2735. .H 1 "JCL"
  2736. .SETR princeton
  2737. .P
  2738. The information contained IN the following section applies
  2739. only to the Princeton compiler, run under OS/360.
  2740. .H 2 "The Princeton Compiler" \}
  2741. .if '\*c'y' \{\
  2742. .H 1 "The Princeton Compiler"
  2743. .DS I F
  2744. "My name is Alice, so PLEASE your Majesty," said Alice very politely;
  2745. but she added, to herself, "Why, they're only a pack of cards, after
  2746. all. I needn't be afraid of them!"
  2747. .DE \}
  2748. .SETR princeton
  2749. .P
  2750. The Princeton compiler, written IN SPITBOL (a variant of
  2751. SNOBOL), performs the compilation IN two stages. First the
  2752. INTERCAL source is converted into SPITBOL source, then the
  2753. latter is compiled and executed.
  2754. .P
  2755. It should be noted that the Princeton compiler fails to
  2756. properly interpret certain multiply-subscripted expressions,
  2757. such as:
  2758. .DS
  2759.         ",1SUB",2SUB#1"#2"
  2760. .DE
  2761. .P
  2762. This is NOT a "bug". Being documented, it is merely a
  2763. "restriction". Such cases may be resolved by alternating
  2764. sparks and ears IN various levels of expression nesting:
  2765. .DS
  2766.         ",1SUB',2SUB#1'#2"
  2767. .DE
  2768. which is advisable IN any case, since INTERCAL expressions
  2769. are unreadable enough as is.
  2770. .P
  2771. Since there is currently no catalogued procedure for
  2772. invoking the compiler, the user must include the in-line
  2773. .\" CORRECTION:
  2774. .\" "IN Figure 3" was "on the following page"
  2775. procedure shown IN Figure 3 IN his job before the
  2776. compilation step. Copies of this in-line procedure may be
  2777. obtained at any keypunch if the proper keys are struck.
  2778. .P
  2779. The compiler is then executed IN the usual manner:
  2780. .DS L
  2781.  
  2782.         // EXEC INTERCAL[,PARM='parameters']
  2783.         //COMPILE.SYSIN DD *
  2784.         {INTERCAL source deck}
  2785.         /*
  2786.         //EXECUTE.SYSWRITE DD *
  2787.         {input data}
  2788.         /*
  2789.  
  2790. .DE
  2791. The various parameters are described following the in-line
  2792. procedure. At most one parameter FROM each set may apply to
  2793. a given compilation; if more than one are specified, the
  2794. results are undefined, and may vary depending upon the
  2795. particular set of options. The default parameters are
  2796. .if n \{\
  2797. underlined.\}
  2798. .if t \{\
  2799. italicized.\}
  2800. .\" CORRECTION:
  2801. .\" IN the original, the footnote was on the wrong line (one above).
  2802. .DS L
  2803.         //INTERCAL PROC
  2804.         //COMPILE EXEC PGM=INTERCAL
  2805.         //STEPLIB DD DSN=U.INTERCAL.LIBRARY,DISP=SHR
  2806.         //             DD DSN=SYS1.FORTLIB,DISP=SHR
  2807.         //SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=992,LRECL=137,RECFM=VBA)
  2808.         //SYSPUNCH DD DUMMY
  2809.         //SCRATCH DD DSN=&COMPSET,UNIT=SYSDA,SPACE=(CYL,(3,1)),DISP=(,PASS)
  2810.         //EXECUTE EXEC PGM=EXECUTE,COND=(4,LT)
  2811.         //SOURCES DD DSN=U.INTERCAL.SOURCES,DISP=SHR   \*F
  2812.         //STEPLIB DD DSN=U.INTERCAL.LIBRARY,DISP=SHR
  2813.         //             DD DSN=SYS5.SPITLIB,DISP=SHR
  2814.         //             DD DSN=SYS1.FORTLIB,DISP=SHR
  2815.         //SYSIN DD DSN=&COMPSET,DISP=(OLD,DELETE)
  2816.         //SYSOBJ DD SYSOUT=B,DCB=(BLKSIZE=80,LRECL=80,RECFM=F)
  2817.         //SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=992,LRECL=137,RECFM=VBA)
  2818.         //SYSPUNCH DD DUMMY
  2819.         // PEND
  2820. .DE
  2821. .FS
  2822. Pending acquisition of SPITBOL release 3.0, the SOURCES
  2823. DD card must be replaced by the five cards:
  2824. .DS L
  2825.         //NOOPTPFX DD DSN=U.INTERCAL.SOURCES(NOOPTPFX),DISP=SHR
  2826.         //NOOPTSUB DD DSN=U.INTERCAL.SOURCES(NOOPTSUB),DISP=SHR
  2827.         //OPTPFX DD DSN=U.INTERCAL.SOURCES(OPTPFX),DISP=SHR
  2828.         //OPTSUB DD DSN=U.INTERCAL.SOURCES(OPTSUB),DISP=SHR
  2829.         //PRELIM DD DSN=U.INTERCAL.SOURCES(PRELIM),DISP=SHR
  2830. .DE
  2831. .FE
  2832. .ce 1
  2833. Figure 3.  Inline procedure for using INTERCAL.
  2834. .P
  2835. .LB 5 0 " " 0 * 0 0
  2836. .LI "\fIOPT\fR"
  2837. .LI "NOOPT"
  2838. .LI " "
  2839. IN the default mode, the compiler will print a
  2840. list of all options IN effect, including the
  2841. defaults for unspecified parameter groups and the
  2842. effective option for those sets where one was
  2843. specified. If NOOPT is requested, it causes the
  2844. default mode to be assumed.
  2845.  
  2846. .LI "\fIOPTSUB\fR"
  2847. .LI "NOOPTSUB"
  2848. .LI "NOSUB"
  2849. .LI " "
  2850. Unless 'NOOPTSUB' is requested, the System Library
  2851. is optimized, resulting IN much more rapid
  2852. processing of function calls. Specifying NOOPTSUB
  2853. causes the non-optimized INTERCAL code shown IN section
  2854. .GETHN syslib
  2855.  to be used, whereas NOSUB requests
  2856. that the System Library be omitted altogether.
  2857.  
  2858. .LI IAMBIC
  2859. .LI "\fIPROSE\fR"
  2860. .LI " "
  2861. The IAMBIC parameter permits the programmer to use
  2862. poetic license and thus WRITE IN verse. If the
  2863. reader DOES NOT believe it possible to WRITE verse
  2864. IN INTERCAL, he should send the authors a stamped,
  2865. self-addressed envelope, along with any INTERCAL
  2866. program, and they will provide one which is verse.
  2867.  
  2868. .LI "\fIFORMAT\fR"
  2869. .LI NOFORMAT
  2870. .LI " "
  2871. IN FORMAT mode, each statement printed is put on a
  2872. separate line (or lines). IN NOFORMAT mode, the
  2873. free-format source is printed exactly as input.
  2874. IN this latter case, statement numbers are
  2875. provided only for the first statement on a card,
  2876. and they may be only approximate. Also,
  2877. unrecognizable statements are NOT flagged.
  2878.  
  2879. .LI SEQ
  2880. .LI "\fINOSEQ\fR"
  2881. .LI " "
  2882. If the source deck has sequence numbers IN columns
  2883. 73 through 80, specifying 'SEQ' will cause them to
  2884. be ignored.
  2885.  
  2886. .LI "SOURCE"
  2887. .LI "\fINOSOURCE\fR"
  2888. .LI " "
  2889. If NOSOURCE is selected, all source listing is
  2890. suppressed.
  2891.  
  2892. .LI LIST
  2893. .LI "\fINOLIST\fR"
  2894. .LI " "
  2895. If LIST is specified, the compiler will provide a
  2896. list of statement numbers catalogued according to
  2897. type of statement. The compiler uses this table
  2898. to perform abstentions by gerund.
  2899.  
  2900. .LI "WIDTH=nn"
  2901. .LI " "
  2902. This sets the width (IN number of characters) of
  2903. the output line for FORMAT mode output. The
  2904. default is
  2905. .B 132.
  2906.  
  2907. .LI "CODE"
  2908. .LI "\fINOCODE\fR"
  2909. .LI " "
  2910. Include 'CODE' IN the parameter list to obtain a
  2911. listing of the SPITBOL code produced for each
  2912. INTERCAL statement.
  2913.  
  2914. .LI "LINES=nn"
  2915. .LI " "
  2916. This determines the number of lines per page,
  2917. during both compilation and execution. The
  2918. default is
  2919. .B 60.
  2920.  
  2921. .LI DECK
  2922. .LI "\fINODECK\fR"
  2923. .LI " "
  2924. Selecting 'DECK' will cause the compiler to punch
  2925. OUT a SPITBOL object deck which may then be run
  2926. without reinvoking the INTERCAL (or SPITBOL)
  2927. compiler.
  2928.  
  2929. .LI "\fIKIDDING\fR"
  2930. .LI NOKIDDING
  2931. .LI " "
  2932. Select NOKIDDING to eliminate the snide remarks
  2933. which ordinarily accompany INTERCAL error
  2934. messages.
  2935.  
  2936. .LI "\fIGO\fR"
  2937. .LI NOGO
  2938. .LI " "
  2939. Specifying 'NOGO' will cause  the program to be
  2940. compiled but NOT executed. EXECUTE/NOEXECUTE may
  2941. be substituted for GO/NOGO, but this will result
  2942. IN an error, and GO will be assumed.
  2943.  
  2944. .LI "\fIBUG\fR"
  2945. .LI NOBUG
  2946. .LI " "
  2947. Under the default, there is a fixed probability of
  2948. a fatal compiler bug being worked at random into
  2949. the program being compiled. Encountering this bug
  2950. during execution results IN error message 774 (see
  2951. section
  2952. .GETHN error_messages
  2953. ). This probability is reduced to zero
  2954. under 'NOBUG'. This DOES NOT affect the
  2955. probability (presumably negligible) of error
  2956. message 778.
  2957. .LE
  2958. .H 2 "Other INTERCAL Compilers"
  2959. .P
  2960. There are no other INTERCAL compilers. \*F
  2961. .FS
  2962. This assertion IN the INTERCAL-72 manual was blatantly contradicted by
  2963. some notes on an Atari implementation included at the end of the manual.
  2964. So, you expect compiler manuals to be consistent?
  2965. .FE
  2966. .ds App TONSIL
  2967. .APP "A\*F" ""
  2968. .if '\*c'y' \{\
  2969. .DS I F
  2970. "Of course they answer to their names?" the Gnat remarked carelessly.
  2971. .P
  2972. "I never knew them to DO it."
  2973. .P
  2974. "What's the use of their having names," the Gnat said, "if they wo'n't
  2975. answer to them?"
  2976. .P
  2977. "No use to \fIthem\fR," said Alice; "but it's useful to the people
  2978. that name them, I suppose. If NOT, why DO things have names at all?"
  2979. .P
  2980. "I ca'n't say," the Gnat replied. "Further on, IN the wood down there,
  2981. they've got no names -- however, go on with your list...."
  2982. .DE \}
  2983. .P
  2984. The Official INTERCAL Character Set
  2985. .FS
  2986. Since all other reference manuals have Appendices, it was decided that
  2987. the INTERCAL manual should contain some other type of removable organ.
  2988. .FE
  2989. .ps \n[@ps]
  2990. .\".nr * \n*+1
  2991. .nr PG \n%+1
  2992. .P
  2993. Tabulated on page \n(PG are all the characters used IN INTERCAL, excepting
  2994. letters and digits, along with their names and interpretations. Also
  2995. included are several characters NOT used IN INTERCAL, which are presented
  2996. for completeness and to allow for future expansion.
  2997. .\" All we're doing here is evaluating \*F and throwing it away
  2998. .fi \*F
  2999. .FS
  3000. This footnote intentionally unreferenced.
  3001. .FE
  3002. .ds CH - % -
  3003. .bp
  3004. .\".nr * \n*-1
  3005. .ps \n[@ps]
  3006. .ie '\*c'n' \{\
  3007. .TS
  3008. box;
  3009. c c c
  3010. l l l.
  3011. Character   Name    Use (if any)
  3012. \&. spot    identify 16-bit variable
  3013. :   two-spot    identify 32-bit variable
  3014. ,   tail    identify 16-bit array
  3015. ;   hybrid  identify 32-bit array
  3016. #   mesh    identify constant
  3017. \&= half-mesh
  3018. \'  spark   grouper
  3019. `   backspark
  3020. !   wow equivalent to spark-spot
  3021. ?   what    \fIunary exlusive OR (ASCII)\fR
  3022. "   rabbit-ears grouper
  3023. \o'".'  rabbit  equivalent to ears-spot
  3024. |   spike
  3025. %   double-oh-seven percentage qualifier
  3026. \-  worm    used with angles
  3027. <   angle   used with worms
  3028. >   right angle
  3029. (   wax precedes line label
  3030. )   wane    follows line label
  3031. [   U turn
  3032. ]   U turn back
  3033. {   embrace
  3034. }   bracelet
  3035. *   splat   flags invalid statements
  3036. &   ampersand \*F   unary logical AND
  3037. V   V (or book) unary logical OR
  3038. \*(vb   bookworm (or universal qualifier)   unary exclusive OR
  3039. $   big money   \fIbinary mingle (ASCII)\fR
  3040. \*(ct   change      binary mingle
  3041. ~   sqiggle     binary select
  3042. \&_ flat worm
  3043. \*(ov   overline    indicates "times 1000"
  3044. +   intersection    separates list items
  3045. /   slat
  3046. \e  backslat
  3047. @   whirlpool
  3048. \*(no   hookworm
  3049. ^   shark (or simply sharkfin)
  3050. \o"#*\(sq"  blotch
  3051. .if '\*c'y' \{\
  3052. \*(de   bunghole
  3053. \*(rg   name grabber
  3054. \*(mu   andrew cross
  3055. \*(di   norwegian minus
  3056. \*(co   text grabber
  3057. \*(sc   swash
  3058. \*(*m   microscope
  3059. \*(+-   interworm
  3060. \*(no   half turn
  3061. 0xA3    quid    binary mingle
  3062. 0xA4    zlotnik binary mingle
  3063. \}
  3064. .TE \}
  3065. .el \{\
  3066. .TS
  3067. box;
  3068. c c c
  3069. l l l.
  3070. Character   Name    Use (if any)
  3071. \&. spot    identify 16-bit variable
  3072. :   two-spot    identify 32-bit variable
  3073. ,   tail    identify 16-bit array
  3074. ;   hybrid  identify 32-bit array
  3075. #   mesh    identify constant
  3076. \&= half-mesh
  3077. \'  spark   grouper
  3078. `   backspark
  3079. !   wow equivalent to spark-spot
  3080. ?   what    unary logical XOR
  3081. "   rabbit-ears grouper
  3082. \o'".'  rabbit  equivalent to ears-spot
  3083. |   spike
  3084. %   double-oh-seven percentage qualifier
  3085. \-  worm    used with angles
  3086. <   angle   used with worms
  3087. >   right angle
  3088. (   wax precedes line label
  3089. )   wane    follows line label
  3090. [   U turn
  3091. ]   U turn back
  3092. {   embrace
  3093. }   bracelet
  3094. *   splat   flags invalid statements
  3095. &   ampersand \*F   unary logical AND
  3096. V   V (or book) unary logical OR
  3097. \*(vb   bookworm (universal qualifier)  unary logical XOR (INTERCAL-72)
  3098. $   big money   binary mingle
  3099. \*(ct   change      binary mingle (INTERCAL-72)
  3100. ~   sqiggle     binary select
  3101. \&_ flat worm
  3102. \*(ov   overline    indicates "times 1000"
  3103. +   intersection    separates list items
  3104. /   slat
  3105. \e  backslat
  3106. @   whirlpool   unary logical BUT (TriINTERCAL)
  3107. \*(no   hookworm
  3108. ^   shark (or simply sharkfin)  unary logical XOR (TriINTERCAL)
  3109. \o"#*\(sq"  blotch
  3110. .if '\*c'y' \{\
  3111. \*(de   bunghole
  3112. \*(rg   name grabber
  3113. \*(mu   andrew cross
  3114. \*(di   norwegian minus
  3115. \*(co   text grabber
  3116. \*(sc   swash
  3117. \*(*m   microscope
  3118. \*(+-   interworm
  3119. \*(no   half turn
  3120. 0xA3    quid    binary mingle
  3121. 0xA4    zlotnik binary mingle
  3122. \}
  3123. .TE \}
  3124. .ce 1
  3125. Table 2 (top view). INTERCAL character set.
  3126. .FS
  3127. Got any better ideas?
  3128. .FE
  3129. .ps \n[@ps]
  3130. .if '\*c'n' \{\
  3131. .APP "B" "NOTES ON THE ATARI IMPLEMENTATION"
  3132. .P
  3133. The Atari implementation of INTERCAL differs FROM the original Princeton
  3134. .ds CH INTERCAL
  3135. version primarily IN the use of ASCII rather than EBCDIC. Since there is no
  3136. "change" sign (\*(ct) IN ASCII, we have substituted the "big money" ($) as the
  3137. mingle operator. We feel that this correctly represents the increasing cost
  3138. of software IN relation to hardware. (Consider that IN 1970 one could get
  3139. RUNOFF for free, to run on a $20K machine, whereas today a NOT quite as
  3140. powerful formatter costs $99 and runs on a $75 machine.) We also feel that
  3141. there should be no defensible contention that INTERCAL has any sense.
  3142. Also, since overpunches are difficult to READ on the average VDT, the
  3143. exclusive-or operator may be written ?. This correctly expresses the
  3144. average person's reaction on first encountering exclusive-or, especially on
  3145. a PDP-11. Note that IN both of these cases, the over-punched symbol may
  3146. also be used if one is masochistic, or concerned with portability to the
  3147. Princeton compiler. The correct over-punch for "change" is "c<backspace>/"
  3148. and the correct over-punch for \*(vb is "V<backspace>-". These codes will be
  3149. properly printed if you have a proper printer, and the corresponding EBCDIC
  3150. code will be produced by the /IBM option on the LIST command. \}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement